956 lines
28 KiB
C
956 lines
28 KiB
C
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <complex.h>
|
|
#ifdef complex
|
|
#undef complex
|
|
#endif
|
|
#ifdef I
|
|
#undef I
|
|
#endif
|
|
|
|
#if defined(_WIN64)
|
|
typedef long long BLASLONG;
|
|
typedef unsigned long long BLASULONG;
|
|
#else
|
|
typedef long BLASLONG;
|
|
typedef unsigned long BLASULONG;
|
|
#endif
|
|
|
|
#ifdef LAPACK_ILP64
|
|
typedef BLASLONG blasint;
|
|
#if defined(_WIN64)
|
|
#define blasabs(x) llabs(x)
|
|
#else
|
|
#define blasabs(x) labs(x)
|
|
#endif
|
|
#else
|
|
typedef int blasint;
|
|
#define blasabs(x) abs(x)
|
|
#endif
|
|
|
|
typedef blasint integer;
|
|
|
|
typedef unsigned int uinteger;
|
|
typedef char *address;
|
|
typedef short int shortint;
|
|
typedef float real;
|
|
typedef double doublereal;
|
|
typedef struct { real r, i; } complex;
|
|
typedef struct { doublereal r, i; } doublecomplex;
|
|
#ifdef _MSC_VER
|
|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
|
|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
|
|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
|
|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
|
|
#else
|
|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
|
|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
|
|
#endif
|
|
#define pCf(z) (*_pCf(z))
|
|
#define pCd(z) (*_pCd(z))
|
|
typedef blasint logical;
|
|
|
|
typedef char logical1;
|
|
typedef char integer1;
|
|
|
|
#define TRUE_ (1)
|
|
#define FALSE_ (0)
|
|
|
|
/* Extern is for use with -E */
|
|
#ifndef Extern
|
|
#define Extern extern
|
|
#endif
|
|
|
|
/* I/O stuff */
|
|
|
|
typedef int flag;
|
|
typedef int ftnlen;
|
|
typedef int ftnint;
|
|
|
|
/*external read, write*/
|
|
typedef struct
|
|
{ flag cierr;
|
|
ftnint ciunit;
|
|
flag ciend;
|
|
char *cifmt;
|
|
ftnint cirec;
|
|
} cilist;
|
|
|
|
/*internal read, write*/
|
|
typedef struct
|
|
{ flag icierr;
|
|
char *iciunit;
|
|
flag iciend;
|
|
char *icifmt;
|
|
ftnint icirlen;
|
|
ftnint icirnum;
|
|
} icilist;
|
|
|
|
/*open*/
|
|
typedef struct
|
|
{ flag oerr;
|
|
ftnint ounit;
|
|
char *ofnm;
|
|
ftnlen ofnmlen;
|
|
char *osta;
|
|
char *oacc;
|
|
char *ofm;
|
|
ftnint orl;
|
|
char *oblnk;
|
|
} olist;
|
|
|
|
/*close*/
|
|
typedef struct
|
|
{ flag cerr;
|
|
ftnint cunit;
|
|
char *csta;
|
|
} cllist;
|
|
|
|
/*rewind, backspace, endfile*/
|
|
typedef struct
|
|
{ flag aerr;
|
|
ftnint aunit;
|
|
} alist;
|
|
|
|
/* inquire */
|
|
typedef struct
|
|
{ flag inerr;
|
|
ftnint inunit;
|
|
char *infile;
|
|
ftnlen infilen;
|
|
ftnint *inex; /*parameters in standard's order*/
|
|
ftnint *inopen;
|
|
ftnint *innum;
|
|
ftnint *innamed;
|
|
char *inname;
|
|
ftnlen innamlen;
|
|
char *inacc;
|
|
ftnlen inacclen;
|
|
char *inseq;
|
|
ftnlen inseqlen;
|
|
char *indir;
|
|
ftnlen indirlen;
|
|
char *infmt;
|
|
ftnlen infmtlen;
|
|
char *inform;
|
|
ftnint informlen;
|
|
char *inunf;
|
|
ftnlen inunflen;
|
|
ftnint *inrecl;
|
|
ftnint *innrec;
|
|
char *inblank;
|
|
ftnlen inblanklen;
|
|
} inlist;
|
|
|
|
#define VOID void
|
|
|
|
union Multitype { /* for multiple entry points */
|
|
integer1 g;
|
|
shortint h;
|
|
integer i;
|
|
/* longint j; */
|
|
real r;
|
|
doublereal d;
|
|
complex c;
|
|
doublecomplex z;
|
|
};
|
|
|
|
typedef union Multitype Multitype;
|
|
|
|
struct Vardesc { /* for Namelist */
|
|
char *name;
|
|
char *addr;
|
|
ftnlen *dims;
|
|
int type;
|
|
};
|
|
typedef struct Vardesc Vardesc;
|
|
|
|
struct Namelist {
|
|
char *name;
|
|
Vardesc **vars;
|
|
int nvars;
|
|
};
|
|
typedef struct Namelist Namelist;
|
|
|
|
