OpenBLAS/lapack-netlib/TESTING/MATGEN/claror.c

908 lines
26 KiB
C

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif
#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif
#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif
typedef blasint integer;
typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
#ifdef _MSC_VER
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
#else
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#endif
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;
#define TRUE_ (1)
#define FALSE_ (0)
/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif
/* I/O stuff */
typedef int flag;
typedef int ftnlen;
typedef int ftnint;
/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;
/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;
/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;
/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;
/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;
/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;
#define VOID void
union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};
typedef union Multitype Multitype;
struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;
struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;
#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#ifdef _MSC_VER
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
#else
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#endif
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimagf(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
/* procedure parameter types for -A and -C++ */
#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif
static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#ifdef _MSC_VER
static _Fcomplex cpow_ui(complex x, integer n) {
complex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
for(u = n; ; ) {
if(u & 01) pow.r *= x.r, pow.i *= x.i;
if(u >>= 1) x.r *= x.r, x.i *= x.i;
else break;
}
}
_Fcomplex p={pow.r, pow.i};
return p;
}
#else
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
#ifdef _MSC_VER
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
_Dcomplex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
for(u = n; ; ) {
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
else break;
}
}
_Dcomplex p = {pow._Val[0], pow._Val[1]};
return p;
}
#else
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
/* Table of constant values */
static complex c_b1 = {0.f,0.f};
static complex c_b2 = {1.f,0.f};
static integer c__3 = 3;
static integer c__1 = 1;
/* > \brief \b CLAROR */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* Definition: */
/* =========== */
/* SUBROUTINE CLAROR( SIDE, INIT, M, N, A, LDA, ISEED, X, INFO ) */
/* CHARACTER INIT, SIDE */
/* INTEGER INFO, LDA, M, N */
/* INTEGER ISEED( 4 ) */
/* COMPLEX A( LDA, * ), X( * ) */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CLAROR pre- or post-multiplies an M by N matrix A by a random */
/* > unitary matrix U, overwriting A. A may optionally be */
/* > initialized to the identity matrix before multiplying by U. */
/* > U is generated using the method of G.W. Stewart */
/* > ( SIAM J. Numer. Anal. 17, 1980, pp. 403-409 ). */
/* > (BLAS-2 version) */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] SIDE */
/* > \verbatim */
/* > SIDE is CHARACTER*1 */
/* > SIDE specifies whether A is multiplied on the left or right */
/* > by U. */
/* > SIDE = 'L' Multiply A on the left (premultiply) by U */
/* > SIDE = 'R' Multiply A on the right (postmultiply) by UC> SIDE = 'C' Multiply A on the lef
t by U and the right by UC> SIDE = 'T' Multiply A on the left by U and the right by U' */
/* > Not modified. */
/* > \endverbatim */
/* > */
/* > \param[in] INIT */
/* > \verbatim */
/* > INIT is CHARACTER*1 */
/* > INIT specifies whether or not A should be initialized to */
/* > the identity matrix. */
/* > INIT = 'I' Initialize A to (a section of) the */
/* > identity matrix before applying U. */
/* > INIT = 'N' No initialization. Apply U to the */
/* > input matrix A. */
/* > */
/* > INIT = 'I' may be used to generate square (i.e., unitary) */
