908 lines
26 KiB
C
908 lines
26 KiB
C
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <complex.h>
|
|
#ifdef complex
|
|
#undef complex
|
|
#endif
|
|
#ifdef I
|
|
#undef I
|
|
#endif
|
|
|
|
#if defined(_WIN64)
|
|
typedef long long BLASLONG;
|
|
typedef unsigned long long BLASULONG;
|
|
#else
|
|
typedef long BLASLONG;
|
|
typedef unsigned long BLASULONG;
|
|
#endif
|
|
|
|
#ifdef LAPACK_ILP64
|
|
typedef BLASLONG blasint;
|
|
#if defined(_WIN64)
|
|
#define blasabs(x) llabs(x)
|
|
#else
|
|
#define blasabs(x) labs(x)
|
|
#endif
|
|
#else
|
|
typedef int blasint;
|
|
#define blasabs(x) abs(x)
|
|
#endif
|
|
|
|
typedef blasint integer;
|
|
|
|
typedef unsigned int uinteger;
|
|
typedef char *address;
|
|
typedef short int shortint;
|
|
typedef float real;
|
|
typedef double doublereal;
|
|
typedef struct { real r, i; } complex;
|
|
typedef struct { doublereal r, i; } doublecomplex;
|
|
#ifdef _MSC_VER
|
|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
|
|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
|
|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
|
|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
|
|
#else
|
|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
|
|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
|
|
#endif
|
|
#define pCf(z) (*_pCf(z))
|
|
#define pCd(z) (*_pCd(z))
|
|
typedef int logical;
|
|
typedef short int shortlogical;
|
|
typedef char logical1;
|
|
typedef char integer1;
|
|
|
|
#define TRUE_ (1)
|
|
#define FALSE_ (0)
|
|
|
|
/* Extern is for use with -E */
|
|
#ifndef Extern
|
|
#define Extern extern
|
|
#endif
|
|
|
|
/* I/O stuff */
|
|
|
|
typedef int flag;
|
|
typedef int ftnlen;
|
|
typedef int ftnint;
|
|
|
|
/*external read, write*/
|
|
typedef struct
|
|
{ flag cierr;
|
|
ftnint ciunit;
|
|
flag ciend;
|
|
char *cifmt;
|
|
ftnint cirec;
|
|
} cilist;
|
|
|
|
/*internal read, write*/
|
|
typedef struct
|
|
{ flag icierr;
|
|
char *iciunit;
|
|
flag iciend;
|
|
char *icifmt;
|
|
ftnint icirlen;
|
|
ftnint icirnum;
|
|
} icilist;
|
|
|
|
/*open*/
|
|
typedef struct
|
|
{ flag oerr;
|
|
ftnint ounit;
|
|
char *ofnm;
|
|
ftnlen ofnmlen;
|
|
char *osta;
|
|
char *oacc;
|
|
char *ofm;
|
|
ftnint orl;
|
|
char *oblnk;
|
|
} olist;
|
|
|
|
/*close*/
|
|
typedef struct
|
|
{ flag cerr;
|
|
ftnint cunit;
|
|
char *csta;
|
|
} cllist;
|
|
|
|
/*rewind, backspace, endfile*/
|
|
typedef struct
|
|
{ flag aerr;
|
|
ftnint aunit;
|
|
} alist;
|
|
|
|
/* inquire */
|
|
typedef struct
|
|
{ flag inerr;
|
|
ftnint inunit;
|
|
char *infile;
|
|
ftnlen infilen;
|
|
ftnint *inex; /*parameters in standard's order*/
|
|
ftnint *inopen;
|
|
ftnint *innum;
|
|
ftnint *innamed;
|
|
char *inname;
|
|
ftnlen innamlen;
|
|
char *inacc;
|
|
ftnlen inacclen;
|
|
char *inseq;
|
|
ftnlen inseqlen;
|
|
char *indir;
|
|
ftnlen indirlen;
|
|
char *infmt;
|
|
ftnlen infmtlen;
|
|
char *inform;
|
|
ftnint informlen;
|
|
char *inunf;
|
|
ftnlen inunflen;
|
|
ftnint *inrecl;
|
|
ftnint *innrec;
|
|
char *inblank;
|
|
ftnlen inblanklen;
|
|
} inlist;
|
|
|
|
#define VOID void
|
|
|
|
union Multitype { /* for multiple entry points */
|
|
integer1 g;
|
|
shortint h;
|
|
integer i;
|
|
/* longint j; */
|
|
real r;
|
|
doublereal d;
|
|
complex c;
|
|
doublecomplex z;
|
|
};
|
|
|
|
typedef union Multitype Multitype;
|
|
|
|
struct Vardesc { /* for Namelist */
|
|
char *name;
|
|
char *addr;
|
|
ftnlen *dims;
|
|
int type;
|
|
};
|
|
typedef struct Vardesc Vardesc;
|
|
|
|
struct Namelist {
|
|
char *name;
|
|
Vardesc **vars;
|
|
int nvars;
|
|
};
|
|
typedef struct Namelist Namelist;
|
|
|
|
