793 lines
18 KiB
C
793 lines
18 KiB
C
/*****************************************************************************
|
|
Copyright (c) 2023, The OpenBLAS Project
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are
|
|
met:
|
|
|
|
1. Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in
|
|
the documentation and/or other materials provided with the
|
|
distribution.
|
|
3. Neither the name of the OpenBLAS project nor the names of
|
|
its contributors may be used to endorse or promote products
|
|
derived from this software without specific prior written
|
|
permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
|
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
**********************************************************************************/
|
|
|
|
#include "utest/openblas_utest.h"
|
|
#include "common.h"
|
|
|
|
#define DATASIZE 100
|
|
#define INCREMENT 2
|
|
|
|
struct DATA_ZROT {
|
|
double x_test[DATASIZE * INCREMENT * 2];
|
|
double y_test[DATASIZE * INCREMENT * 2];
|
|
double x_verify[DATASIZE * INCREMENT * 2];
|
|
double y_verify[DATASIZE * INCREMENT * 2];
|
|
};
|
|
|
|
#ifdef BUILD_COMPLEX16
|
|
static struct DATA_ZROT data_zrot;
|
|
|
|
/**
|
|
* Comapare results computed by zdrot and zaxpby
|
|
*
|
|
* param n specifies size of vector x
|
|
* param inc_x specifies increment of vector x
|
|
* param inc_y specifies increment of vector y
|
|
* param c specifies cosine
|
|
* param s specifies sine
|
|
* return norm of differences
|
|
*/
|
|
static double check_zdrot(blasint n, blasint inc_x, blasint inc_y, double *c, double *s)
|
|
{
|
|
blasint i;
|
|
double norm = 0;
|
|
double s_neg[] = {-s[0], s[1]};
|
|
|
|
blasint inc_x_abs = labs(inc_x);
|
|
blasint inc_y_abs = labs(inc_y);
|
|
|
|
// Fill vectors x, y
|
|
drand_generate(data_zrot.x_test, n * inc_x_abs * 2);
|
|
drand_generate(data_zrot.y_test, n * inc_y_abs * 2);
|
|
|
|
if (inc_x == 0 && inc_y == 0) {
|
|
drand_generate(data_zrot.x_test, n * 2);
|
|
drand_generate(data_zrot.y_test, n * 2);
|
|
}
|
|
|
|
// Copy vector x for zaxpby
|
|
for (i = 0; i < n * inc_x_abs * 2; i++)
|
|
data_zrot.x_verify[i] = data_zrot.x_test[i];
|
|
|
|
// Copy vector y for zaxpby
|
|
for (i = 0; i < n * inc_y_abs * 2; i++)
|
|
data_zrot.y_verify[i] = data_zrot.y_test[i];
|
|
|
|
// Find cx = c*x + s*y
|
|
BLASFUNC(zaxpby)(&n, s, data_zrot.y_test, &inc_y, c, data_zrot.x_verify, &inc_x);
|
|
|
|
// Find cy = -conjg(s)*x + c*y
|
|
BLASFUNC(zaxpby)(&n, s_neg, data_zrot.x_test, &inc_x, c, data_zrot.y_verify, &inc_y);
|
|
|
|
BLASFUNC(zdrot)(&n, data_zrot.x_test, &inc_x, data_zrot.y_test, &inc_y, c, s);
|
|
|
|
// Find the differences between vector x caculated by zaxpby and zdrot
|
|
for (i = 0; i < n * 2 * inc_x_abs; i++)
|
|
data_zrot.x_test[i] -= data_zrot.x_verify[i];
|
|
|
|
// Find the differences between vector y caculated by zaxpby and zdrot
|
|
for (i = 0; i < n * 2 * inc_y_abs; i++)
|
|