/* > or rectangular orthogonal matrices (orthogonality being */
/* > in the sense of CDOTC): */
/* > */
/* > For square matrices, M=N, and SIDE many be either 'L' or */
/* > 'R'; the rows will be orthogonal to each other, as will the */
/* > columns. */
/* > For rectangular matrices where M < N, SIDE = 'R' will */
/* > produce a dense matrix whose rows will be orthogonal and */
/* > whose columns will not, while SIDE = 'L' will produce a */
/* > matrix whose rows will be orthogonal, and whose first M */
/* > columns will be orthogonal, the remaining columns being */
/* > zero. */
/* > For matrices where M > N, just use the previous */
/* > explanation, interchanging 'L' and 'R' and "rows" and */
/* > "columns". */
/* > */
/* > Not modified. */
/* > \endverbatim */
/* > */
/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > Number of rows of A. Not modified. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > Number of columns of A. Not modified. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is COMPLEX array, dimension ( LDA, N ) */
/* > Input and output array. Overwritten by U A ( if SIDE = 'L' ) */
/* > or by A U ( if SIDE = 'R' ) */
/* > or by U A U* ( if SIDE = 'C') */
/* > or by U A U' ( if SIDE = 'T') on exit. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > Leading dimension of A. Must be at least MAX ( 1, M ). */
/* > Not modified. */
/* > \endverbatim */
/* > */
/* > \param[in,out] ISEED */
/* > \verbatim */
/* > ISEED is INTEGER array, dimension ( 4 ) */
/* > On entry ISEED specifies the seed of the random number */
/* > generator. The array elements should be between 0 and 4095; */
/* > if not they will be reduced mod 4096. Also, ISEED(4) must */
/* > be odd. The random number generator uses a linear */
/* > congruential sequence limited to small integers, and so */
/* > should produce machine independent random numbers. The */
/* > values of ISEED are changed on exit, and can be used in the */
/* > next call to CLAROR to continue the same random number */
/* > sequence. */
/* > Modified. */
/* > \endverbatim */
/* > */
/* > \param[out] X */
/* > \verbatim */
/* > X is COMPLEX array, dimension ( 3*MAX( M, N ) ) */
/* > Workspace. Of length: */
/* > 2*M + N if SIDE = 'L', */
/* > 2*N + M if SIDE = 'R', */
/* > 3*N if SIDE = 'C' or 'T'. */
/* > Modified. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > An error flag. It is set to: */
/* > 0 if no error. */
/* > 1 if CLARND returned a bad random number (installation */
/* > problem) */
/* > -1 if SIDE is not L, R, C, or T. */
/* > -3 if M is negative. */
/* > -4 if N is negative or if SIDE is C or T and N is not equal */
/* > to M. */
/* > -6 if LDA is less than M. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date December 2016 */
/* > \ingroup complex_matgen */
/* ===================================================================== */
/* Subroutine */ void claror_(char *side, char *init, integer *m, integer *n,
complex *a, integer *lda, integer *iseed, complex *x, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;
complex q__1, q__2;
/* Local variables */
integer kbeg, jcol;
real xabs;
integer irow, j;
extern /* Subroutine */ void cgerc_(integer *, integer *, complex *,
complex *, integer *, complex *, integer *, complex *, integer *),
cscal_(integer *, complex *, complex *, integer *);
extern logical lsame_(char *, char *);
extern /* Subroutine */ void cgemv_(char *, integer *, integer *, complex *
, complex *, integer *, complex *, integer *, complex *, complex *
, integer *);
complex csign;
integer ixfrm, itype, nxfrm;
real xnorm;
extern real scnrm2_(integer *, complex *, integer *);
extern /* Subroutine */ void clacgv_(integer *, complex *, integer *);
//extern /* Complex */ VOID clarnd_(complex *, integer *, integer *);
extern complex clarnd_(integer *, integer *);
extern /* Subroutine */ void claset_(char *, integer *, integer *, complex
*, complex *, complex *, integer *);
extern int xerbla_(char *, integer *, ftnlen);
real factor;
complex xnorms;
/* -- LAPACK auxiliary routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */
/* ===================================================================== */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--iseed;
--x;
/* Function Body */
*info = 0;
if (*n == 0 || *m == 0) {
return;
}
itype = 0;
if (lsame_(side, "L")) {
itype = 1;
} else if (lsame_(side, "R")) {
itype = 2;
} else if (lsame_(side, "C")) {
itype = 3;
} else if (lsame_(side, "T")) {
itype = 4;
}
/* Check for argument errors. */
if (itype == 0) {
*info = -1;
} else if (*m < 0) {
*info = -3;
} else if (*n < 0 || itype == 3 && *n != *m) {
*info = -4;
} else if (*lda < *m) {
*info = -6;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CLAROR", &i__1, 6);
return;
}
if (itype == 1) {
nxfrm = *m;
} else {
nxfrm = *n;
}
/* Initialize A to the identity matrix if desired */
if (lsame_(init, "I")) {
claset_("Full", m, n, &c_b1, &c_b2, &a[a_offset], lda);
}
/* If no rotation possible, still multiply by */
/* a random complex number from the circle |x| = 1 */
/* 2) Compute Rotation by computing Householder */
/* Transformations H(2), H(3), ..., H(n). Note that the */
/* order in which they are computed is irrelevant. */
i__1 = nxfrm;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
x[i__2].r = 0.f, x[i__2].i = 0.f;
/* L40: */
}
i__1 = nxfrm;
for (ixfrm = 2; ixfrm <= i__1; ++ixfrm) {
kbeg = nxfrm - ixfrm + 1;
/* Generate independent normal( 0, 1 ) random numbers */
i__2 = nxfrm;
for (j = kbeg; j <= i__2; ++j) {
i__3 = j;
//clarnd_(&q__1, &c__3, &iseed[1]);
q__1=clarnd_(&c__3, &iseed[1]);
x[i__3].r = q__1.r, x[i__3].i = q__1.i;
/* L50: */
}
/* Generate a Householder transformation from the random vector X */
xnorm = scnrm2_(&ixfrm, &x[kbeg], &c__1);
xabs = c_abs(&x[kbeg]);
if (xabs != 0.f) {
i__2 = kbeg;
q__1.r = x[i__2].r / xabs, q__1.i = x[i__2].i / xabs;
csign.r = q__1.r, csign.i = q__1.i;
} else {
csign.r = 1.f, csign.i = 0.f;
}
q__1.r = xnorm * csign.r, q__1.i = xnorm * csign.i;
xnorms.r = q__1.r, xnorms.i = q__1.i;
i__2 = nxfrm + kbeg;
q__1.r = -csign.r, q__1.i = -csign.i;
x[i__2].r = q__1.r, x[i__2].i = q__1.i;
factor = xnorm * (xnorm + xabs);
if (abs(factor) < 1e-20f) {
*info = 1;
i__2 = -(*info);
xerbla_("CLAROR", &i__2, 6);
return;
} else {
factor = 1.f / factor;
}
i__2 = kbeg;
i__3 = kbeg;
q__1.r = x[i__3].r + xnorms.r, q__1.i = x[i__3].i + xnorms.i;
x[i__2].r = q__1.r, x[i__2].i = q__1.i;
/* Apply Householder transformation to A */
if (itype == 1 || itype == 3 || itype == 4) {
/* Apply H(k) on the left of A */
cgemv_("C", &ixfrm, n, &c_b2, &a[kbeg + a_dim1], lda, &x[kbeg], &
c__1, &c_b1, &x[(nxfrm << 1) + 1], &c__1);
q__2.r = factor, q__2.i = 0.f;
q__1.r = -q__2.r, q__1.i = -q__2.i;
cgerc_(&ixfrm, n, &q__1, &x[kbeg], &c__1, &x[(nxfrm << 1) + 1], &
c__1, &a[kbeg + a_dim1], lda);
}
if (itype >= 2 && itype <= 4) {
/* Apply H(k)* (or H(k)') on the right of A */
if (itype == 4) {
clacgv_(&ixfrm, &x[kbeg], &c__1);
}
cgemv_("N", m, &ixfrm, &c_b2, &a[kbeg * a_dim1 + 1], lda, &x[kbeg]
, &c__1, &c_b1, &x[(nxfrm << 1) + 1], &c__1);
q__2.r = factor, q__2.i = 0.f;
q__1.r = -q__2.r, q__1.i = -q__2.i;
cgerc_(m, &ixfrm, &q__1, &x[(nxfrm << 1) + 1], &c__1, &x[kbeg], &
c__1, &a[kbeg * a_dim1 + 1], lda);
}
/* L60: */
}
//clarnd_(&q__1, &c__3, &iseed[1]);
q__1=clarnd_(&c__3, &iseed[1]);
x[1].r = q__1.r, x[1].i = q__1.i;
xabs = c_abs(&x[1]);
if (xabs != 0.f) {
q__1.r = x[1].r / xabs, q__1.i = x[1].i / xabs;
csign.r = q__1.r, csign.i = q__1.i;
} else {
csign.r = 1.f, csign.i = 0.f;
}
i__1 = nxfrm << 1;
x[i__1].r = csign.r, x[i__1].i = csign.i;
/* Scale the matrix A by D. */
if (itype == 1 || itype == 3 || itype == 4) {
i__1 = *m;
for (irow = 1; irow <= i__1; ++irow) {
r_cnjg(&q__1, &x[nxfrm + irow]);
cscal_(n, &q__1, &a[irow + a_dim1], lda);
/* L70: */
}
}
if (itype == 2 || itype == 3) {
i__1 = *n;
for (jcol = 1; jcol <= i__1; ++jcol) {
cscal_(m, &x[nxfrm + jcol], &a[jcol * a_dim1 + 1], &c__1);
/* L80: */
}
}
if (itype == 4) {
i__1 = *n;
for (jcol = 1; jcol <= i__1; ++jcol) {
r_cnjg(&q__1, &x[nxfrm + jcol]);
cscal_(m, &q__1, &a[jcol * a_dim1 + 1], &c__1);
/* L90: */
}
}
return;
/* End of CLAROR */
} /* claror_ */