#define abs(x) ((x) >= 0 ? (x) : -(x))
|
|
#define dabs(x) (fabs(x))
|
|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
|
|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
|
|
#define dmin(a,b) (f2cmin(a,b))
|
|
#define dmax(a,b) (f2cmax(a,b))
|
|
#define bit_test(a,b) ((a) >> (b) & 1)
|
|
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
|
|
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
|
|
|
|
#define abort_() { sig_die("Fortran abort routine called", 1); }
|
|
#define c_abs(z) (cabsf(Cf(z)))
|
|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
|
|
#ifdef _MSC_VER
|
|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
|
|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
|
|
#else
|
|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
|
|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
|
|
#endif
|
|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
|
|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
|
|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
|
|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
|
|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
|
|
#define d_abs(x) (fabs(*(x)))
|
|
#define d_acos(x) (acos(*(x)))
|
|
#define d_asin(x) (asin(*(x)))
|
|
#define d_atan(x) (atan(*(x)))
|
|
#define d_atn2(x, y) (atan2(*(x),*(y)))
|
|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
|
|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
|
|
#define d_cos(x) (cos(*(x)))
|
|
#define d_cosh(x) (cosh(*(x)))
|
|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
|
|
#define d_exp(x) (exp(*(x)))
|
|
#define d_imag(z) (cimag(Cd(z)))
|
|
#define r_imag(z) (cimagf(Cf(z)))
|
|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define d_log(x) (log(*(x)))
|
|
#define d_mod(x, y) (fmod(*(x), *(y)))
|
|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
|
|
#define d_nint(x) u_nint(*(x))
|
|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
|
|
#define d_sign(a,b) u_sign(*(a),*(b))
|
|
#define r_sign(a,b) u_sign(*(a),*(b))
|
|
#define d_sin(x) (sin(*(x)))
|
|
#define d_sinh(x) (sinh(*(x)))
|
|
#define d_sqrt(x) (sqrt(*(x)))
|
|
#define d_tan(x) (tan(*(x)))
|
|
#define d_tanh(x) (tanh(*(x)))
|
|
#define i_abs(x) abs(*(x))
|
|
#define i_dnnt(x) ((integer)u_nint(*(x)))
|
|
#define i_len(s, n) (n)
|
|
#define i_nint(x) ((integer)u_nint(*(x)))
|
|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
|
|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
|
|
#define pow_si(B,E) spow_ui(*(B),*(E))
|
|
#define pow_ri(B,E) spow_ui(*(B),*(E))
|
|
#define pow_di(B,E) dpow_ui(*(B),*(E))
|
|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
|
|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
|
|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
|
|
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
|
|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
|
|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
|
|
#define sig_die(s, kill) { exit(1); }
|
|
#define s_stop(s, n) {exit(0);}
|
|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
|
|
#define z_abs(z) (cabs(Cd(z)))
|
|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
|
|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
|
|
#define myexit_() break;
|
|
#define mycycle() continue;
|
|
#define myceiling(w) {ceil(w)}
|
|
#define myhuge(w) {HUGE_VAL}
|
|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
|
|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
|
|
|
|
/* procedure parameter types for -A and -C++ */
|
|
|
|
#define F2C_proc_par_types 1
|
|
#ifdef __cplusplus
|
|
typedef logical (*L_fp)(...);
|
|
#else
|
