2028 lines
59 KiB
C
2028 lines
59 KiB
C
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <complex.h>
|
|
#ifdef complex
|
|
#undef complex
|
|
#endif
|
|
#ifdef I
|
|
#undef I
|
|
#endif
|
|
|
|
#if defined(_WIN64)
|
|
typedef long long BLASLONG;
|
|
typedef unsigned long long BLASULONG;
|
|
#else
|
|
typedef long BLASLONG;
|
|
typedef unsigned long BLASULONG;
|
|
#endif
|
|
|
|
#ifdef LAPACK_ILP64
|
|
typedef BLASLONG blasint;
|
|
#if defined(_WIN64)
|
|
#define blasabs(x) llabs(x)
|
|
#else
|
|
#define blasabs(x) labs(x)
|
|
#endif
|
|
#else
|
|
typedef int blasint;
|
|
#define blasabs(x) abs(x)
|
|
#endif
|
|
|
|
typedef blasint integer;
|
|
|
|
typedef unsigned int uinteger;
|
|
typedef char *address;
|
|
typedef short int shortint;
|
|
typedef float real;
|
|
typedef double doublereal;
|
|
typedef struct { real r, i; } complex;
|
|
typedef struct { doublereal r, i; } doublecomplex;
|
|
#ifdef _MSC_VER
|
|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
|
|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
|
|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
|
|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
|
|
#else
|
|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
|
|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
|
|
#endif
|
|
#define pCf(z) (*_pCf(z))
|
|
#define pCd(z) (*_pCd(z))
|
|
typedef blasint logical;
|
|
|
|
typedef char logical1;
|
|
typedef char integer1;
|
|
|
|
#define TRUE_ (1)
|
|
#define FALSE_ (0)
|
|
|
|
/* Extern is for use with -E */
|
|
#ifndef Extern
|
|
#define Extern extern
|
|
#endif
|
|
|
|
/* I/O stuff */
|
|
|
|
typedef int flag;
|
|
typedef int ftnlen;
|
|
typedef int ftnint;
|
|
|
|
/*external read, write*/
|
|
typedef struct
|
|
{ flag cierr;
|
|
ftnint ciunit;
|
|
flag ciend;
|
|
char *cifmt;
|
|
ftnint cirec;
|
|
} cilist;
|
|
|
|
/*internal read, write*/
|
|
typedef struct
|
|
{ flag icierr;
|
|
char *iciunit;
|
|
flag iciend;
|
|
char *icifmt;
|
|
ftnint icirlen;
|
|
ftnint icirnum;
|
|
} icilist;
|
|
|
|
/*open*/
|
|
typedef struct
|
|
{ flag oerr;
|
|
ftnint ounit;
|
|
char *ofnm;
|
|
ftnlen ofnmlen;
|
|
char *osta;
|
|
char *oacc;
|
|
char *ofm;
|
|
ftnint orl;
|
|
char *oblnk;
|
|
} olist;
|
|
|
|
/*close*/
|
|
typedef struct
|
|
{ flag cerr;
|
|
ftnint cunit;
|
|
char *csta;
|
|
} cllist;
|
|
|
|
/*rewind, backspace, endfile*/
|
|
typedef struct
|
|
{ flag aerr;
|
|
ftnint aunit;
|
|
} alist;
|
|
|
|
/* inquire */
|
|
typedef struct
|
|
{ flag inerr;
|
|
ftnint inunit;
|
|
char *infile;
|
|
ftnlen infilen;
|
|
ftnint *inex; /*parameters in standard's order*/
|
|
ftnint *inopen;
|
|
ftnint *innum;
|
|
ftnint *innamed;
|
|
char *inname;
|
|
ftnlen innamlen;
|
|
char *inacc;
|
|
ftnlen inacclen;
|
|
char *inseq;
|
|
ftnlen inseqlen;
|
|
char *indir;
|
|
ftnlen indirlen;
|
|
char *infmt;
|
|
ftnlen infmtlen;
|
|
char *inform;
|
|
ftnint informlen;
|
|
char *inunf;
|
|
ftnlen inunflen;
|
|
ftnint *inrecl;
|
|
ftnint *innrec;
|
|
char *inblank;
|
|
ftnlen inblanklen;
|
|
} inlist;
|
|
|
|
#define VOID void
|
|
|
|
union Multitype { /* for multiple entry points */
|
|
integer1 g;
|
|
shortint h;
|
|
integer i;
|
|
/* longint j; */
|
|
real r;
|
|
doublereal d;
|
|
complex c;
|
|
doublecomplex z;
|
|
};
|
|
|
|
typedef union Multitype Multitype;
|
|
|
|
struct Vardesc { /* for Namelist */
|
|
char *name;
|
|
char *addr;
|
|
ftnlen *dims;
|
|
int type;
|
|
};
|
|
typedef struct Vardesc Vardesc;
|
|
|
|
struct Namelist {
|
|
char *name;
|
|
Vardesc **vars;
|
|
int nvars;
|
|
};
|
|
typedef struct Namelist Namelist;
|
|
|
|
#define abs(x) ((x) >= 0 ? (x) : -(x))
|
|
#define dabs(x) (fabs(x))
|
|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
|
|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
|
|
#define dmin(a,b) (f2cmin(a,b))
|
|
#define dmax(a,b) (f2cmax(a,b))
|
|
#define bit_test(a,b) ((a) >> (b) & 1)
|
|
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
|
|
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
|
|
|
|
#define abort_() { sig_die("Fortran abort routine called", 1); }
|
|
#define c_abs(z) (cabsf(Cf(z)))
|
|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
|
|
#ifdef _MSC_VER
|
|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
|
|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
|
|
#else
|
|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
|
|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
|
|
#endif
|
|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
|
|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
|
|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
|
|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
|
|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
|
|
#define d_abs(x) (fabs(*(x)))
|
|
#define d_acos(x) (acos(*(x)))
|
|
#define d_asin(x) (asin(*(x)))
|
|
#define d_atan(x) (atan(*(x)))
|
|
#define d_atn2(x, y) (atan2(*(x),*(y)))
|
|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
|
|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
|
|
#define d_cos(x) (cos(*(x)))
|
|
#define d_cosh(x) (cosh(*(x)))
|
|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
|
|
#define d_exp(x) (exp(*(x)))
|
|
#define d_imag(z) (cimag(Cd(z)))
|
|
#define r_imag(z) (cimagf(Cf(z)))
|
|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define d_log(x) (log(*(x)))
|
|
#define d_mod(x, y) (fmod(*(x), *(y)))
|
|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
|
|
#define d_nint(x) u_nint(*(x))
|
|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
|
|
#define d_sign(a,b) u_sign(*(a),*(b))
|
|
#define r_sign(a,b) u_sign(*(a),*(b))
|
|
#define d_sin(x) (sin(*(x)))
|
|
#define d_sinh(x) (sinh(*(x)))
|
|
#define d_sqrt(x) (sqrt(*(x)))
|
|
#define d_tan(x) (tan(*(x)))
|
|
#define d_tanh(x) (tanh(*(x)))
|
|
#define i_abs(x) abs(*(x))
|
|
#define i_dnnt(x) ((integer)u_nint(*(x)))
|
|
#define i_len(s, n) (n)
|
|
#define i_nint(x) ((integer)u_nint(*(x)))
|
|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
|
|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
|
|
#define pow_si(B,E) spow_ui(*(B),*(E))
|
|
#define pow_ri(B,E) spow_ui(*(B),*(E))
|
|
#define pow_di(B,E) dpow_ui(*(B),*(E))
|
|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
|
|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
|
|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
|
|
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
|
|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
|
|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
|
|
#define sig_die(s, kill) { exit(1); }
|
|
#define s_stop(s, n) {exit(0);}
|
|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
|
|
#define z_abs(z) (cabs(Cd(z)))
|
|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
|
|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
|
|
#define myexit_() break;
|
|
#define mycycle_() continue;
|
|
#define myceiling_(w) {ceil(w)}
|
|
#define myhuge_(w) {HUGE_VAL}
|
|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
|
|
#define mymaxloc_(w,s,e,n) dmaxloc_(w,*(s),*(e),n)
|
|
#define myexp_(w) my_expfunc(w)
|
|
|
|
static int my_expfunc(double *x) {int e; (void)frexp(*x,&e); return e;}
|
|
|
|
|
|
/* procedure parameter types for -A and -C++ */
|
|
|
|
|
|
#ifdef __cplusplus
|
|
typedef logical (*L_fp)(...);
|
|
#else
|
|
typedef logical (*L_fp)();
|
|
#endif
|
|
|
|
static float spow_ui(float x, integer n) {
|
|
float pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
static double dpow_ui(double x, integer n) {
|
|
double pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#ifdef _MSC_VER
|
|
static _Fcomplex cpow_ui(complex x, integer n) {
|
|
complex pow={1.0,0.0}; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow.r *= x.r, pow.i *= x.i;
|
|
if(u >>= 1) x.r *= x.r, x.i *= x.i;
|
|
else break;
|
|
}
|
|
}
|
|
_Fcomplex p={pow.r, pow.i};
|
|
return p;
|
|
}
|
|
#else
|
|
static _Complex float cpow_ui(_Complex float x, integer n) {
|
|
_Complex float pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#endif
|
|
#ifdef _MSC_VER
|
|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
|
|
_Dcomplex pow={1.0,0.0}; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
|
|
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
|
|
else break;
|
|
}
|
|
}
|
|
_Dcomplex p = {pow._Val[0], pow._Val[1]};
|
|
return p;
|
|
}
|
|
#else
|
|
static _Complex double zpow_ui(_Complex double x, integer n) {
|
|
_Complex double pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#endif
|
|
static integer pow_ii(integer x, integer n) {
|
|
integer pow; unsigned long int u;
|
|
if (n <= 0) {
|
|
if (n == 0 || x == 1) pow = 1;
|
|
else if (x != -1) pow = x == 0 ? 1/x : 0;
|
|
else n = -n;
|
|
}
|
|
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
|
|
u = n;
|
|
for(pow = 1; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
|
|
{
|
|
double m; integer i, mi;
|
|
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
|
if (w[i-1]>m) mi=i ,m=w[i-1];
|
|
return mi-s+1;
|
|
}
|
|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
|
|
{
|
|
float m; integer i, mi;
|
|
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
|
if (w[i-1]>m) mi=i ,m=w[i-1];
|
|
return mi-s+1;
|
|
}
|
|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Fcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
|
|
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex float zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Dcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
|
|
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex double zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Fcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
|
|
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex float zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cf(&x[i]) * Cf(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Dcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
|
|
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex double zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cd(&x[i]) * Cd(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#endif
|
|
/* -- translated by f2c (version 20000121).