#define abs(x) ((x) >= 0 ? (x) : -(x))
|
|
#define dabs(x) (fabs(x))
|
|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
|
|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
|
|
#define dmin(a,b) (f2cmin(a,b))
|
|
#define dmax(a,b) (f2cmax(a,b))
|
|
#define bit_test(a,b) ((a) >> (b) & 1)
|
|
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
|
|
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
|
|
|
|
#define abort_() { sig_die("Fortran abort routine called", 1); }
|
|
#define c_abs(z) (cabsf(Cf(z)))
|
|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
|
|
#ifdef _MSC_VER
|
|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
|
|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
|
|
#else
|
|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
|
|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
|
|
#endif
|
|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
|
|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
|
|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
|
|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
|
|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
|
|
#define d_abs(x) (fabs(*(x)))
|
|
#define d_acos(x) (acos(*(x)))
|
|
#define d_asin(x) (asin(*(x)))
|
|
#define d_atan(x) (atan(*(x)))
|
|
#define d_atn2(x, y) (atan2(*(x),*(y)))
|
|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
|
|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
|
|
#define d_cos(x) (cos(*(x)))
|
|
#define d_cosh(x) (cosh(*(x)))
|
|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
|
|
#define d_exp(x) (exp(*(x)))
|
|
#define d_imag(z) (cimag(Cd(z)))
|
|
#define r_imag(z) (cimagf(Cf(z)))
|
|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define d_log(x) (log(*(x)))
|
|
#define d_mod(x, y) (fmod(*(x), *(y)))
|
|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
|
|
#define d_nint(x) u_nint(*(x))
|
|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
|
|
#define d_sign(a,b) u_sign(*(a),*(b))
|
|
#define r_sign(a,b) u_sign(*(a),*(b))
|
|
#define d_sin(x) (sin(*(x)))
|
|
#define d_sinh(x) (sinh(*(x)))
|
|
#define d_sqrt(x) (sqrt(*(x)))
|
|
#define d_tan(x) (tan(*(x)))
|
|
#define d_tanh(x) (tanh(*(x)))
|
|
#define i_abs(x) abs(*(x))
|
|
#define i_dnnt(x) ((integer)u_nint(*(x)))
|
|
#define i_len(s, n) (n)
|
|
#define i_nint(x) ((integer)u_nint(*(x)))
|
|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
|
|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
|
|
#define pow_si(B,E) spow_ui(*(B),*(E))
|
|
#define pow_ri(B,E) spow_ui(*(B),*(E))
|
|
#define pow_di(B,E) dpow_ui(*(B),*(E))
|
|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
|
|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
|
|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
|
|
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
|
|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
|
|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
|
|
#define sig_die(s, kill) { exit(1); }
|
|
#define s_stop(s, n) {exit(0);}
|
|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
|
|
#define z_abs(z) (cabs(Cd(z)))
|
|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
|
|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
|
|
#define myexit_() break;
|
|
#define mycycle_() continue;
|
|
#define myceiling_(w) {ceil(w)}
|
|
#define myhuge_(w) {HUGE_VAL}
|
|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
|
|
#define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
|
|
|
|
/* procedure parameter types for -A and -C++ */
|
|
|
|
|
|
#ifdef __cplusplus
|
|
typedef logical (*L_fp)(...);