data_zrot.y_test[i] -= data_zrot.y_verify[i];
|
|
|
|
// Find the norm of differences
|
|
norm += BLASFUNC(dznrm2)(&n, data_zrot.x_test, &inc_x_abs);
|
|
norm += BLASFUNC(dznrm2)(&n, data_zrot.y_test, &inc_y_abs);
|
|
return (norm / 2);
|
|
}
|
|
|
|
#ifndef NO_CBLAS
|
|
/**
|
|
* C API specific function
|
|
* Comapare results computed by zdrot and zaxpby
|
|
*
|
|
* param n specifies size of vector x
|
|
* param inc_x specifies increment of vector x
|
|
* param inc_y specifies increment of vector y
|
|
* param c specifies cosine
|
|
* param s specifies sine
|
|
* return norm of differences
|
|
*/
|
|
static double c_api_check_zdrot(blasint n, blasint inc_x, blasint inc_y, double *c, double *s)
|
|
{
|
|
blasint i;
|
|
double norm = 0;
|
|
double s_neg[] = {-s[0], s[1]};
|
|
|
|
blasint inc_x_abs = labs(inc_x);
|
|
blasint inc_y_abs = labs(inc_y);
|
|
|
|
// Fill vectors x, y
|
|
drand_generate(data_zrot.x_test, n * inc_x_abs * 2);
|
|
drand_generate(data_zrot.y_test, n * inc_y_abs * 2);
|
|
|
|
if (inc_x == 0 && inc_y == 0) {
|
|
drand_generate(data_zrot.x_test, n * 2);
|
|
drand_generate(data_zrot.y_test, n * 2);
|
|
}
|
|
|
|
// Copy vector x for zaxpby
|
|
for (i = 0; i < n * inc_x_abs * 2; i++)
|
|
data_zrot.x_verify[i] = data_zrot.x_test[i];
|
|
|
|
// Copy vector y for zaxpby
|
|
for (i = 0; i < n * inc_y_abs * 2; i++)
|
|
data_zrot.y_verify[i] = data_zrot.y_test[i];
|
|
|
|
// Find cx = c*x + s*y
|
|
cblas_zaxpby(n, s, data_zrot.y_test, inc_y, c, data_zrot.x_verify, inc_x);
|
|
|
|
// Find cy = -conjg(s)*x + c*y
|
|
cblas_zaxpby(n, s_neg, data_zrot.x_test, inc_x, c, data_zrot.y_verify, inc_y);
|
|
|
|
cblas_zdrot(n, data_zrot.x_test, inc_x, data_zrot.y_test, inc_y, c[0], s[0]);
|
|
|
|
// Find the differences between vector x caculated by zaxpby and zdrot
|
|
for (i = 0; i < n * 2 * inc_x_abs; i++)
|
|
data_zrot.x_test[i] -= data_zrot.x_verify[i];
|
|
|
|
// Find the differences between vector y caculated by zaxpby and zdrot
|
|
for (i = 0; i < n * 2 * inc_y_abs; i++)
|
|
data_zrot.y_test[i] -= data_zrot.y_verify[i];
|
|
|
|
// Find the norm of differences
|
|
norm += cblas_dznrm2(n, data_zrot.x_test, inc_x_abs);
|
|
norm += cblas_dznrm2(n, data_zrot.y_test, inc_y_abs);
|
|
return (norm / 2);
|
|
}
|
|
|
|
/**
|
|
* Fortran API specific test
|
|
* Test zrot by comparing it with zaxpby.
|
|
* Test with the following options:
|
|
*
|
|
* Size of vectors x, y is 100
|
|
* Stride of vector x is 0
|
|
* Stride of vector y is 0
|
|
* c = 1.0
|
|
* s = 2.0
|
|
*/
|
|
CTEST(zrot, inc_x_0_inc_y_0)
|
|
{
|
|
blasint n = 100;
|
|
|
|
blasint inc_x = 0;
|
|
blasint inc_y = 0;
|
|
|
|
// Imaginary part for zaxpby
|
|
double c[] = {1.0, 0.0};
|
|
double s[] = {2.0, 0.0};
|
|
|
|
double norm = check_zdrot(n, inc_x, inc_y, c, s);
|
|
ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
|
|
}
|
|
|
|
/**
|
|
* Fortran API specific test
|
|
* Test zrot by comparing it with zaxpby.