|
typedef logical (*L_fp)();
|
|
#endif
|
|
|
|
static float spow_ui(float x, integer n) {
|
|
float pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
static double dpow_ui(double x, integer n) {
|
|
double pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#ifdef _MSC_VER
|
|
static _Fcomplex cpow_ui(complex x, integer n) {
|
|
complex pow={1.0,0.0}; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow.r *= x.r, pow.i *= x.i;
|
|
if(u >>= 1) x.r *= x.r, x.i *= x.i;
|
|
else break;
|
|
}
|
|
}
|
|
_Fcomplex p={pow.r, pow.i};
|
|
return p;
|
|
}
|
|
#else
|
|
static _Complex float cpow_ui(_Complex float x, integer n) {
|
|
_Complex float pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#endif
|
|
#ifdef _MSC_VER
|
|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
|
|
_Dcomplex pow={1.0,0.0}; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
|
|
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
|
|
else break;
|
|
}
|
|
}
|
|
_Dcomplex p = {pow._Val[0], pow._Val[1]};
|
|
return p;
|
|
}
|
|
#else
|
|
static _Complex double zpow_ui(_Complex double x, integer n) {
|
|
_Complex double pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#endif
|
|
static integer pow_ii(integer x, integer n) {
|
|
integer pow; unsigned long int u;
|
|
if (n <= 0) {
|
|
if (n == 0 || x == 1) pow = 1;
|
|
else if (x != -1) pow = x == 0 ? 1/x : 0;
|
|
else n = -n;
|
|
}
|
|
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
|
|
u = n;
|
|
for(pow = 1; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
|
|
{
|
|
double m; integer i, mi;
|
|
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
|
if (w[i-1]>m) mi=i ,m=w[i-1];
|
|
return mi-s+1;
|
|
}
|
|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
|
|
{
|
|
float m; integer i, mi;
|
|
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
|
if (w[i-1]>m) mi=i ,m=w[i-1];
|
|
return mi-s+1;
|
|
}
|
|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Fcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
|
|
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex float zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Dcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
|
|
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex double zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Fcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
|
|
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex float zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cf(&x[i]) * Cf(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Dcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
|
|
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex double zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cd(&x[i]) * Cd(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#endif
|
|
/* -- translated by f2c (version 20000121).
|
|
You must link the resulting object file with the libraries:
|
|
-lf2c -lm (in that order)
|
|
*/
|
|
|
|
|
|
|
|
|
|
/* Table of constant values */
|
|
|
|
static complex c_b1 = {0.f,0.f};
|
|
static complex c_b2 = {1.f,0.f};
|
|
static integer c__3 = 3;
|
|
static integer c__1 = 1;
|
|
|
|
/* > \brief \b CLAROR */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* SUBROUTINE CLAROR( SIDE, INIT, M, N, A, LDA, ISEED, X, INFO ) */
|
|
|
|
/* CHARACTER INIT, SIDE */
|
|
/* INTEGER INFO, LDA, M, N */
|
|
/* INTEGER ISEED( 4 ) */
|
|
/* COMPLEX A( LDA, * ), X( * ) */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > CLAROR pre- or post-multiplies an M by N matrix A by a random */
|
|
/* > unitary matrix U, overwriting A. A may optionally be */