|
|
#else
|
|
typedef logical (*L_fp)();
|
|
#endif
|
|
|
|
static float spow_ui(float x, integer n) {
|
|
float pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
static double dpow_ui(double x, integer n) {
|
|
double pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#ifdef _MSC_VER
|
|
static _Fcomplex cpow_ui(complex x, integer n) {
|
|
complex pow={1.0,0.0}; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow.r *= x.r, pow.i *= x.i;
|
|
if(u >>= 1) x.r *= x.r, x.i *= x.i;
|
|
else break;
|
|
}
|
|
}
|
|
_Fcomplex p={pow.r, pow.i};
|
|
return p;
|
|
}
|
|
#else
|
|
static _Complex float cpow_ui(_Complex float x, integer n) {
|
|
_Complex float pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#endif
|
|
#ifdef _MSC_VER
|
|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
|
|
_Dcomplex pow={1.0,0.0}; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
|
|
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
|
|
else break;
|
|
}
|
|
}
|
|
_Dcomplex p = {pow._Val[0], pow._Val[1]};
|
|
return p;
|
|
}
|
|
#else
|
|
static _Complex double zpow_ui(_Complex double x, integer n) {
|
|
_Complex double pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#endif
|
|
static integer pow_ii(integer x, integer n) {
|
|
integer pow; unsigned long int u;
|
|
if (n <= 0) {
|
|
if (n == 0 || x == 1) pow = 1;
|
|
else if (x != -1) pow = x == 0 ? 1/x : 0;
|
|
else n = -n;
|
|
}
|
|
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
|
|
u = n;
|
|
for(pow = 1; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
|
|
{
|
|
double m; integer i, mi;
|
|
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
|
if (w[i-1]>m) mi=i ,m=w[i-1];
|
|
return mi-s+1;
|
|
}
|
|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
|
|
{
|
|
float m; integer i, mi;
|
|
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
|
if (w[i-1]>m) mi=i ,m=w[i-1];
|
|
return mi-s+1;
|
|
}
|
|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Fcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
|
|
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex float zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Dcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
|
|
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex double zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Fcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
|
|
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex float zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cf(&x[i]) * Cf(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Dcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
|
|
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex double zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cd(&x[i]) * Cd(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#endif
|
|
/* -- translated by f2c (version 20000121).
|
|
You must link the resulting object file with the libraries:
|
|
-lf2c -lm (in that order)
|
|
*/
|
|
|
|
|
|
|
|
|
|
/* Table of constant values */
|
|
|
|
static integer c__2 = 2;
|
|
static integer c__1 = 1;
|
|
|
|
/* > \brief \b ZTGEX2 swaps adjacent diagonal blocks in an upper (quasi) triangular matrix pair by an unitary
|
|
equivalence transformation. */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* > \htmlonly */
|
|
/* > Download ZTGEX2 + dependencies */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztgex2.
|
|
f"> */
|
|
/* > [TGZ]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztgex2.
|
|
f"> */
|
|
/* > [ZIP]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztgex2.