|
|
* Test with the following options:
|
|
*
|
|
* Size of vectors x, y is 100
|
|
* Stride of vector x is 1
|
|
* Stride of vector y is 1
|
|
* c = 1.0
|
|
* s = 1.0
|
|
*/
|
|
CTEST(zrot, inc_x_1_inc_y_1)
|
|
{
|
|
blasint n = 100;
|
|
|
|
blasint inc_x = 1;
|
|
blasint inc_y = 1;
|
|
|
|
// Imaginary part for zaxpby
|
|
double c[] = {1.0, 0.0};
|
|
double s[] = {1.0, 0.0};
|
|
|
|
double norm = check_zdrot(n, inc_x, inc_y, c, s);
|
|
ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
|
|
}
|
|
|
|
/**
|
|
* Fortran API specific test
|
|
* Test zrot by comparing it with zaxpby.
|
|
* Test with the following options:
|
|
*
|
|
* Size of vectors x, y is 100
|
|
* Stride of vector x is -1
|
|
* Stride of vector y is -1
|
|
* c = 1.0
|
|
* s = 1.0
|
|
*/
|
|
CTEST(zrot, inc_x_neg_1_inc_y_neg_1)
|
|
{
|
|
blasint n = 100;
|
|
|
|
blasint inc_x = -1;
|
|
blasint inc_y = -1;
|
|
|
|
// Imaginary part for zaxpby
|
|
double c[] = {1.0, 0.0};
|
|
double s[] = {1.0, 0.0};
|
|
|
|
double norm = check_zdrot(n, inc_x, inc_y, c, s);
|
|
ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
|
|
}
|
|
|
|
/**
|
|
* Fortran API specific test
|
|
* Test zrot by comparing it with zaxpby.
|
|
* Test with the following options:
|
|
*
|
|
* Size of vectors x, y is 100
|
|
* Stride of vector x is 2
|
|
* Stride of vector y is 1
|
|
* c = 3.0
|
|
* s = 2.0
|
|
*/
|
|
CTEST(zrot, inc_x_2_inc_y_1)
|
|
{
|
|
blasint n = 100;
|
|
|
|
blasint inc_x = 2;
|
|
blasint inc_y = 1;
|
|
|
|
// Imaginary part for zaxpby
|
|
double c[] = {3.0, 0.0};
|
|
double s[] = {2.0, 0.0};
|
|
|
|
double norm = check_zdrot(n, inc_x, inc_y, c, s);
|
|
ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
|
|
}
|
|
|
|
/**
|
|
* Fortran API specific test
|
|
* Test zrot by comparing it with zaxpby.
|
|
* Test with the following options:
|
|
*
|
|
* Size of vectors x, y is 100
|
|
* Stride of vector x is -2
|
|
* Stride of vector y is 1
|
|
* c = 1.0
|
|
* s = 1.0
|
|
*/
|
|
CTEST(zrot, inc_x_neg_2_inc_y_1)
|
|
{
|
|
blasint n = 100;
|
|
|
|
blasint inc_x = -2;
|
|
blasint inc_y = 1;
|
|
|
|
// Imaginary part for zaxpby
|
|
double c[] = {1.0, 0.0};
|
|
double s[] = {1.0, 0.0};
|
|
|
|
double norm = check_zdrot(n, inc_x, inc_y, c, s);
|
|
ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
|
|
}
|
|
|
|
/**
|
|
* Fortran API specific test
|
|
* Test zrot by comparing it with zaxpby.
|
|
* Test with the following options:
|
|
*
|
|
* Size of vectors x, y is 100
|
|
* Stride of vector x is 1
|
|
* Stride of vector y is 2
|
|
* c = 1.0
|
|
* s = 1.0
|
|
*/
|
|
CTEST(zrot, inc_x_1_inc_y_2)
|
|
{
|
|
blasint n = 100;
|
|
|
|
blasint inc_x = 1;
|
|
blasint inc_y = 2;
|
|
|
|
// Imaginary part for zaxpby
|
|
double c[] = {1.0, 0.0};
|
|
double s[] = {1.0, 0.0};
|
|
|
|
double norm = check_zdrot(n, inc_x, inc_y, c, s);
|
|
ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
|
|
}
|
|
|
|
/**
|
|
* Fortran API specific test
|
|
* Test zrot by comparing it with zaxpby.