|
|
You must link the resulting object file with the libraries:
|
|
-lf2c -lm (in that order)
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Table of constant values */
|
|
|
|
static doublecomplex c_b1 = {1.,0.};
|
|
static integer c__1 = 1;
|
|
static integer c_n1 = -1;
|
|
static doublereal c_b18 = 2.;
|
|
static doublereal c_b106 = 1.;
|
|
|
|
/* > \brief \b ZTRSYL3 */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
|
|
/* > \par Purpose */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > ZTRSYL3 solves the complex Sylvester matrix equation: */
|
|
/* > */
|
|
/* > op(A)*X + X*op(B) = scale*C or */
|
|
/* > op(A)*X - X*op(B) = scale*C, */
|
|
/* > */
|
|
/* > where op(A) = A or A**H, and A and B are both upper triangular. A is */
|
|
/* > M-by-M and B is N-by-N; the right hand side C and the solution X are */
|
|
/* > M-by-N; and scale is an output scale factor, set <= 1 to avoid */
|
|
/* > overflow in X. */
|
|
/* > */
|
|
/* > This is the block version of the algorithm. */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments */
|
|
/* ========= */
|
|
|
|
/* > \param[in] TRANA */
|
|
/* > \verbatim */
|
|
/* > TRANA is CHARACTER*1 */
|
|
/* > Specifies the option op(A): */
|
|
/* > = 'N': op(A) = A (No transpose) */
|
|
/* > = 'C': op(A) = A**H (Conjugate transpose) */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] TRANB */
|
|
/* > \verbatim */
|
|
/* > TRANB is CHARACTER*1 */
|
|
/* > Specifies the option op(B): */
|
|
/* > = 'N': op(B) = B (No transpose) */
|
|
/* > = 'C': op(B) = B**H (Conjugate transpose) */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] ISGN */
|
|
/* > \verbatim */
|
|
/* > ISGN is INTEGER */
|
|
/* > Specifies the sign in the equation: */
|
|
/* > = +1: solve op(A)*X + X*op(B) = scale*C */
|
|
/* > = -1: solve op(A)*X - X*op(B) = scale*C */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] M */
|
|
/* > \verbatim */
|
|
/* > M is INTEGER */
|
|
/* > The order of the matrix A, and the number of rows in the */
|
|
/* > matrices X and C. M >= 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > The order of the matrix B, and the number of columns in the */
|
|
/* > matrices X and C. N >= 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] A */
|
|
/* > \verbatim */
|
|
/* > A is COMPLEX*16 array, dimension (LDA,M) */
|
|
/* > The upper triangular matrix A. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDA */
|
|
/* > \verbatim */
|
|
/* > LDA is INTEGER */
|
|
/* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] B */
|
|
/* > \verbatim */
|
|
/* > B is COMPLEX*16 array, dimension (LDB,N) */
|
|
/* > The upper triangular matrix B. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDB */
|
|
/* > \verbatim */
|
|
/* > LDB is INTEGER */
|
|
/* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] C */
|
|
/* > \verbatim */
|
|
/* > C is COMPLEX*16 array, dimension (LDC,N) */
|
|
/* > On entry, the M-by-N right hand side matrix C. */
|
|
/* > On exit, C is overwritten by the solution matrix X. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDC */
|
|
/* > \verbatim */
|
|
/* > LDC is INTEGER */
|
|
/* > The leading dimension of the array C. LDC >= f2cmax(1,M) */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] SCALE */
|
|
/* > \verbatim */
|
|
/* > SCALE is DOUBLE PRECISION */
|
|
/* > The scale factor, scale, set <= 1 to avoid overflow in X. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] SWORK */
|
|
/* > \verbatim */
|
|
/* > SWORK is DOUBLE PRECISION array, dimension (MAX(2, ROWS), */
|
|
/* > MAX(1,COLS)). */
|
|
/* > On exit, if INFO = 0, SWORK(1) returns the optimal value ROWS */
|
|
/* > and SWORK(2) returns the optimal COLS. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDSWORK */
|
|
/* > \verbatim */
|
|
/* > LDSWORK is INTEGER */
|
|
/* > LDSWORK >= MAX(2,ROWS), where ROWS = ((M + NB - 1) / NB + 1) */
|
|
/* > and NB is the optimal block size. */
|
|
/* > */
|
|
/* > If LDSWORK = -1, then a workspace query is assumed; the routine */
|
|
/* > only calculates the optimal dimensions of the SWORK matrix, */
|
|
/* > returns these values as the first and second entry of the SWORK */
|
|
/* > matrix, and no error message related LWORK is issued by XERBLA. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] INFO */
|
|
/* > \verbatim */
|
|
/* > INFO is INTEGER */
|
|
/* > = 0: successful exit */
|
|
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
|
|
/* > = 1: A and B have common or very close eigenvalues; perturbed */
|
|
/* > values were used to solve the equation (but the matrices */
|
|
/* > A and B are unchanged). */
|
|
/* > \endverbatim */
|
|
|
|
/* > \ingroup complex16SYcomputational */
|
|
|
|
/* ===================================================================== */
|
|
/* References: */
|
|
/* E. S. Quintana-Orti and R. A. Van De Geijn (2003). Formal derivation of */
|
|
/* algorithms: The triangular Sylvester equation, ACM Transactions */
|
|
/* on Mathematical Software (TOMS), volume 29, pages 218--243. */
|
|
|
|
/* A. Schwarz and C. C. Kjelgaard Mikkelsen (2020). Robust Task-Parallel */
|
|
/* Solution of the Triangular Sylvester Equation. Lecture Notes in */
|
|
/* Computer Science, vol 12043, pages 82--92, Springer. */
|
|
|
|
/* Contributor: */
|
|
/* Angelika Schwarz, Umea University, Sweden. */
|
|
|
|
/* ===================================================================== */
|
|
/* Subroutine */ void ztrsyl3_(char *trana, char *tranb, integer *isgn,
|
|
integer *m, integer *n, doublecomplex *a, integer *lda, doublecomplex
|
|
*b, integer *ldb, doublecomplex *c__, integer *ldc, doublereal *scale,
|
|
doublereal *swork, integer *ldswork, integer *info)
|
|
{
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, swork_dim1,
|
|
swork_offset, i__1, i__2, i__3, i__4, i__5, i__6;
|
|
doublereal d__1, d__2, d__3, d__4;
|
|
doublecomplex z__1;
|
|
|
|
/* Local variables */
|
|
doublereal scal;
|
|
doublecomplex csgn;
|
|
doublereal anrm, bnrm, cnrm;
|
|
integer awrk, bwrk;
|
|
doublereal *wnrm, xnrm;
|
|
integer i__, j, k, l;
|
|
extern logical lsame_(char *, char *);
|
|
integer iinfo;
|
|
extern /* Subroutine */ void zgemm_(char *, char *, integer *, integer *,
|
|
integer *, doublecomplex *, doublecomplex *, integer *,
|
|
doublecomplex *, integer *, doublecomplex *, doublecomplex *,
|
|
integer *);
|
|