|
|
f"> */
|
|
/* > [TXT]</a> */
|
|
/* > \endhtmlonly */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* SUBROUTINE ZTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, */
|
|
/* LDZ, J1, INFO ) */
|
|
|
|
/* LOGICAL WANTQ, WANTZ */
|
|
/* INTEGER INFO, J1, LDA, LDB, LDQ, LDZ, N */
|
|
/* COMPLEX*16 A( LDA, * ), B( LDB, * ), Q( LDQ, * ), */
|
|
/* $ Z( LDZ, * ) */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > ZTGEX2 swaps adjacent diagonal 1 by 1 blocks (A11,B11) and (A22,B22) */
|
|
/* > in an upper triangular matrix pair (A, B) by an unitary equivalence */
|
|
/* > transformation. */
|
|
/* > */
|
|
/* > (A, B) must be in generalized Schur canonical form, that is, A and */
|
|
/* > B are both upper triangular. */
|
|
/* > */
|
|
/* > Optionally, the matrices Q and Z of generalized Schur vectors are */
|
|
/* > updated. */
|
|
/* > */
|
|
/* > Q(in) * A(in) * Z(in)**H = Q(out) * A(out) * Z(out)**H */
|
|
/* > Q(in) * B(in) * Z(in)**H = Q(out) * B(out) * Z(out)**H */
|
|
/* > */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] WANTQ */
|
|
/* > \verbatim */
|
|
/* > WANTQ is LOGICAL */
|
|
/* > .TRUE. : update the left transformation matrix Q; */
|
|
/* > .FALSE.: do not update Q. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] WANTZ */
|
|
/* > \verbatim */
|
|
/* > WANTZ is LOGICAL */
|
|
/* > .TRUE. : update the right transformation matrix Z; */
|
|
/* > .FALSE.: do not update Z. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > The order of the matrices A and B. N >= 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] A */
|
|
/* > \verbatim */
|
|
/* > A is COMPLEX*16 array, dimensions (LDA,N) */
|
|
/* > On entry, the matrix A in the pair (A, B). */
|
|
/* > On exit, the updated matrix A. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDA */
|
|
/* > \verbatim */
|
|
/* > LDA is INTEGER */
|
|
/* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] B */
|
|
/* > \verbatim */
|
|
/* > B is COMPLEX*16 array, dimensions (LDB,N) */
|
|
/* > On entry, the matrix B in the pair (A, B). */
|
|
/* > On exit, the updated matrix B. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDB */
|
|
/* > \verbatim */
|
|
/* > LDB is INTEGER */
|
|
/* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] Q */
|
|
/* > \verbatim */
|
|
/* > Q is COMPLEX*16 array, dimension (LDQ,N) */
|
|
/* > If WANTQ = .TRUE, on entry, the unitary matrix Q. On exit, */
|
|
/* > the updated matrix Q. */
|
|
/* > Not referenced if WANTQ = .FALSE.. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDQ */
|
|
/* > \verbatim */
|
|
/* > LDQ is INTEGER */
|
|
/* > The leading dimension of the array Q. LDQ >= 1; */
|
|
/* > If WANTQ = .TRUE., LDQ >= N. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] Z */
|
|
/* > \verbatim */
|
|
/* > Z is COMPLEX*16 array, dimension (LDZ,N) */
|
|
/* > If WANTZ = .TRUE, on entry, the unitary matrix Z. On exit, */
|
|
/* > the updated matrix Z. */
|
|
/* > Not referenced if WANTZ = .FALSE.. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDZ */
|
|
/* > \verbatim */
|
|
/* > LDZ is INTEGER */
|
|
/* > The leading dimension of the array Z. LDZ >= 1; */
|
|
/* > If WANTZ = .TRUE., LDZ >= N. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] J1 */
|
|
/* > \verbatim */
|
|
/* > J1 is INTEGER */
|
|
/* > The index to the first block (A11, B11). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] INFO */
|
|
/* > \verbatim */
|
|
/* > INFO is INTEGER */
|
|
/* > =0: Successful exit. */
|
|