|
|
/* > initialized to the identity matrix before multiplying by U. */
|
|
/* > U is generated using the method of G.W. Stewart */
|
|
/* > ( SIAM J. Numer. Anal. 17, 1980, pp. 403-409 ). */
|
|
/* > (BLAS-2 version) */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] SIDE */
|
|
/* > \verbatim */
|
|
/* > SIDE is CHARACTER*1 */
|
|
/* > SIDE specifies whether A is multiplied on the left or right */
|
|
/* > by U. */
|
|
/* > SIDE = 'L' Multiply A on the left (premultiply) by U */
|
|
/* > SIDE = 'R' Multiply A on the right (postmultiply) by UC> SIDE = 'C' Multiply A on the lef
|
|
t by U and the right by UC> SIDE = 'T' Multiply A on the left by U and the right by U' */
|
|
/* > Not modified. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] INIT */
|
|
/* > \verbatim */
|
|
/* > INIT is CHARACTER*1 */
|
|
/* > INIT specifies whether or not A should be initialized to */
|
|
/* > the identity matrix. */
|
|
/* > INIT = 'I' Initialize A to (a section of) the */
|
|
/* > identity matrix before applying U. */
|
|
/* > INIT = 'N' No initialization. Apply U to the */
|
|
/* > input matrix A. */
|
|
/* > */
|
|
/* > INIT = 'I' may be used to generate square (i.e., unitary) */
|
|
/* > or rectangular orthogonal matrices (orthogonality being */
|
|
/* > in the sense of CDOTC): */
|
|
/* > */
|
|
/* > For square matrices, M=N, and SIDE many be either 'L' or */
|
|
/* > 'R'; the rows will be orthogonal to each other, as will the */
|
|
/* > columns. */
|
|
/* > For rectangular matrices where M < N, SIDE = 'R' will */
|
|
/* > produce a dense matrix whose rows will be orthogonal and */
|
|
/* > whose columns will not, while SIDE = 'L' will produce a */
|
|
/* > matrix whose rows will be orthogonal, and whose first M */
|
|
/* > columns will be orthogonal, the remaining columns being */
|
|
/* > zero. */
|
|
/* > For matrices where M > N, just use the previous */
|
|
/* > explanation, interchanging 'L' and 'R' and "rows" and */
|
|
/* > "columns". */
|
|
/* > */
|
|
/* > Not modified. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] M */
|
|
/* > \verbatim */
|
|
/* > M is INTEGER */
|
|
/* > Number of rows of A. Not modified. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > Number of columns of A. Not modified. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] A */
|
|
/* > \verbatim */
|
|
/* > A is COMPLEX array, dimension ( LDA, N ) */
|
|
/* > Input and output array. Overwritten by U A ( if SIDE = 'L' ) */
|
|
/* > or by A U ( if SIDE = 'R' ) */
|
|
/* > or by U A U* ( if SIDE = 'C') */
|
|
/* > or by U A U' ( if SIDE = 'T') on exit. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDA */
|
|
/* > \verbatim */
|
|
/* > LDA is INTEGER */
|
|
/* > Leading dimension of A. Must be at least MAX ( 1, M ). */
|
|
/* > Not modified. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] ISEED */
|
|
/* > \verbatim */
|
|
/* > ISEED is INTEGER array, dimension ( 4 ) */
|
|
/* > On entry ISEED specifies the seed of the random number */
|
|
/* > generator. The array elements should be between 0 and 4095; */
|
|
/* > if not they will be reduced mod 4096. Also, ISEED(4) must */
|
|
/* > be odd. The random number generator uses a linear */
|
|
/* > congruential sequence limited to small integers, and so */
|
|
/* > should produce machine independent random numbers. The */
|
|
/* > values of ISEED are changed on exit, and can be used in the */
|
|
/* > next call to CLAROR to continue the same random number */
|
|
/* > sequence. */
|
|
/* > Modified. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] X */
|
|
/* > \verbatim */
|
|