integer i1, i2, j1, j2, k1, k2, l1, l2;
|
|
// extern integer myexp_(doublereal *);
|
|
integer nb, jj, ll;
|
|
extern doublereal dlamch_(char *);
|
|
doublereal scaloc, scamin;
|
|
extern doublereal dlarmm_(doublereal *, doublereal *, doublereal *);
|
|
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen );
|
|
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
|
|
integer *, integer *, ftnlen, ftnlen);
|
|
extern doublereal zlange_(char *, integer *, integer *, doublecomplex *,
|
|
integer *, doublereal *);
|
|
doublereal bignum;
|
|
extern /* Subroutine */ void zdscal_(integer *, doublereal *,
|
|
doublecomplex *, integer *), zlascl_(char *, integer *, integer *,
|
|
doublereal *, doublereal *, integer *, integer *, doublecomplex *
|
|
, integer *, integer *);
|
|
logical notrna, notrnb;
|
|
doublereal smlnum;
|
|
logical lquery;
|
|
extern /* Subroutine */ void ztrsyl_(char *, char *, integer *, integer *,
|
|
integer *, doublecomplex *, integer *, doublecomplex *, integer *,
|
|
doublecomplex *, integer *, doublereal *, integer *);
|
|
integer nba, nbb;
|
|
doublereal buf, sgn;
|
|
|
|
|
|
|
|
/* Decode and Test input parameters */
|
|
|
|
/* Parameter adjustments */
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1 * 1;
|
|
a -= a_offset;
|
|
b_dim1 = *ldb;
|
|
b_offset = 1 + b_dim1 * 1;
|
|
b -= b_offset;
|
|
c_dim1 = *ldc;
|
|
c_offset = 1 + c_dim1 * 1;
|
|
c__ -= c_offset;
|
|
swork_dim1 = *ldswork;
|
|
swork_offset = 1 + swork_dim1 * 1;
|
|
swork -= swork_offset;
|
|
|
|
/* Function Body */
|
|
notrna = lsame_(trana, "N");
|
|
notrnb = lsame_(tranb, "N");
|
|
|
|
/* Use the same block size for all matrices. */
|
|
|
|
/* Computing MAX */
|
|
i__1 = 8, i__2 = ilaenv_(&c__1, "ZTRSYL", "", m, n, &c_n1, &c_n1, (ftnlen)
|
|
6, (ftnlen)0);
|
|
nb = f2cmax(i__1,i__2);
|
|
|
|
/* Compute number of blocks in A and B */
|
|
|
|
/* Computing MAX */
|
|
i__1 = 1, i__2 = (*m + nb - 1) / nb;
|
|
nba = f2cmax(i__1,i__2);
|
|
/* Computing MAX */
|
|
i__1 = 1, i__2 = (*n + nb - 1) / nb;
|
|
nbb = f2cmax(i__1,i__2);
|
|
|
|
/* Compute workspace */
|
|
|
|
*info = 0;
|
|
lquery = *ldswork == -1;
|
|
if (lquery) {
|
|
*ldswork = 2;
|
|
swork[swork_dim1 + 1] = (doublereal) f2cmax(nba,nbb);
|
|
swork[swork_dim1 + 2] = (doublereal) ((nbb << 1) + nba);
|
|
}
|
|
|
|
/* Test the input arguments */
|
|
|
|
if (! notrna && ! lsame_(trana, "C")) {
|
|
*info = -1;
|
|
} else if (! notrnb && ! lsame_(tranb, "C")) {
|
|
*info = -2;
|
|
} else if (*isgn != 1 && *isgn != -1) {
|
|
*info = -3;
|
|
} else if (*m < 0) {
|
|
*info = -4;
|
|
} else if (*n < 0) {
|
|
*info = -5;
|
|
} else if (*lda < f2cmax(1,*m)) {
|
|
*info = -7;
|
|
} else if (*ldb < f2cmax(1,*n)) {
|
|
*info = -9;
|
|
} else if (*ldc < f2cmax(1,*m)) {
|
|
*info = -11;
|
|
}
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_("ZTRSYL3", &i__1, 7);
|
|
return;
|
|
} else if (lquery) {
|
|
return;
|
|
}
|
|
|
|
/* Quick return if possible */
|
|
|
|
*scale = 1.;
|
|
if (*m == 0 || *n == 0) {
|
|
return;
|
|
}
|
|
|
|
wnrm = (doublereal*)malloc(f2cmax(*m,*n)*sizeof(doublereal));
|
|
/* Use unblocked code for small problems or if insufficient */
|
|
/* workspace is provided */
|
|
|
|
if (f2cmin(nba,nbb) == 1 || *ldswork < f2cmax(nba,nbb)) {
|
|
ztrsyl_(trana, tranb, isgn, m, n, &a[a_offset], lda, &b[b_offset],
|
|
ldb, &c__[c_offset], ldc, scale, info);
|
|
return;
|
|
}
|
|
|
|
/* Set constants to control overflow */
|
|
|
|
smlnum = dlamch_("S");
|
|
bignum = 1. / smlnum;
|
|
|
|
/* Set local scaling factors. */
|
|
|
|
i__1 = nbb;
|
|
for (l = 1; l <= i__1; ++l) {
|
|
i__2 = nba;
|
|
for (k = 1; k <= i__2; ++k) {
|
|
swork[k + l * swork_dim1] = 1.;
|
|
}
|
|
}
|
|
|
|
/* Fallback scaling factor to prevent flushing of SWORK( K, L ) to zero. */
|
|
/* This scaling is to ensure compatibility with TRSYL and may get flushed. */
|
|
|
|
buf = 1.;
|
|
|
|
/* Compute upper bounds of blocks of A and B */
|
|
|
|
awrk = nbb;
|
|
i__1 = nba;
|
|
for (k = 1; k <= i__1; ++k) {
|
|
k1 = (k - 1) * nb + 1;
|
|
/* Computing MIN */
|
|
i__2 = k * nb;
|
|
k2 = f2cmin(i__2,*m) + 1;
|
|
i__2 = nba;
|
|
for (l = k; l <= i__2; ++l) {
|
|
l1 = (l - 1) * nb + 1;
|
|
/* Computing MIN */
|
|
i__3 = l * nb;
|
|
l2 = f2cmin(i__3,*m) + 1;
|
|
if (notrna) {
|
|
i__3 = k2 - k1;
|
|
i__4 = l2 - l1;
|
|
swork[k + (awrk + l) * swork_dim1] = zlange_("I", &i__3, &
|
|
i__4, &a[k1 + l1 * a_dim1], lda, wnrm);
|
|
} else {
|
|
i__3 = k2 - k1;
|
|
i__4 = l2 - l1;
|
|
swork[l + (awrk + k) * swork_dim1] = zlange_("1", &i__3, &
|
|
i__4, &a[k1 + l1 * a_dim1], lda, wnrm);
|
|
}
|
|
}
|
|
}
|
|
bwrk = nbb + nba;
|
|
i__1 = nbb;
|
|
for (k = 1; k <= i__1; ++k) {
|
|
k1 = (k - 1) * nb + 1;
|
|
/* Computing MIN */
|
|
i__2 = k * nb;
|
|
k2 = f2cmin(i__2,*n) + 1;
|
|
i__2 = nbb;
|
|
for (l = k; l <= i__2; ++l) {
|
|
l1 = (l - 1) * nb + 1;
|
|
/* Computing MIN */
|
|
i__3 = l * nb;
|
|
l2 = f2cmin(i__3,*n) + 1;
|
|
if (notrnb) {
|
|
i__3 = k2 - k1;
|
|
i__4 = l2 - l1;
|
|
swork[k + (bwrk + l) * swork_dim1] = zlange_("I", &i__3, &
|
|
i__4, &b[k1 + l1 * b_dim1], ldb, wnrm);
|
|
} else {
|
|
i__3 = k2 - k1;
|
|
i__4 = l2 - l1;
|
|
swork[l + (bwrk + k) * swork_dim1] = zlange_("1", &i__3, &
|
|
i__4, &b[k1 + l1 * b_dim1], ldb, wnrm);
|
|
}
|
|
}
|
|
}
|
|
|
|
sgn = (doublereal) (*isgn);
|
|
z__1.r = sgn, z__1.i = 0.;
|
|
csgn.r = z__1.r, csgn.i = z__1.i;
|
|
|
|
if (notrna && notrnb) {
|
|
|
|
/* Solve A*X + ISGN*X*B = scale*C. */
|
|
|
|
/* The (K,L)th block of X is determined starting from */
|
|
/* bottom-left corner column by column by */
|
|
|
|
/* A(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L) */
|
|
|
|
/* Where */
|
|
/* M L-1 */
|
|
/* R(K,L) = SUM [A(K,I)*X(I,L)] + ISGN*SUM [X(K,J)*B(J,L)]. */
|
|
/* I=K+1 J=1 */
|
|
|
|
/* Start loop over block rows (index = K) and block columns (index = L) */
|
|
|
|
for (k = nba; k >= 1; --k) {
|
|
|
|
/* K1: row index of the first row in X( K, L ) */
|
|
/* K2: row index of the first row in X( K+1, L ) */
|
|
/* so the K2 - K1 is the column count of the block X( K, L ) */
|
|
|
|
k1 = (k - 1) * nb + 1;
|
|
/* Computing MIN */
|
|
i__1 = k * nb;
|
|
k2 = f2cmin(i__1,*m) + 1;
|
|
i__1 = nbb;
|
|
for (l = 1; l <= i__1; ++l) {
|
|
|
|
/* L1: column index of the first column in X( K, L ) */
|
|
/* L2: column index of the first column in X( K, L + 1) */
|
|
/* so that L2 - L1 is the row count of the block X( K, L ) */