|
|
* Test with the following options:
|
|
*
|
|
* Size of vectors x, y is 100
|
|
* Stride of vector x is 1
|
|
* Stride of vector y is -2
|
|
* c = 2.0
|
|
* s = 1.0
|
|
*/
|
|
CTEST(zrot, inc_x_1_inc_y_neg_2)
|
|
{
|
|
blasint n = 100;
|
|
|
|
blasint inc_x = 1;
|
|
blasint inc_y = -2;
|
|
|
|
// Imaginary part for zaxpby
|
|
double c[] = {2.0, 0.0};
|
|
double s[] = {1.0, 0.0};
|
|
|
|
double norm = check_zdrot(n, inc_x, inc_y, c, s);
|
|
ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
|
|
}
|
|
|
|
/**
|
|
* Fortran API specific test
|
|
* Test zrot by comparing it with zaxpby.
|
|
* Test with the following options:
|
|
*
|
|
* Size of vectors x, y is 100
|
|
* Stride of vector x is 2
|
|
* Stride of vector y is 2
|
|
* c = 1.0
|
|
* s = 2.0
|
|
*/
|
|
CTEST(zrot, inc_x_2_inc_y_2)
|
|
{
|
|
blasint n = 100;
|
|
|
|
blasint inc_x = 2;
|
|
blasint inc_y = 2;
|
|
|
|
// Imaginary part for zaxpby
|
|
double c[] = {1.0, 0.0};
|
|
double s[] = {2.0, 0.0};
|
|
|
|
double norm = check_zdrot(n, inc_x, inc_y, c, s);
|
|
ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
|
|
}
|
|
|
|
/**
|
|
* Fortran API specific test
|
|
* Test zrot by comparing it with zaxpby.
|
|
* Test with the following options:
|
|
*
|
|
* Size of vectors x, y is 100
|
|
* Stride of vector x is 2
|
|
* Stride of vector y is 2
|
|
* c = 1.0
|
|
* s = 1.0
|
|
*/
|
|
CTEST(zrot, inc_x_neg_2_inc_y_neg_2)
|
|
{
|
|
blasint n = 100;
|
|
|
|
blasint inc_x = -2;
|
|
blasint inc_y = -2;
|
|
|
|
// Imaginary part for zaxpby
|
|
double c[] = {1.0, 0.0};
|
|
double s[] = {1.0, 0.0};
|
|
|
|
double norm = check_zdrot(n, inc_x, inc_y, c, s);
|
|
ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
|
|
}
|
|
|
|
/**
|
|
* Fortran API specific test
|
|
* Test zrot by comparing it with zaxpby.
|
|
* Test with the following options:
|
|
*
|
|
* Size of vectors x, y is 100
|
|
* Stride of vector x is 2
|
|
* Stride of vector y is 2
|
|
* c = 0.0
|
|
* s = 1.0
|
|
*/
|
|
CTEST(zrot, inc_x_2_inc_y_2_c_zero)
|
|
{
|
|
blasint n = 100;
|
|
|
|
blasint inc_x = 2;
|
|
blasint inc_y = 2;
|
|
|
|
// Imaginary part for zaxpby
|
|
double c[] = {0.0, 0.0};
|
|
double s[] = {1.0, 0.0};
|
|
|
|
double norm = check_zdrot(n, inc_x, inc_y, c, s);
|
|
ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
|
|
}
|
|
|
|
/**
|
|
* Fortran API specific test
|
|
* Test zrot by comparing it with zaxpby.