/* > X is COMPLEX array, dimension ( 3*MAX( M, N ) ) */
|
|
/* > Workspace. Of length: */
|
|
/* > 2*M + N if SIDE = 'L', */
|
|
/* > 2*N + M if SIDE = 'R', */
|
|
/* > 3*N if SIDE = 'C' or 'T'. */
|
|
/* > Modified. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] INFO */
|
|
/* > \verbatim */
|
|
/* > INFO is INTEGER */
|
|
/* > An error flag. It is set to: */
|
|
/* > 0 if no error. */
|
|
/* > 1 if CLARND returned a bad random number (installation */
|
|
/* > problem) */
|
|
/* > -1 if SIDE is not L, R, C, or T. */
|
|
/* > -3 if M is negative. */
|
|
/* > -4 if N is negative or if SIDE is C or T and N is not equal */
|
|
/* > to M. */
|
|
/* > -6 if LDA is less than M. */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \date December 2016 */
|
|
|
|
/* > \ingroup complex_matgen */
|
|
|
|
/* ===================================================================== */
|
|
/* Subroutine */ void claror_(char *side, char *init, integer *m, integer *n,
|
|
complex *a, integer *lda, integer *iseed, complex *x, integer *info)
|
|
{
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, i__1, i__2, i__3;
|
|
complex q__1, q__2;
|
|
|
|
/* Local variables */
|
|
integer kbeg, jcol;
|
|
real xabs;
|
|
integer irow, j;
|
|
extern /* Subroutine */ void cgerc_(integer *, integer *, complex *,
|
|
complex *, integer *, complex *, integer *, complex *, integer *),
|
|
cscal_(integer *, complex *, complex *, integer *);
|
|
extern logical lsame_(char *, char *);
|
|
extern /* Subroutine */ void cgemv_(char *, integer *, integer *, complex *
|
|
, complex *, integer *, complex *, integer *, complex *, complex *
|
|
, integer *);
|
|
complex csign;
|
|
integer ixfrm, itype, nxfrm;
|
|
real xnorm;
|
|
extern real scnrm2_(integer *, complex *, integer *);
|
|
extern /* Subroutine */ void clacgv_(integer *, complex *, integer *);
|
|
//extern /* Complex */ VOID clarnd_(complex *, integer *, integer *);
|
|
extern complex clarnd_(integer *, integer *);
|
|
extern /* Subroutine */ void claset_(char *, integer *, integer *, complex
|
|
*, complex *, complex *, integer *);
|
|
extern int xerbla_(char *, integer *, ftnlen);
|
|
real factor;
|
|
complex xnorms;
|
|
|
|
|
|
/* -- LAPACK auxiliary routine (version 3.7.0) -- */
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
/* December 2016 */
|
|
|
|
|
|
/* ===================================================================== */
|
|
|
|
|
|
/* Parameter adjustments */
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1 * 1;
|
|
a -= a_offset;
|
|
--iseed;
|
|
--x;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
if (*n == 0 || *m == 0) {
|
|
return;
|
|
}
|
|
|
|
itype = 0;
|
|
if (lsame_(side, "L")) {
|
|
itype = 1;
|
|
} else if (lsame_(side, "R")) {
|
|
itype = 2;
|
|
} else if (lsame_(side, "C")) {
|
|
itype = 3;
|
|
} else if (lsame_(side, "T")) {
|
|
itype = 4;
|
|
}
|
|
|
|
/* Check for argument errors. */
|
|
|
|
if (itype == 0) {
|
|
*info = -1;
|
|
} else if (*m < 0) {
|
|
*info = -3;
|
|
} else if (*n < 0 || itype == 3 && *n != *m) {
|
|
*info = -4;
|
|
} else if (*lda < *m) {
|
|
*info = -6;
|
|
}
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_("CLAROR", &i__1, 6);
|
|
return;
|
|
}
|
|
|
|
if (itype == 1) {
|
|
nxfrm = *m;
|
|
} else {
|
|
nxfrm = *n;
|
|
}
|
|
|
|
/* Initialize A to the identity matrix if desired */
|
|
|
|
if (lsame_(init, "I")) {
|
|
claset_("Full", m, n, &c_b1, &c_b2, &a[a_offset], lda);
|
|
}
|
|
|
|
/* If no rotation possible, still multiply by */
|
|
/* a random complex number from the circle |x| = 1 */
|
|
|
|
/* 2) Compute Rotation by computing Householder */