|
|
|
|
l1 = (l - 1) * nb + 1;
|
|
/* Computing MIN */
|
|
i__2 = l * nb;
|
|
l2 = f2cmin(i__2,*n) + 1;
|
|
|
|
i__2 = k2 - k1;
|
|
i__3 = l2 - l1;
|
|
ztrsyl_(trana, tranb, isgn, &i__2, &i__3, &a[k1 + k1 * a_dim1]
|
|
, lda, &b[l1 + l1 * b_dim1], ldb, &c__[k1 + l1 *
|
|
c_dim1], ldc, &scaloc, &iinfo);
|
|
*info = f2cmax(*info,iinfo);
|
|
|
|
if (scaloc * swork[k + l * swork_dim1] == 0.) {
|
|
if (scaloc == 0.) {
|
|
/* The magnitude of the largest entry of X(K1:K2-1, L1:L2-1) */
|
|
/* is larger than the product of BIGNUM**2 and cannot be */
|
|
/* represented in the form (1/SCALE)*X(K1:K2-1, L1:L2-1). */
|
|
/* Mark the computation as pointless. */
|
|
buf = 0.;
|
|
} else {
|
|
i__2 = myexp_(&scaloc);
|
|
buf *= pow_di(&c_b18, &i__2);
|
|
}
|
|
i__2 = nbb;
|
|
for (jj = 1; jj <= i__2; ++jj) {
|
|
i__3 = nba;
|
|
for (ll = 1; ll <= i__3; ++ll) {
|
|
/* Bound by BIGNUM to not introduce Inf. The value */
|
|
/* is irrelevant; corresponding entries of the */
|
|
/* solution will be flushed in consistency scaling. */
|
|
/* Computing MIN */
|
|
i__4 = myexp_(&scaloc);
|
|
d__1 = bignum, d__2 = swork[ll + jj * swork_dim1]
|
|
/ pow_di(&c_b18, &i__4);
|
|
swork[ll + jj * swork_dim1] = f2cmin(d__1,d__2);
|
|
}
|
|
}
|
|
}
|
|
swork[k + l * swork_dim1] = scaloc * swork[k + l * swork_dim1]
|
|
;
|
|
i__2 = k2 - k1;
|
|
i__3 = l2 - l1;
|
|
xnrm = zlange_("I", &i__2, &i__3, &c__[k1 + l1 * c_dim1], ldc,
|
|
wnrm);
|
|
|
|
for (i__ = k - 1; i__ >= 1; --i__) {
|
|
|
|
/* C( I, L ) := C( I, L ) - A( I, K ) * C( K, L ) */
|
|
|
|
i1 = (i__ - 1) * nb + 1;
|
|
/* Computing MIN */
|
|
i__2 = i__ * nb;
|
|
i2 = f2cmin(i__2,*m) + 1;
|
|
|
|
/* Compute scaling factor to survive the linear update */
|
|
/* simulating consistent scaling. */
|
|
|
|
i__2 = i2 - i1;
|
|
i__3 = l2 - l1;
|
|
cnrm = zlange_("I", &i__2, &i__3, &c__[i1 + l1 * c_dim1],
|
|
ldc, wnrm);
|
|
/* Computing MIN */
|
|
d__1 = swork[i__ + l * swork_dim1], d__2 = swork[k + l *
|
|
swork_dim1];
|
|
scamin = f2cmin(d__1,d__2);
|
|
cnrm *= scamin / swork[i__ + l * swork_dim1];
|
|
xnrm *= scamin / swork[k + l * swork_dim1];
|
|
anrm = swork[i__ + (awrk + k) * swork_dim1];
|
|
scaloc = dlarmm_(&anrm, &xnrm, &cnrm);
|
|
if (scaloc * scamin == 0.) {
|
|
/* Use second scaling factor to prevent flushing to zero. */
|
|
i__2 = myexp_(&scaloc);
|
|
buf *= pow_di(&c_b18, &i__2);
|
|
i__2 = nbb;
|
|
for (jj = 1; jj <= i__2; ++jj) {
|
|
i__3 = nba;
|
|
for (ll = 1; ll <= i__3; ++ll) {
|
|
/* Computing MIN */
|
|
i__4 = myexp_(&scaloc);
|
|
d__1 = bignum, d__2 = swork[ll + jj *
|
|
swork_dim1] / pow_di(&c_b18, &i__4);
|
|
swork[ll + jj * swork_dim1] = f2cmin(d__1,d__2);
|
|
}
|
|
}
|
|
i__2 = myexp_(&scaloc);
|
|
scamin /= pow_di(&c_b18, &i__2);
|
|
i__2 = myexp_(&scaloc);
|
|
scaloc /= pow_di(&c_b18, &i__2);
|
|
}
|
|
cnrm *= scaloc;
|
|
xnrm *= scaloc;
|
|
|
|
/* Simultaneously apply the robust update factor and the */
|
|
/* consistency scaling factor to C( I, L ) and C( K, L ). */
|
|
|
|
scal = scamin / swork[k + l * swork_dim1] * scaloc;
|
|
if (scal != 1.) {
|
|
i__2 = l2 - 1;
|
|
for (jj = l1; jj <= i__2; ++jj) {
|
|
i__3 = k2 - k1;
|
|
zdscal_(&i__3, &scal, &c__[k1 + jj * c_dim1], &
|
|
c__1);
|
|
}
|
|
}
|
|
|
|
scal = scamin / swork[i__ + l * swork_dim1] * scaloc;
|
|
if (scal != 1.) {
|
|
i__2 = l2 - 1;
|
|
for (ll = l1; ll <= i__2; ++ll) {
|
|
i__3 = i2 - i1;
|
|
zdscal_(&i__3, &scal, &c__[i1 + ll * c_dim1], &
|
|
c__1);
|
|
}
|
|
}
|
|
|
|
/* Record current scaling factor */
|
|
|
|
swork[k + l * swork_dim1] = scamin * scaloc;
|
|
swork[i__ + l * swork_dim1] = scamin * scaloc;
|
|
|
|
i__2 = i2 - i1;
|
|
i__3 = l2 - l1;
|
|
i__4 = k2 - k1;
|
|
z__1.r = -1., z__1.i = 0.;
|
|
zgemm_("N", "N", &i__2, &i__3, &i__4, &z__1, &a[i1 + k1 *
|
|
a_dim1], lda, &c__[k1 + l1 * c_dim1], ldc, &c_b1,
|
|
&c__[i1 + l1 * c_dim1], ldc)
|
|
;
|
|
|
|
}
|
|
|
|
i__2 = nbb;
|
|
for (j = l + 1; j <= i__2; ++j) {
|
|
|
|
/* C( K, J ) := C( K, J ) - SGN * C( K, L ) * B( L, J ) */
|
|
|
|
j1 = (j - 1) * nb + 1;
|
|
/* Computing MIN */
|
|
i__3 = j * nb;
|
|
j2 = f2cmin(i__3,*n) + 1;
|
|
|
|
/* Compute scaling factor to survive the linear update */
|
|
/* simulating consistent scaling. */
|
|
|
|
i__3 = k2 - k1;
|
|
i__4 = j2 - j1;
|
|
cnrm = zlange_("I", &i__3, &i__4, &c__[k1 + j1 * c_dim1],
|
|
ldc, wnrm);
|
|
/* Computing MIN */
|
|
d__1 = swork[k + j * swork_dim1], d__2 = swork[k + l *
|
|
swork_dim1];
|
|
scamin = f2cmin(d__1,d__2);
|
|
cnrm *= scamin / swork[k + j * swork_dim1];
|
|
xnrm *= scamin / swork[k + l * swork_dim1];
|
|
bnrm = swork[l + (bwrk + j) * swork_dim1];
|
|
scaloc = dlarmm_(&bnrm, &xnrm, &cnrm);
|
|
if (scaloc * scamin == 0.) {
|
|
/* Use second scaling factor to prevent flushing to zero. */
|
|
i__3 = myexp_(&scaloc);
|
|
buf *= pow_di(&c_b18, &i__3);
|
|
i__3 = nbb;
|
|
for (jj = 1; jj <= i__3; ++jj) {
|
|
i__4 = nba;
|
|
for (ll = 1; ll <= i__4; ++ll) {
|
|
/* Computing MIN */
|
|
i__5 = myexp_(&scaloc);
|
|
d__1 = bignum, d__2 = swork[ll + jj *
|
|
swork_dim1] / pow_di(&c_b18, &i__5);
|
|
swork[ll + jj * swork_dim1] = f2cmin(d__1,d__2);
|
|
}
|
|
}
|
|
i__3 = myexp_(&scaloc);
|
|
scamin /= pow_di(&c_b18, &i__3);
|
|
i__3 = myexp_(&scaloc);
|
|
scaloc /= pow_di(&c_b18, &i__3);
|
|
}
|
|
cnrm *= scaloc;
|
|
xnrm *= scaloc;
|
|
|
|
/* Simultaneously apply the robust update factor and the */
|
|
/* consistency scaling factor to C( K, J ) and C( K, L). */
|
|
|
|
scal = scamin / swork[k + l * swork_dim1] * scaloc;
|
|
if (scal != 1.) {
|
|
i__3 = l2 - 1;
|
|
for (ll = l1; ll <= i__3; ++ll) {
|
|
i__4 = k2 - k1;
|
|
zdscal_(&i__4, &scal, &c__[k1 + ll * c_dim1], &
|
|
c__1);
|
|
}
|
|
}
|
|
|
|
scal = scamin / swork[k + j * swork_dim1] * scaloc;
|
|
if (scal != 1.) {
|
|
i__3 = j2 - 1;
|
|
for (jj = j1; jj <= i__3; ++jj) {
|
|
i__4 = k2 - k1;
|
|
zdscal_(&i__4, &scal, &c__[k1 + jj * c_dim1], &
|
|
c__1);
|
|
}
|
|
}
|
|
|
|
/* Record current scaling factor */
|
|
|
|
swork[k + l * swork_dim1] = scamin * scaloc;
|
|
swork[k + j * swork_dim1] = scamin * scaloc;
|
|
|
|
i__3 = k2 - k1;
|
|
i__4 = j2 - j1;
|
|
i__5 = l2 - l1;
|
|
z__1.r = -csgn.r, z__1.i = -csgn.i;
|
|
zgemm_("N", "N", &i__3, &i__4, &i__5, &z__1, &c__[k1 + l1
|
|
* c_dim1], ldc, &b[l1 + j1 * b_dim1], ldb, &c_b1,
|
|
&c__[k1 + j1 * c_dim1], ldc)
|
|
;
|
|
}
|
|
}
|
|
}
|
|
} else if (! notrna && notrnb) {
|
|
|
|