|
|
* Test with the following options:
|
|
*
|
|
* Size of vectors x, y is 100
|
|
* Stride of vector x is 2
|
|
* Stride of vector y is 2
|
|
* c = 1.0
|
|
* s = 0.0
|
|
*/
|
|
CTEST(zrot, inc_x_2_inc_y_2_s_zero)
|
|
{
|
|
blasint n = 100;
|
|
|
|
blasint inc_x = 2;
|
|
blasint inc_y = 2;
|
|
|
|
// Imaginary part for zaxpby
|
|
double c[] = {1.0, 0.0};
|
|
double s[] = {0.0, 0.0};
|
|
|
|
double norm = check_zdrot(n, inc_x, inc_y, c, s);
|
|
ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
|
|
}
|
|
|
|
/**
|
|
* Fortran API specific test
|
|
* Test zrot by comparing it with zaxpby.
|
|
* Test with the following options:
|
|
*
|
|
* Size of vectors x, y is 0
|
|
* Stride of vector x is 1
|
|
* Stride of vector y is 1
|
|
* c = 1.0
|
|
* s = 1.0
|
|
*/
|
|
CTEST(zrot, check_n_zero)
|
|
{
|
|
blasint n = 0;
|
|
|
|
blasint inc_x = 1;
|
|
blasint inc_y = 1;
|
|
|
|
// Imaginary part for zaxpby
|
|
double c[] = {1.0, 0.0};
|
|
double s[] = {1.0, 0.0};
|
|
|
|
double norm = check_zdrot(n, inc_x, inc_y, c, s);
|
|
ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
|
|
}
|
|
|
|
/**
|
|
* C API specific test
|
|
* Test zrot by comparing it with zaxpby.
|
|
* Test with the following options:
|
|
*
|
|
* Size of vectors x, y is 100
|
|
* Stride of vector x is 0
|
|
* Stride of vector y is 0
|
|
* c = 1.0
|
|
* s = 2.0
|
|
*/
|
|
CTEST(zrot, c_api_inc_x_0_inc_y_0)
|
|
{
|
|
blasint n = 100;
|
|
|
|
blasint inc_x = 0;
|
|
blasint inc_y = 0;
|
|
|
|
// Imaginary part for zaxpby
|
|
double c[] = {3.0, 0.0};
|
|
double s[] = {2.0, 0.0};
|
|
|
|
double norm = c_api_check_zdrot(n, inc_x, inc_y, c, s);
|
|
ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
|
|
}
|
|
|
|
/**
|
|
* C API specific test
|
|
* Test zrot by comparing it with zaxpby.
|
|
* Test with the following options:
|
|
*
|
|
* Size of vectors x, y is 100
|
|
* Stride of vector x is 1
|
|
* Stride of vector y is 1
|
|
* c = 1.0
|
|
* s = 1.0
|
|
*/
|
|
CTEST(zrot, c_api_inc_x_1_inc_y_1)
|
|
{
|
|
blasint n = 100;
|
|
|
|
blasint inc_x = 1;
|
|
blasint inc_y = 1;
|
|
|
|
// Imaginary part for zaxpby
|
|
double c[] = {1.0, 0.0};
|
|
double s[] = {1.0, 0.0};
|
|
|
|
double norm = c_api_check_zdrot(n, inc_x, inc_y, c, s);
|
|
ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
|
|
}
|
|
|
|
/**
|
|
* C API specific test
|
|
* Test zrot by comparing it with zaxpby.
|
|
* Test with the following options:
|
|
*
|
|
* Size of vectors x, y is 100
|
|
* Stride of vector x is -1
|
|
* Stride of vector y is -1
|
|
* c = 1.0
|
|
* s = 1.0
|
|
*/
|
|
CTEST(zrot, c_api_inc_x_neg_1_inc_y_neg_1)
|
|
{
|
|
blasint n = 100;
|
|
|
|
blasint inc_x = -1;
|
|
blasint inc_y = -1;
|
|
|
|
// Imaginary part for zaxpby
|
|
double c[] = {1.0, 0.0};
|
|
double s[] = {1.0, 0.0};
|
|
|
|
double norm = c_api_check_zdrot(n, inc_x, inc_y, c, s);
|
|
ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
|
|
}
|
|
|
|
/**
|
|
* C API specific test
|
|
* Test zrot by comparing it with zaxpby.