|
|
/* Transformations H(2), H(3), ..., H(n). Note that the */
|
|
/* order in which they are computed is irrelevant. */
|
|
|
|
i__1 = nxfrm;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__2 = j;
|
|
x[i__2].r = 0.f, x[i__2].i = 0.f;
|
|
/* L40: */
|
|
}
|
|
|
|
i__1 = nxfrm;
|
|
for (ixfrm = 2; ixfrm <= i__1; ++ixfrm) {
|
|
kbeg = nxfrm - ixfrm + 1;
|
|
|
|
/* Generate independent normal( 0, 1 ) random numbers */
|
|
|
|
i__2 = nxfrm;
|
|
for (j = kbeg; j <= i__2; ++j) {
|
|
i__3 = j;
|
|
//clarnd_(&q__1, &c__3, &iseed[1]);
|
|
q__1=clarnd_(&c__3, &iseed[1]);
|
|
x[i__3].r = q__1.r, x[i__3].i = q__1.i;
|
|
/* L50: */
|
|
}
|
|
|
|
/* Generate a Householder transformation from the random vector X */
|
|
|
|
xnorm = scnrm2_(&ixfrm, &x[kbeg], &c__1);
|
|
xabs = c_abs(&x[kbeg]);
|
|
if (xabs != 0.f) {
|
|
i__2 = kbeg;
|
|
q__1.r = x[i__2].r / xabs, q__1.i = x[i__2].i / xabs;
|
|
csign.r = q__1.r, csign.i = q__1.i;
|
|
} else {
|
|
csign.r = 1.f, csign.i = 0.f;
|
|
}
|
|
q__1.r = xnorm * csign.r, q__1.i = xnorm * csign.i;
|
|
xnorms.r = q__1.r, xnorms.i = q__1.i;
|
|
i__2 = nxfrm + kbeg;
|
|
q__1.r = -csign.r, q__1.i = -csign.i;
|
|
x[i__2].r = q__1.r, x[i__2].i = q__1.i;
|
|
factor = xnorm * (xnorm + xabs);
|
|
if (abs(factor) < 1e-20f) {
|
|
*info = 1;
|
|
i__2 = -(*info);
|
|
xerbla_("CLAROR", &i__2, 6);
|
|
return;
|
|
} else {
|
|
factor = 1.f / factor;
|
|
}
|
|
i__2 = kbeg;
|
|
i__3 = kbeg;
|
|
q__1.r = x[i__3].r + xnorms.r, q__1.i = x[i__3].i + xnorms.i;
|
|
x[i__2].r = q__1.r, x[i__2].i = q__1.i;
|
|
|
|
/* Apply Householder transformation to A */
|
|
|
|
if (itype == 1 || itype == 3 || itype == 4) {
|
|
|
|
/* Apply H(k) on the left of A */
|
|
|
|
cgemv_("C", &ixfrm, n, &c_b2, &a[kbeg + a_dim1], lda, &x[kbeg], &
|
|
c__1, &c_b1, &x[(nxfrm << 1) + 1], &c__1);
|
|
q__2.r = factor, q__2.i = 0.f;
|
|
q__1.r = -q__2.r, q__1.i = -q__2.i;
|
|
cgerc_(&ixfrm, n, &q__1, &x[kbeg], &c__1, &x[(nxfrm << 1) + 1], &
|
|
c__1, &a[kbeg + a_dim1], lda);
|
|
|
|
}
|
|
|
|
if (itype >= 2 && itype <= 4) {
|
|
|
|
/* Apply H(k)* (or H(k)') on the right of A */
|
|
|
|
if (itype == 4) {
|
|
clacgv_(&ixfrm, &x[kbeg], &c__1);
|
|
}
|
|
|
|
cgemv_("N", m, &ixfrm, &c_b2, &a[kbeg * a_dim1 + 1], lda, &x[kbeg]
|
|
, &c__1, &c_b1, &x[(nxfrm << 1) + 1], &c__1);
|
|
q__2.r = factor, q__2.i = 0.f;
|
|
q__1.r = -q__2.r, q__1.i = -q__2.i;
|
|
cgerc_(m, &ixfrm, &q__1, &x[(nxfrm << 1) + 1], &c__1, &x[kbeg], &
|
|
c__1, &a[kbeg * a_dim1 + 1], lda);
|
|
|
|
}
|
|
/* L60: */
|
|
}
|
|
|
|
//clarnd_(&q__1, &c__3, &iseed[1]);
|
|
q__1=clarnd_(&c__3, &iseed[1]);
|
|
x[1].r = q__1.r, x[1].i = q__1.i;
|
|
xabs = c_abs(&x[1]);
|
|
if (xabs != 0.f) {
|
|
q__1.r = x[1].r / xabs, q__1.i = x[1].i / xabs;
|
|
csign.r = q__1.r, csign.i = q__1.i;
|
|
} else {
|
|
csign.r = 1.f, csign.i = 0.f;
|
|
}
|
|
i__1 = nxfrm << 1;
|
|
x[i__1].r = csign.r, x[i__1].i = csign.i;
|
|
|
|
/* Scale the matrix A by D. */
|
|
|
|
if (itype == 1 || itype == 3 || itype == 4) {
|
|
i__1 = *m;
|
|
for (irow = 1; irow <= i__1; ++irow) {
|
|
r_cnjg(&q__1, &x[nxfrm + irow]);
|
|
cscal_(n, &q__1, &a[irow + a_dim1], lda);
|
|
/* L70: */
|
|
}
|
|
}
|
|
|
|
if (itype == 2 || itype == 3) {
|
|
i__1 = *n;
|
|
for (jcol = 1; jcol <= i__1; ++jcol) {
|
|
cscal_(m, &x[nxfrm + jcol], &a[jcol * a_dim1 + 1], &c__1);
|
|
/* L80: */
|
|
}
|
|
}
|
|
|
|
if (itype == 4) {
|
|
i__1 = *n;
|
|
for (jcol = 1; jcol <= i__1; ++jcol) {
|
|
r_cnjg(&q__1, &x[nxfrm + jcol]);
|
|
cscal_(m, &q__1, &a[jcol * a_dim1 + 1], &c__1);
|
|
/* L90: */
|
|
}
|
|
}
|
|
return;
|
|
|
|
/* End of CLAROR */
|
|
|
|
} /* claror_ */
|
|
|