/* Solve A**H *X + ISGN*X*B = scale*C. */
|
|
|
|
/* The (K,L)th block of X is determined starting from */
|
|
/* upper-left corner column by column by */
|
|
|
|
/* A(K,K)**H*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L) */
|
|
|
|
/* Where */
|
|
/* K-1 L-1 */
|
|
/* R(K,L) = SUM [A(I,K)**H*X(I,L)] +ISGN*SUM [X(K,J)*B(J,L)] */
|
|
/* I=1 J=1 */
|
|
|
|
/* Start loop over block rows (index = K) and block columns (index = L) */
|
|
|
|
i__1 = nba;
|
|
for (k = 1; k <= i__1; ++k) {
|
|
|
|
/* K1: row index of the first row in X( K, L ) */
|
|
/* K2: row index of the first row in X( K+1, L ) */
|
|
/* so the K2 - K1 is the column count of the block X( K, L ) */
|
|
|
|
k1 = (k - 1) * nb + 1;
|
|
/* Computing MIN */
|
|
i__2 = k * nb;
|
|
k2 = f2cmin(i__2,*m) + 1;
|
|
i__2 = nbb;
|
|
for (l = 1; l <= i__2; ++l) {
|
|
|
|
/* L1: column index of the first column in X( K, L ) */
|
|
/* L2: column index of the first column in X( K, L + 1) */
|
|
/* so that L2 - L1 is the row count of the block X( K, L ) */
|
|
|
|
l1 = (l - 1) * nb + 1;
|
|
/* Computing MIN */
|
|
i__3 = l * nb;
|
|
l2 = f2cmin(i__3,*n) + 1;
|
|
|
|
i__3 = k2 - k1;
|
|
i__4 = l2 - l1;
|
|
ztrsyl_(trana, tranb, isgn, &i__3, &i__4, &a[k1 + k1 * a_dim1]
|
|
, lda, &b[l1 + l1 * b_dim1], ldb, &c__[k1 + l1 *
|
|
c_dim1], ldc, &scaloc, &iinfo);
|
|
*info = f2cmax(*info,iinfo);
|
|
|
|
if (scaloc * swork[k + l * swork_dim1] == 0.) {
|
|
if (scaloc == 0.) {
|
|
/* The magnitude of the largest entry of X(K1:K2-1, L1:L2-1) */
|
|
/* is larger than the product of BIGNUM**2 and cannot be */
|
|
/* represented in the form (1/SCALE)*X(K1:K2-1, L1:L2-1). */
|
|
/* Mark the computation as pointless. */
|
|
buf = 0.;
|
|
} else {
|
|
/* Use second scaling factor to prevent flushing to zero. */
|
|
i__3 = myexp_(&scaloc);
|
|
buf *= pow_di(&c_b18, &i__3);
|
|
}
|
|
i__3 = nbb;
|
|
for (jj = 1; jj <= i__3; ++jj) {
|
|
i__4 = nba;
|
|
for (ll = 1; ll <= i__4; ++ll) {
|
|
/* Bound by BIGNUM to not introduce Inf. The value */
|
|
/* is irrelevant; corresponding entries of the */
|
|
/* solution will be flushed in consistency scaling. */
|
|
/* Computing MIN */
|
|
i__5 = myexp_(&scaloc);
|
|
d__1 = bignum, d__2 = swork[ll + jj * swork_dim1]
|
|
/ pow_di(&c_b18, &i__5);
|
|
swork[ll + jj * swork_dim1] = f2cmin(d__1,d__2);
|
|
}
|
|
}
|
|
}
|
|
swork[k + l * swork_dim1] = scaloc * swork[k + l * swork_dim1]
|
|
;
|
|
i__3 = k2 - k1;
|
|
i__4 = l2 - l1;
|
|
xnrm = zlange_("I", &i__3, &i__4, &c__[k1 + l1 * c_dim1], ldc,
|
|
wnrm);
|
|
|
|
i__3 = nba;
|
|
for (i__ = k + 1; i__ <= i__3; ++i__) {
|
|
|
|
/* C( I, L ) := C( I, L ) - A( K, I )**H * C( K, L ) */
|
|
|
|
i1 = (i__ - 1) * nb + 1;
|
|
/* Computing MIN */
|
|
i__4 = i__ * nb;
|
|
i2 = f2cmin(i__4,*m) + 1;
|
|
|
|
/* Compute scaling factor to survive the linear update */
|
|
/* simulating consistent scaling. */
|
|
|
|
i__4 = i2 - i1;
|
|
i__5 = l2 - l1;
|
|
cnrm = zlange_("I", &i__4, &i__5, &c__[i1 + l1 * c_dim1],
|
|
ldc, wnrm);
|
|
/* Computing MIN */
|
|
d__1 = swork[i__ + l * swork_dim1], d__2 = swork[k + l *
|
|
swork_dim1];
|
|
scamin = f2cmin(d__1,d__2);
|
|
cnrm *= scamin / swork[i__ + l * swork_dim1];
|
|
xnrm *= scamin / swork[k + l * swork_dim1];
|
|
anrm = swork[i__ + (awrk + k) * swork_dim1];
|
|
scaloc = dlarmm_(&anrm, &xnrm, &cnrm);
|
|
if (scaloc * scamin == 0.) {
|
|
/* Use second scaling factor to prevent flushing to zero. */
|
|
i__4 = myexp_(&scaloc);
|
|
buf *= pow_di(&c_b18, &i__4);
|
|
i__4 = nbb;
|
|
for (jj = 1; jj <= i__4; ++jj) {
|
|
i__5 = nba;
|
|
for (ll = 1; ll <= i__5; ++ll) {
|
|
/* Computing MIN */
|
|
i__6 = myexp_(&scaloc);
|
|
d__1 = bignum, d__2 = swork[ll + jj *
|
|
swork_dim1] / pow_di(&c_b18, &i__6);
|
|
swork[ll + jj * swork_dim1] = f2cmin(d__1,d__2);
|
|
}
|
|
}
|
|
i__4 = myexp_(&scaloc);
|
|
scamin /= pow_di(&c_b18, &i__4);
|
|
i__4 = myexp_(&scaloc);
|
|
scaloc /= pow_di(&c_b18, &i__4);
|
|
}
|
|
cnrm *= scaloc;
|
|
xnrm *= scaloc;
|
|
|
|
/* Simultaneously apply the robust update factor and the */
|
|
/* consistency scaling factor to to C( I, L ) and C( K, L). */
|
|
|
|
scal = scamin / swork[k + l * swork_dim1] * scaloc;
|
|
if (scal != 1.) {
|
|
i__4 = l2 - 1;
|
|
for (ll = l1; ll <= i__4; ++ll) {
|
|
i__5 = k2 - k1;
|
|
zdscal_(&i__5, &scal, &c__[k1 + ll * c_dim1], &
|
|
c__1);
|
|
}
|
|
}
|
|
|
|
scal = scamin / swork[i__ + l * swork_dim1] * scaloc;
|
|
if (scal != 1.) {
|
|
i__4 = l2 - 1;
|
|
for (ll = l1; ll <= i__4; ++ll) {
|
|
i__5 = i2 - i1;
|
|
zdscal_(&i__5, &scal, &c__[i1 + ll * c_dim1], &
|
|
c__1);
|
|
}
|
|
}
|
|
|
|
/* Record current scaling factor */
|
|
|
|
swork[k + l * swork_dim1] = scamin * scaloc;
|
|
swork[i__ + l * swork_dim1] = scamin * scaloc;
|
|
|
|
i__4 = i2 - i1;
|
|
i__5 = l2 - l1;
|
|
i__6 = k2 - k1;
|
|
z__1.r = -1., z__1.i = 0.;
|
|
zgemm_("C", "N", &i__4, &i__5, &i__6, &z__1, &a[k1 + i1 *
|
|
a_dim1], lda, &c__[k1 + l1 * c_dim1], ldc, &c_b1,
|
|
&c__[i1 + l1 * c_dim1], ldc)
|
|
;
|
|
}
|
|
|
|
i__3 = nbb;
|
|
for (j = l + 1; j <= i__3; ++j) {
|
|
|
|
/* C( K, J ) := C( K, J ) - SGN * C( K, L ) * B( L, J ) */
|
|
|
|
j1 = (j - 1) * nb + 1;
|
|
/* Computing MIN */
|
|
i__4 = j * nb;
|
|
j2 = f2cmin(i__4,*n) + 1;
|
|
|
|
/* Compute scaling factor to survive the linear update */
|
|
/* simulating consistent scaling. */
|
|
|
|
i__4 = k2 - k1;
|
|
i__5 = j2 - j1;
|
|
cnrm = zlange_("I", &i__4, &i__5, &c__[k1 + j1 * c_dim1],
|
|
ldc, wnrm);
|
|
/* Computing MIN */
|
|
d__1 = swork[k + j * swork_dim1], d__2 = swork[k + l *
|
|
swork_dim1];
|
|
scamin = f2cmin(d__1,d__2);
|
|
cnrm *= scamin / swork[k + j * swork_dim1];
|
|
xnrm *= scamin / swork[k + l * swork_dim1];
|
|
bnrm = swork[l + (bwrk + j) * swork_dim1];
|
|
scaloc = dlarmm_(&bnrm, &xnrm, &cnrm);
|
|
if (scaloc * scamin == 0.) {
|
|
/* Use second scaling factor to prevent flushing to zero. */
|
|
i__4 = myexp_(&scaloc);
|
|
buf *= pow_di(&c_b18, &i__4);
|
|
i__4 = nbb;
|
|
for (jj = 1; jj <= i__4; ++jj) {
|
|
i__5 = nba;
|
|
for (ll = 1; ll <= i__5; ++ll) {
|
|
/* Computing MIN */
|
|
i__6 = myexp_(&scaloc);
|
|
d__1 = bignum, d__2 = swork[ll + jj *
|
|
swork_dim1] / pow_di(&c_b18, &i__6);
|
|
swork[ll + jj * swork_dim1] = f2cmin(d__1,d__2);
|
|
}
|
|
}
|
|
i__4 = myexp_(&scaloc);
|
|
scamin /= pow_di(&c_b18, &i__4);
|
|
i__4 = myexp_(&scaloc);
|
|
scaloc /= pow_di(&c_b18, &i__4);
|
|
}
|
|
cnrm *= scaloc;
|
|
xnrm *= scaloc;
|
|
|
|