|
|
* Test with the following options:
|
|
*
|
|
* Size of vectors x, y is 100
|
|
* Stride of vector x is 2
|
|
* Stride of vector y is 1
|
|
* c = 3.0
|
|
* s = 2.0
|
|
*/
|
|
CTEST(zrot, c_api_inc_x_2_inc_y_1)
|
|
{
|
|
blasint n = 100;
|
|
|
|
blasint inc_x = 2;
|
|
blasint inc_y = 1;
|
|
|
|
// Imaginary part for zaxpby
|
|
double c[] = {3.0, 0.0};
|
|
double s[] = {2.0, 0.0};
|
|
|
|
double norm = c_api_check_zdrot(n, inc_x, inc_y, c, s);
|
|
ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
|
|
}
|
|
|
|
/**
|
|
* C API specific test
|
|
* Test zrot by comparing it with zaxpby.
|
|
* Test with the following options:
|
|
*
|
|
* Size of vectors x, y is 100
|
|
* Stride of vector x is -2
|
|
* Stride of vector y is 1
|
|
* c = 1.0
|
|
* s = 1.0
|
|
*/
|
|
CTEST(zrot, c_api_inc_x_neg_2_inc_y_1)
|
|
{
|
|
blasint n = 100;
|
|
|
|
blasint inc_x = -2;
|
|
blasint inc_y = 1;
|
|
|
|
// Imaginary part for zaxpby
|
|
double c[] = {1.0, 0.0};
|
|
double s[] = {1.0, 0.0};
|
|
|
|
double norm = c_api_check_zdrot(n, inc_x, inc_y, c, s);
|
|
ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
|
|
}
|
|
|
|
/**
|
|
* C API specific test
|
|
* Test zrot by comparing it with zaxpby.
|
|
* Test with the following options:
|
|
*
|
|
* Size of vectors x, y is 100
|
|
* Stride of vector x is 1
|
|
* Stride of vector y is 2
|
|
* c = 1.0
|
|
* s = 1.0
|
|
*/
|
|
CTEST(zrot, c_api_inc_x_1_inc_y_2)
|
|
{
|
|
blasint n = 100;
|
|
|
|
blasint inc_x = 1;
|
|
blasint inc_y = 2;
|
|
|
|
// Imaginary part for zaxpby
|
|
double c[] = {1.0, 0.0};
|
|
double s[] = {1.0, 0.0};
|
|
|
|
double norm = c_api_check_zdrot(n, inc_x, inc_y, c, s);
|
|
ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
|
|
}
|
|
|
|
/**
|
|
* C API specific test
|
|
* Test zrot by comparing it with zaxpby.
|
|
* Test with the following options:
|
|
*
|
|
* Size of vectors x, y is 100
|
|
* Stride of vector x is 1
|
|
* Stride of vector y is -2
|
|
* c = 2.0
|
|
* s = 1.0
|
|
*/
|
|
CTEST(zrot, c_api_inc_x_1_inc_y_neg_2)
|
|
{
|
|
blasint n = 100;
|
|
|
|
blasint inc_x = 1;
|
|
blasint inc_y = -2;
|
|
|
|
// Imaginary part for zaxpby
|
|
double c[] = {2.0, 0.0};
|
|
double s[] = {1.0, 0.0};
|
|
|
|
double norm = c_api_check_zdrot(n, inc_x, inc_y, c, s);
|
|
ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
|
|
}
|
|
|
|
/**
|
|
* C API specific test
|
|
* Test zrot by comparing it with zaxpby.