/* Simultaneously apply the robust update factor and the */
|
|
/* consistency scaling factor to to C( K, J ) and C( K, L). */
|
|
|
|
scal = scamin / swork[k + l * swork_dim1] * scaloc;
|
|
if (scal != 1.) {
|
|
i__4 = l2 - 1;
|
|
for (ll = l1; ll <= i__4; ++ll) {
|
|
i__5 = k2 - k1;
|
|
zdscal_(&i__5, &scal, &c__[k1 + ll * c_dim1], &
|
|
c__1);
|
|
}
|
|
}
|
|
|
|
scal = scamin / swork[k + j * swork_dim1] * scaloc;
|
|
if (scal != 1.) {
|
|
i__4 = j2 - 1;
|
|
for (jj = j1; jj <= i__4; ++jj) {
|
|
i__5 = k2 - k1;
|
|
zdscal_(&i__5, &scal, &c__[k1 + jj * c_dim1], &
|
|
c__1);
|
|
}
|
|
}
|
|
|
|
/* Record current scaling factor */
|
|
|
|
swork[k + l * swork_dim1] = scamin * scaloc;
|
|
swork[k + j * swork_dim1] = scamin * scaloc;
|
|
|
|
i__4 = k2 - k1;
|
|
i__5 = j2 - j1;
|
|
i__6 = l2 - l1;
|
|
z__1.r = -csgn.r, z__1.i = -csgn.i;
|
|
zgemm_("N", "N", &i__4, &i__5, &i__6, &z__1, &c__[k1 + l1
|
|
* c_dim1], ldc, &b[l1 + j1 * b_dim1], ldb, &c_b1,
|
|
&c__[k1 + j1 * c_dim1], ldc)
|
|
;
|
|
}
|
|
}
|
|
}
|
|
} else if (! notrna && ! notrnb) {
|
|
|
|
/* Solve A**H *X + ISGN*X*B**H = scale*C. */
|
|
|
|
/* The (K,L)th block of X is determined starting from */
|
|
/* top-right corner column by column by */
|
|
|
|
/* A(K,K)**H*X(K,L) + ISGN*X(K,L)*B(L,L)**H = C(K,L) - R(K,L) */
|
|
|
|
/* Where */
|
|
/* K-1 N */
|
|
/* R(K,L) = SUM [A(I,K)**H*X(I,L)] + ISGN*SUM [X(K,J)*B(L,J)**H]. */
|
|
/* I=1 J=L+1 */
|
|
|
|
/* Start loop over block rows (index = K) and block columns (index = L) */
|
|
|
|
i__1 = nba;
|
|
for (k = 1; k <= i__1; ++k) {
|
|
|
|
/* K1: row index of the first row in X( K, L ) */
|
|
/* K2: row index of the first row in X( K+1, L ) */
|
|
/* so the K2 - K1 is the column count of the block X( K, L ) */
|
|
|
|
k1 = (k - 1) * nb + 1;
|
|
/* Computing MIN */
|
|
i__2 = k * nb;
|
|
k2 = f2cmin(i__2,*m) + 1;
|
|
for (l = nbb; l >= 1; --l) {
|
|
|
|
/* L1: column index of the first column in X( K, L ) */
|
|
/* L2: column index of the first column in X( K, L + 1) */
|
|
/* so that L2 - L1 is the row count of the block X( K, L ) */
|
|
|
|
l1 = (l - 1) * nb + 1;
|
|
/* Computing MIN */
|
|
i__2 = l * nb;
|
|
l2 = f2cmin(i__2,*n) + 1;
|
|
|
|
i__2 = k2 - k1;
|
|
i__3 = l2 - l1;
|
|
ztrsyl_(trana, tranb, isgn, &i__2, &i__3, &a[k1 + k1 * a_dim1]
|
|
, lda, &b[l1 + l1 * b_dim1], ldb, &c__[k1 + l1 *
|
|
c_dim1], ldc, &scaloc, &iinfo);
|
|
*info = f2cmax(*info,iinfo);
|
|
|
|
if (scaloc * swork[k + l * swork_dim1] == 0.) {
|
|
if (scaloc == 0.) {
|
|
/* The magnitude of the largest entry of X(K1:K2-1, L1:L2-1) */
|
|
/* is larger than the product of BIGNUM**2 and cannot be */
|
|
/* represented in the form (1/SCALE)*X(K1:K2-1, L1:L2-1). */
|
|
/* Mark the computation as pointless. */
|
|
buf = 0.;
|
|
} else {
|
|
/* Use second scaling factor to prevent flushing to zero. */
|
|
i__2 = myexp_(&scaloc);
|
|
buf *= pow_di(&c_b18, &i__2);
|
|
}
|
|
i__2 = nbb;
|
|
for (jj = 1; jj <= i__2; ++jj) {
|
|
i__3 = nba;
|
|
for (ll = 1; ll <= i__3; ++ll) {
|
|
/* Bound by BIGNUM to not introduce Inf. The value */
|
|
/* is irrelevant; corresponding entries of the */
|
|
/* solution will be flushed in consistency scaling. */
|
|
/* Computing MIN */
|
|
i__4 = myexp_(&scaloc);
|
|
d__1 = bignum, d__2 = swork[ll + jj * swork_dim1]
|
|
/ pow_di(&c_b18, &i__4);
|
|
swork[ll + jj * swork_dim1] = f2cmin(d__1,d__2);
|
|
}
|
|
}
|
|
}
|
|
swork[k + l * swork_dim1] = scaloc * swork[k + l * swork_dim1]
|
|
;
|
|
i__2 = k2 - k1;
|
|
i__3 = l2 - l1;
|
|
xnrm = zlange_("I", &i__2, &i__3, &c__[k1 + l1 * c_dim1], ldc,
|
|
wnrm);
|
|
|
|
i__2 = nba;
|
|
for (i__ = k + 1; i__ <= i__2; ++i__) {
|
|
|
|
/* C( I, L ) := C( I, L ) - A( K, I )**H * C( K, L ) */
|
|
|
|
i1 = (i__ - 1) * nb + 1;
|
|
/* Computing MIN */
|
|
i__3 = i__ * nb;
|
|
i2 = f2cmin(i__3,*m) + 1;
|
|
|
|
/* Compute scaling factor to survive the linear update */
|
|
/* simulating consistent scaling. */
|
|
|
|
i__3 = i2 - i1;
|
|
i__4 = l2 - l1;
|
|
cnrm = zlange_("I", &i__3, &i__4, &c__[i1 + l1 * c_dim1],
|
|
ldc, wnrm);
|
|
/* Computing MIN */
|
|
d__1 = swork[i__ + l * swork_dim1], d__2 = swork[k + l *
|
|
swork_dim1];
|
|
scamin = f2cmin(d__1,d__2);
|
|
cnrm *= scamin / swork[i__ + l * swork_dim1];
|
|
xnrm *= scamin / swork[k + l * swork_dim1];
|
|
anrm = swork[i__ + (awrk + k) * swork_dim1];
|
|
scaloc = dlarmm_(&anrm, &xnrm, &cnrm);
|
|
if (scaloc * scamin == 0.) {
|
|
/* Use second scaling factor to prevent flushing to zero. */
|
|
i__3 = myexp_(&scaloc);
|
|
buf *= pow_di(&c_b18, &i__3);
|
|
i__3 = nbb;
|
|
for (jj = 1; jj <= i__3; ++jj) {
|
|
i__4 = nba;
|
|
for (ll = 1; ll <= i__4; ++ll) {
|
|
/* Computing MIN */
|
|
i__5 = myexp_(&scaloc);
|
|
d__1 = bignum, d__2 = swork[ll + jj *
|
|
swork_dim1] / pow_di(&c_b18, &i__5);
|
|
swork[ll + jj * swork_dim1] = f2cmin(d__1,d__2);
|
|
}
|
|
}
|
|
i__3 = myexp_(&scaloc);
|
|
scamin /= pow_di(&c_b18, &i__3);
|
|
i__3 = myexp_(&scaloc);
|
|
scaloc /= pow_di(&c_b18, &i__3);
|
|
}
|
|
cnrm *= scaloc;
|
|
xnrm *= scaloc;
|
|
|
|
/* Simultaneously apply the robust update factor and the */
|
|
/* consistency scaling factor to C( I, L ) and C( K, L). */
|
|
|
|
scal = scamin / swork[k + l * swork_dim1] * scaloc;
|
|
if (scal != 1.) {
|
|
i__3 = l2 - 1;
|
|
for (ll = l1; ll <= i__3; ++ll) {
|
|
i__4 = k2 - k1;
|
|
zdscal_(&i__4, &scal, &c__[k1 + ll * c_dim1], &
|
|
c__1);
|
|
}
|
|
}
|
|
|
|
scal = scamin / swork[i__ + l * swork_dim1] * scaloc;
|
|
if (scal != 1.) {
|
|
i__3 = l2 - 1;
|
|
for (ll = l1; ll <= i__3; ++ll) {
|
|
i__4 = i2 - i1;
|
|
zdscal_(&i__4, &scal, &c__[i1 + ll * c_dim1], &
|
|
c__1);
|
|
}
|
|
}
|
|
|
|
/* Record current scaling factor */
|
|
|
|
swork[k + l * swork_dim1] = scamin * scaloc;
|
|
swork[i__ + l * swork_dim1] = scamin * scaloc;
|
|
|
|
i__3 = i2 - i1;
|
|
i__4 = l2 - l1;
|
|
i__5 = k2 - k1;
|
|
z__1.r = -1., z__1.i = 0.;
|
|
zgemm_("C", "N", &i__3, &i__4, &i__5, &z__1, &a[k1 + i1 *
|
|
a_dim1], lda, &c__[k1 + l1 * c_dim1], ldc, &c_b1,
|
|
&c__[i1 + l1 * c_dim1], ldc)
|
|
;
|
|
}
|
|
|
|
i__2 = l - 1;
|
|
for (j = 1; j <= i__2; ++j) {
|
|
|
|
/* C( K, J ) := C( K, J ) - SGN * C( K, L ) * B( J, L )**H */
|
|
|
|
j1 = (j - 1) * nb + 1;
|
|
/* Computing MIN */
|
|
i__3 = j * nb;
|
|
j2 = f2cmin(i__3,*n) + 1;
|
|
|
|
/* Compute scaling factor to survive the linear update */
|
|
/* simulating consistent scaling. */
|
|
|
|
i__3 = k2 - k1;
|
|