|
|
* Test with the following options:
|
|
*
|
|
* Size of vectors x, y is 100
|
|
* Stride of vector x is 2
|
|
* Stride of vector y is 2
|
|
* c = 1.0
|
|
* s = 2.0
|
|
*/
|
|
CTEST(zrot, c_api_inc_x_2_inc_y_2)
|
|
{
|
|
blasint n = 100;
|
|
|
|
blasint inc_x = 2;
|
|
blasint inc_y = 2;
|
|
|
|
// Imaginary part for zaxpby
|
|
double c[] = {1.0, 0.0};
|
|
double s[] = {2.0, 0.0};
|
|
|
|
double norm = c_api_check_zdrot(n, inc_x, inc_y, c, s);
|
|
ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
|
|
}
|
|
|
|
/**
|
|
* C API specific test
|
|
* Test zrot by comparing it with zaxpby.
|
|
* Test with the following options:
|
|
*
|
|
* Size of vectors x, y is 100
|
|
* Stride of vector x is 2
|
|
* Stride of vector y is 2
|
|
* c = 1.0
|
|
* s = 1.0
|
|
*/
|
|
CTEST(zrot, c_api_inc_x_neg_2_inc_y_neg_2)
|
|
{
|
|
blasint n = 100;
|
|
|
|
blasint inc_x = -2;
|
|
blasint inc_y = -2;
|
|
|
|
// Imaginary part for zaxpby
|
|
double c[] = {1.0, 0.0};
|
|
double s[] = {1.0, 0.0};
|
|
|
|
double norm = c_api_check_zdrot(n, inc_x, inc_y, c, s);
|
|
ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
|
|
}
|
|
|
|
/**
|
|
* C API specific test
|
|
* Test zrot by comparing it with zaxpby.
|
|
* Test with the following options:
|
|
*
|
|
* Size of vectors x, y is 100
|
|
* Stride of vector x is 2
|
|
* Stride of vector y is 2
|
|
* c = 0.0
|
|
* s = 1.0
|
|
*/
|
|
CTEST(zrot, c_api_inc_x_2_inc_y_2_c_zero)
|
|
{
|
|
blasint n = 100;
|
|
|
|
blasint inc_x = 2;
|
|
blasint inc_y = 2;
|
|
|
|
// Imaginary part for zaxpby
|
|
double c[] = {0.0, 0.0};
|
|
double s[] = {1.0, 0.0};
|
|
|
|
double norm = c_api_check_zdrot(n, inc_x, inc_y, c, s);
|
|
ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
|
|
}
|
|
|
|
/**
|
|
* C API specific test
|
|
* Test zrot by comparing it with zaxpby.
|
|
* Test with the following options:
|
|
*
|
|
* Size of vectors x, y is 100
|
|
* Stride of vector x is 2
|
|
* Stride of vector y is 2
|
|
* c = 1.0
|
|
* s = 0.0
|
|
*/
|
|
CTEST(zrot, c_api_inc_x_2_inc_y_2_s_zero)
|
|
{
|
|
blasint n = 100;
|
|
|
|
blasint inc_x = 2;
|
|
blasint inc_y = 2;
|
|
|
|
// Imaginary part for zaxpby
|
|
double c[] = {1.0, 0.0};
|
|
double s[] = {0.0, 0.0};
|
|
|
|
double norm = c_api_check_zdrot(n, inc_x, inc_y, c, s);
|
|
ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
|
|
}
|
|
|
|
/**
|
|
* C API specific test
|
|
* Test zrot by comparing it with zaxpby.
|
|
* Test with the following options:
|
|
*
|
|
* Size of vectors x, y is 0
|
|
* Stride of vector x is 1
|
|
* Stride of vector y is 1
|
|
* c = 1.0
|
|
* s = 1.0
|
|
*/
|
|
CTEST(zrot, c_api_check_n_zero)
|
|
{
|
|
blasint n = 0;
|
|
|
|
blasint inc_x = 1;
|
|
blasint inc_y = 1;
|
|
|
|
// Imaginary part for zaxpby
|
|
double c[] = {1.0, 0.0};
|
|
double s[] = {1.0, 0.0};
|
|
|
|
double norm = c_api_check_zdrot(n, inc_x, inc_y, c, s);
|
|
ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
|
|
}
|
|
#endif
|
|
#endif
|