i__4 = j2 - j1;
|
|
cnrm = zlange_("I", &i__3, &i__4, &c__[k1 + j1 * c_dim1],
|
|
ldc, wnrm);
|
|
/* Computing MIN */
|
|
d__1 = swork[k + j * swork_dim1], d__2 = swork[k + l *
|
|
swork_dim1];
|
|
scamin = f2cmin(d__1,d__2);
|
|
cnrm *= scamin / swork[k + j * swork_dim1];
|
|
xnrm *= scamin / swork[k + l * swork_dim1];
|
|
bnrm = swork[l + (bwrk + j) * swork_dim1];
|
|
scaloc = dlarmm_(&bnrm, &xnrm, &cnrm);
|
|
if (scaloc * scamin == 0.) {
|
|
/* Use second scaling factor to prevent flushing to zero. */
|
|
i__3 = myexp_(&scaloc);
|
|
buf *= pow_di(&c_b18, &i__3);
|
|
i__3 = nbb;
|
|
for (jj = 1; jj <= i__3; ++jj) {
|
|
i__4 = nba;
|
|
for (ll = 1; ll <= i__4; ++ll) {
|
|
/* Computing MIN */
|
|
i__5 = myexp_(&scaloc);
|
|
d__1 = bignum, d__2 = swork[ll + jj *
|
|
swork_dim1] / pow_di(&c_b18, &i__5);
|
|
swork[ll + jj * swork_dim1] = f2cmin(d__1,d__2);
|
|
}
|
|
}
|
|
i__3 = myexp_(&scaloc);
|
|
scamin /= pow_di(&c_b18, &i__3);
|
|
i__3 = myexp_(&scaloc);
|
|
scaloc /= pow_di(&c_b18, &i__3);
|
|
}
|
|
cnrm *= scaloc;
|
|
xnrm *= scaloc;
|
|
|
|
/* Simultaneously apply the robust update factor and the */
|
|
/* consistency scaling factor to C( K, J ) and C( K, L). */
|
|
|
|
scal = scamin / swork[k + l * swork_dim1] * scaloc;
|
|
if (scal != 1.) {
|
|
i__3 = l2 - 1;
|
|
for (ll = l1; ll <= i__3; ++ll) {
|
|
i__4 = k2 - k1;
|
|
zdscal_(&i__4, &scal, &c__[k1 + ll * c_dim1], &
|
|
c__1);
|
|
}
|
|
}
|
|
|
|
scal = scamin / swork[k + j * swork_dim1] * scaloc;
|
|
if (scal != 1.) {
|
|
i__3 = j2 - 1;
|
|
for (jj = j1; jj <= i__3; ++jj) {
|
|
i__4 = k2 - k1;
|
|
zdscal_(&i__4, &scal, &c__[k1 + jj * c_dim1], &
|
|
c__1);
|
|
}
|
|
}
|
|
|
|
/* Record current scaling factor */
|
|
|
|
swork[k + l * swork_dim1] = scamin * scaloc;
|
|
swork[k + j * swork_dim1] = scamin * scaloc;
|
|
|
|
i__3 = k2 - k1;
|
|
i__4 = j2 - j1;
|
|
i__5 = l2 - l1;
|
|
z__1.r = -csgn.r, z__1.i = -csgn.i;
|
|
zgemm_("N", "C", &i__3, &i__4, &i__5, &z__1, &c__[k1 + l1
|
|
* c_dim1], ldc, &b[j1 + l1 * b_dim1], ldb, &c_b1,
|
|
&c__[k1 + j1 * c_dim1], ldc)
|
|
;
|
|
}
|
|
}
|
|
}
|
|
} else if (notrna && ! notrnb) {
|
|
|
|
/* Solve A*X + ISGN*X*B**H = scale*C. */
|
|
|
|
/* The (K,L)th block of X is determined starting from */
|
|
/* bottom-right corner column by column by */
|
|
|
|
/* A(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L)**H = C(K,L) - R(K,L) */
|
|
|
|
/* Where */
|
|
/* M N */
|
|
/* R(K,L) = SUM [A(K,I)*X(I,L)] + ISGN*SUM [X(K,J)*B(L,J)**H]. */
|
|
/* I=K+1 J=L+1 */
|
|
|
|
/* Start loop over block rows (index = K) and block columns (index = L) */
|
|
|
|
for (k = nba; k >= 1; --k) {
|
|
|
|
/* K1: row index of the first row in X( K, L ) */
|
|
/* K2: row index of the first row in X( K+1, L ) */
|
|
/* so the K2 - K1 is the column count of the block X( K, L ) */
|
|
|
|
k1 = (k - 1) * nb + 1;
|
|
/* Computing MIN */
|
|
i__1 = k * nb;
|
|
k2 = f2cmin(i__1,*m) + 1;
|
|
for (l = nbb; l >= 1; --l) {
|
|
|
|
/* L1: column index of the first column in X( K, L ) */
|
|
/* L2: column index of the first column in X( K, L + 1) */
|
|
/* so that L2 - L1 is the row count of the block X( K, L ) */
|
|
|
|
l1 = (l - 1) * nb + 1;
|
|
/* Computing MIN */
|
|
i__1 = l * nb;
|
|
l2 = f2cmin(i__1,*n) + 1;
|
|
|
|
i__1 = k2 - k1;
|
|
i__2 = l2 - l1;
|
|
ztrsyl_(trana, tranb, isgn, &i__1, &i__2, &a[k1 + k1 * a_dim1]
|
|
, lda, &b[l1 + l1 * b_dim1], ldb, &c__[k1 + l1 *
|
|
c_dim1], ldc, &scaloc, &iinfo);
|
|
*info = f2cmax(*info,iinfo);
|
|
|
|
if (scaloc * swork[k + l * swork_dim1] == 0.) {
|
|
if (scaloc == 0.) {
|
|
/* The magnitude of the largest entry of X(K1:K2-1, L1:L2-1) */
|
|
/* is larger than the product of BIGNUM**2 and cannot be */
|
|
/* represented in the form (1/SCALE)*X(K1:K2-1, L1:L2-1). */
|
|
/* Mark the computation as pointless. */
|
|
buf = 0.;
|
|
} else {
|
|
/* Use second scaling factor to prevent flushing to zero. */
|
|
i__1 = myexp_(&scaloc);
|
|
buf *= pow_di(&c_b18, &i__1);
|
|
}
|
|
i__1 = nbb;
|
|
for (jj = 1; jj <= i__1; ++jj) {
|
|
i__2 = nba;
|
|
for (ll = 1; ll <= i__2; ++ll) {
|
|
/* Bound by BIGNUM to not introduce Inf. The value */
|
|
/* is irrelevant; corresponding entries of the */
|
|
/* solution will be flushed in consistency scaling. */
|
|
/* Computing MIN */
|
|
i__3 = myexp_(&scaloc);
|
|
d__1 = bignum, d__2 = swork[ll + jj * swork_dim1]
|
|
/ pow_di(&c_b18, &i__3);
|
|
swork[ll + jj * swork_dim1] = f2cmin(d__1,d__2);
|
|
}
|
|
}
|
|
}
|
|
swork[k + l * swork_dim1] = scaloc * swork[k + l * swork_dim1]
|
|
;
|
|
i__1 = k2 - k1;
|
|
i__2 = l2 - l1;
|
|
xnrm = zlange_("I", &i__1, &i__2, &c__[k1 + l1 * c_dim1], ldc,
|
|
wnrm);
|
|
|
|
i__1 = k - 1;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
|
|
/* C( I, L ) := C( I, L ) - A( I, K ) * C( K, L ) */
|
|
|
|
i1 = (i__ - 1) * nb + 1;
|
|
/* Computing MIN */
|
|
i__2 = i__ * nb;
|
|
i2 = f2cmin(i__2,*m) + 1;
|
|
|
|
/* Compute scaling factor to survive the linear update */
|
|
/* simulating consistent scaling. */
|
|
|
|
i__2 = i2 - i1;
|
|
i__3 = l2 - l1;
|
|
cnrm = zlange_("I", &i__2, &i__3, &c__[i1 + l1 * c_dim1],
|
|
ldc, wnrm);
|
|
/* Computing MIN */
|
|
d__1 = swork[i__ + l * swork_dim1], d__2 = swork[k + l *
|
|
swork_dim1];
|
|
scamin = f2cmin(d__1,d__2);
|
|
cnrm *= scamin / swork[i__ + l * swork_dim1];
|
|
xnrm *= scamin / swork[k + l * swork_dim1];
|
|
anrm = swork[i__ + (awrk + k) * swork_dim1];
|
|
scaloc = dlarmm_(&anrm, &xnrm, &cnrm);
|
|
if (scaloc * scamin == 0.) {
|
|
/* Use second scaling factor to prevent flushing to zero. */
|
|
i__2 = myexp_(&scaloc);
|
|
buf *= pow_di(&c_b18, &i__2);
|
|
i__2 = nbb;
|
|
for (jj = 1; jj <= i__2; ++jj) {
|
|
i__3 = nba;
|
|
for (ll = 1; ll <= i__3; ++ll) {
|
|
/* Computing MIN */
|
|
i__4 = myexp_(&scaloc);
|
|
d__1 = bignum, d__2 = swork[ll + jj *
|
|
swork_dim1] / pow_di(&c_b18, &i__4);
|
|
swork[ll + jj * swork_dim1] = f2cmin(d__1,d__2);
|
|
}
|
|
}
|
|
i__2 = myexp_(&scaloc);
|
|
scamin /= pow_di(&c_b18, &i__2);
|
|
i__2 = myexp_(&scaloc);
|
|
scaloc /= pow_di(&c_b18, &i__2);
|
|
}
|
|
cnrm *= scaloc;
|
|
xnrm *= scaloc;
|
|
|
|
/* Simultaneously apply the robust update factor and the */
|
|
/* consistency scaling factor to C( I, L ) and C( K, L). */
|
|
|
|
scal = scamin / swork[k + l * swork_dim1] * scaloc;
|
|
if (scal != 1.) {
|
|
i__2 = l2 - 1;
|
|
for (ll = l1; ll <= i__2; ++ll) {
|
|
i__3 = k2 - k1;
|
|
zdscal_(&i__3, &scal, &c__[k1 + ll * c_dim1], &
|
|
c__1);
|
|
}
|
|
}
|
|
|
|
scal = scamin / swork[i__ + l * swork_dim1] * scaloc;
|
|
if (scal != 1.) {
|
|
i__2 = l2 - 1;
|
|
for (ll = l1; ll <= i__2; ++ll) {
|
|
i__3 = i2 - i1;
|
|
zdscal_(&i__3, &scal, &c__[i1 + ll * c_dim1], &
|
|
c__1);
|
|
}
|
|
}
|
|
|
|
/* Record current scaling factor */
|
|
|
|
swork[k + l * swork_dim1] = scamin * scaloc;
|
|
swork[i__ + l * swork_dim1] = scamin * scaloc;
|
|
|
|
i__2 = i2 - i1;
|
|
i__3 = l2 - l1;
|
|
i__4 = k2 - k1;
|
|
z__1.r = -1., z__1.i = 0.;
|
|
zgemm_("N", "N", &i__2, &i__3, &i__4, &z__1, &a[i1 + k1 *
|
|
a_dim1], lda, &c__[k1 + l1 * c_dim1], ldc, &c_b1,
|
|
&c__[i1 + l1 * c_dim1], ldc)
|
|
;
|
|
|
|
}
|
|
|
|
i__1 = l - 1;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
|
|
/* C( K, J ) := C( K, J ) - SGN * C( K, L ) * B( J, L )**H */
|
|
|
|
j1 = (j - 1) * nb + 1;
|
|
/* Computing MIN */
|
|
i__2 = j * nb;
|
|
j2 = f2cmin(i__2,*n) + 1;
|
|
|
|
/* Compute scaling factor to survive the linear update */
|
|
/* simulating consistent scaling. */
|
|
|
|
i__2 = k2 - k1;
|
|
i__3 = j2 - j1;
|
|
cnrm = zlange_("I", &i__2, &i__3, &c__[k1 + j1 * c_dim1],
|
|
ldc, wnrm);
|
|
/* Computing MIN */
|
|
d__1 = swork[k + j * swork_dim1], d__2 = swork[k + l *
|
|
swork_dim1];
|
|
scamin = f2cmin(d__1,d__2);
|
|
cnrm *= scamin / swork[k + j * swork_dim1];
|
|
xnrm *= scamin / swork[k + l * swork_dim1];
|
|
bnrm = swork[l + (bwrk + j) * swork_dim1];
|
|
scaloc = dlarmm_(&bnrm, &xnrm, &cnrm);
|
|
if (scaloc * scamin == 0.) {
|
|
/* Use second scaling factor to prevent flushing to zero. */
|
|
i__2 = myexp_(&scaloc);
|
|
buf *= pow_di(&c_b18, &i__2);
|
|
i__2 = nbb;
|
|
for (jj = 1; jj <= i__2; ++jj) {
|
|
i__3 = nba;
|
|
for (ll = 1; ll <= i__3; ++ll) {
|
|
/* Computing MIN */
|
|
i__4 = myexp_(&scaloc);
|
|
d__1 = bignum, d__2 = swork[ll + jj *
|
|
swork_dim1] / pow_di(&c_b18, &i__4);
|
|
swork[ll + jj * swork_dim1] = f2cmin(d__1,d__2);
|
|
}
|
|
}
|
|
i__2 = myexp_(&scaloc);
|
|
scamin /= pow_di(&c_b18, &i__2);
|
|
i__2 = myexp_(&scaloc);
|
|
scaloc /= pow_di(&c_b18, &i__2);
|
|
}
|
|
cnrm *= scaloc;
|
|
xnrm *= scaloc;
|
|
|
|
/* Simultaneously apply the robust update factor and the */
|
|
/* consistency scaling factor to C( K, J ) and C( K, L). */
|
|
|
|
scal = scamin / swork[k + l * swork_dim1] * scaloc;
|
|
if (scal != 1.) {
|
|
i__2 = l2 - 1;
|
|
for (jj = l1; jj <= i__2; ++jj) {
|
|
i__3 = k2 - k1;
|
|
zdscal_(&i__3, &scal, &c__[k1 + jj * c_dim1], &
|
|
c__1);
|
|
}
|
|
}
|
|
|
|
scal = scamin / swork[k + j * swork_dim1] * scaloc;
|
|
if (scal != 1.) {
|
|
i__2 = j2 - 1;
|
|
for (jj = j1; jj <= i__2; ++jj) {
|
|
i__3 = k2 - k1;
|
|
zdscal_(&i__3, &scal, &c__[k1 + jj * c_dim1], &
|
|
c__1);
|
|
}
|
|
}
|
|
|
|
/* Record current scaling factor */
|
|
|
|
swork[k + l * swork_dim1] = scamin * scaloc;
|
|
swork[k + j * swork_dim1] = scamin * scaloc;
|
|
|
|
i__2 = k2 - k1;
|
|
i__3 = j2 - j1;
|
|
i__4 = l2 - l1;
|
|
z__1.r = -csgn.r, z__1.i = -csgn.i;
|
|
zgemm_("N", "C", &i__2, &i__3, &i__4, &z__1, &c__[k1 + l1
|
|
* c_dim1], ldc, &b[j1 + l1 * b_dim1], ldb, &c_b1,
|
|
&c__[k1 + j1 * c_dim1], ldc)
|
|
;
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
free(wnrm);
|
|
|
|
/* Reduce local scaling factors */
|
|
|
|
*scale = swork[swork_dim1 + 1];
|
|
i__1 = nba;
|
|
for (k = 1; k <= i__1; ++k) {
|
|
i__2 = nbb;
|
|
for (l = 1; l <= i__2; ++l) {
|
|
/* Computing MIN */
|
|
d__1 = *scale, d__2 = swork[k + l * swork_dim1];
|
|
*scale = f2cmin(d__1,d__2);
|
|
}
|
|
}
|
|
if (*scale == 0.) {
|
|
|
|
/* The magnitude of the largest entry of the solution is larger */
|
|
/* than the product of BIGNUM**2 and cannot be represented in the */
|
|
/* form (1/SCALE)*X if SCALE is DOUBLE PRECISION. Set SCALE to */
|
|
/* zero and give up. */
|
|
|
|
swork[swork_dim1 + 1] = (doublereal) f2cmax(nba,nbb);
|
|
swork[swork_dim1 + 2] = (doublereal) ((nbb << 1) + nba);
|
|
return;
|
|
}
|
|
|
|
/* Realize consistent scaling */
|
|
|
|
i__1 = nba;
|
|
for (k = 1; k <= i__1; ++k) {
|
|
k1 = (k - 1) * nb + 1;
|
|
/* Computing MIN */
|
|
i__2 = k * nb;
|
|
k2 = f2cmin(i__2,*m) + 1;
|
|
i__2 = nbb;
|
|
for (l = 1; l <= i__2; ++l) {
|
|
l1 = (l - 1) * nb + 1;
|
|
/* Computing MIN */
|
|
i__3 = l * nb;
|
|
l2 = f2cmin(i__3,*n) + 1;
|
|
scal = *scale / swork[k + l * swork_dim1];
|
|
if (scal != 1.) {
|
|
i__3 = l2 - 1;
|
|
for (ll = l1; ll <= i__3; ++ll) {
|
|
i__4 = k2 - k1;
|
|
zdscal_(&i__4, &scal, &c__[k1 + ll * c_dim1], &c__1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (buf != 1. && buf > 0.) {
|
|
|
|
/* Decrease SCALE as much as possible. */
|
|
|
|
/* Computing MIN */
|
|
d__1 = *scale / smlnum, d__2 = 1. / buf;
|
|
scaloc = f2cmin(d__1,d__2);
|
|
buf *= scaloc;
|
|
*scale /= scaloc;
|
|
}
|
|
|
|
if (buf != 1. && buf > 0.) {
|
|
|
|
/* In case of overly aggressive scaling during the computation, */
|
|
/* flushing of the global scale factor may be prevented by */
|
|
/* undoing some of the scaling. This step is to ensure that */
|
|
/* this routine flushes only scale factors that TRSYL also */
|
|
/* flushes and be usable as a drop-in replacement. */
|
|
|
|
/* How much can the normwise largest entry be upscaled? */
|
|
|
|
/* Computing MAX */
|
|
i__1 = c_dim1 + 1;
|
|
d__3 = (d__1 = c__[i__1].r, abs(d__1)), d__4 = (d__2 = d_imag(&c__[
|
|
c_dim1 + 1]), abs(d__2));
|
|
scal = f2cmax(d__3,d__4);
|
|
i__1 = *m;
|
|
for (k = 1; k <= i__1; ++k) {
|
|
i__2 = *n;
|
|
for (l = 1; l <= i__2; ++l) {
|
|
/* Computing MAX */
|
|
i__3 = k + l * c_dim1;
|
|
d__3 = scal, d__4 = (d__1 = c__[i__3].r, abs(d__1)), d__3 =
|
|
f2cmax(d__3,d__4), d__4 = (d__2 = d_imag(&c__[k + l *
|
|
c_dim1]), abs(d__2));
|
|
scal = f2cmax(d__3,d__4);
|
|
}
|
|
}
|
|
|
|
/* Increase BUF as close to 1 as possible and apply scaling. */
|
|
|
|
/* Computing MIN */
|
|
d__1 = bignum / scal, d__2 = 1. / buf;
|
|
scaloc = f2cmin(d__1,d__2);
|
|
buf *= scaloc;
|
|
zlascl_("G", &c_n1, &c_n1, &c_b106, &scaloc, m, n, &c__[c_offset],
|
|
ldc, &iinfo);
|
|
}
|
|
|
|
/* Combine with buffer scaling factor. SCALE will be flushed if */
|
|
/* BUF is less than one here. */
|
|
|
|
*scale *= buf;
|
|
|
|
/* Restore workspace dimensions */
|
|
|
|
swork[swork_dim1 + 1] = (doublereal) f2cmax(nba,nbb);
|
|
swork[swork_dim1 + 2] = (doublereal) ((nbb << 1) + nba);
|
|
|
|
return;
|
|
|
|
/* End of ZTRSYL3 */
|
|
|
|
} /* ztrsyl3_ */
|
|
|