/* > =1: The transformed matrix pair (A, B) would be too far */
|
|
/* > from generalized Schur form; the problem is ill- */
|
|
/* > conditioned. */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \date June 2017 */
|
|
|
|
/* > \ingroup complex16GEauxiliary */
|
|
|
|
/* > \par Further Details: */
|
|
/* ===================== */
|
|
/* > */
|
|
/* > In the current code both weak and strong stability tests are */
|
|
/* > performed. The user can omit the strong stability test by changing */
|
|
/* > the internal logical parameter WANDS to .FALSE.. See ref. [2] for */
|
|
/* > details. */
|
|
|
|
/* > \par Contributors: */
|
|
/* ================== */
|
|
/* > */
|
|
/* > Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
|
|
/* > Umea University, S-901 87 Umea, Sweden. */
|
|
|
|
/* > \par References: */
|
|
/* ================ */
|
|
/* > */
|
|
/* > [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the */
|
|
/* > Generalized Real Schur Form of a Regular Matrix Pair (A, B), in */
|
|
/* > M.S. Moonen et al (eds), Linear Algebra for Large Scale and */
|
|
/* > Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. */
|
|
/* > \n */
|
|
/* > [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified */
|
|
/* > Eigenvalues of a Regular Matrix Pair (A, B) and Condition */
|
|
/* > Estimation: Theory, Algorithms and Software, Report UMINF-94.04, */
|
|
/* > Department of Computing Science, Umea University, S-901 87 Umea, */
|
|
/* > Sweden, 1994. Also as LAPACK Working Note 87. To appear in */
|
|
/* > Numerical Algorithms, 1996. */
|
|
/* > */
|
|
/* ===================================================================== */
|
|
/* Subroutine */ void ztgex2_(logical *wantq, logical *wantz, integer *n,
|
|
doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb,
|
|
doublecomplex *q, integer *ldq, doublecomplex *z__, integer *ldz,
|
|
integer *j1, integer *info)
|
|
{
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, z_dim1,
|
|
z_offset, i__1, i__2, i__3;
|
|
doublereal d__1;
|
|
doublecomplex z__1, z__2, z__3;
|
|
|
|
/* Local variables */
|
|
logical weak;
|
|
doublecomplex cdum, work[8];
|
|
extern /* Subroutine */ void zrot_(integer *, doublecomplex *, integer *,
|
|
doublecomplex *, integer *, doublereal *, doublecomplex *);
|
|
doublecomplex f, g;
|
|
integer i__, m;
|
|
doublecomplex s[4] /* was [2][2] */, t[4] /* was [2][2] */;
|
|
doublereal scale, cq, sa, sb;
|
|
extern doublereal dlamch_(char *);
|
|
doublereal cz;
|
|
doublecomplex sq;
|
|
doublereal ss, ws;
|
|
doublecomplex sz;
|
|
logical dtrong;
|
|
doublereal thresh;
|
|
extern /* Subroutine */ void zlacpy_(char *, integer *, integer *,
|
|
doublecomplex *, integer *, doublecomplex *, integer *),
|
|
zlartg_(doublecomplex *, doublecomplex *, doublereal *,
|
|
doublecomplex *, doublecomplex *);
|
|
doublereal smlnum;
|
|
extern /* Subroutine */ void zlassq_(integer *, doublecomplex *, integer *,
|
|
doublereal *, doublereal *);
|
|
doublereal eps, sum;
|
|
|
|
|
|
/* -- LAPACK auxiliary routine (version 3.7.1) -- */
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
/* June 2017 */
|
|
|
|
|
|
/* ===================================================================== */
|
|
|
|
|
|
/* Parameter adjustments */
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1 * 1;
|
|
a -= a_offset;
|
|
b_dim1 = *ldb;
|
|
b_offset = 1 + b_dim1 * 1;
|
|
b -= b_offset;
|
|
q_dim1 = *ldq;
|
|
q_offset = 1 + q_dim1 * 1;
|
|
q -= q_offset;
|
|
z_dim1 = *ldz;
|
|
z_offset = 1 + z_dim1 * 1;
|
|
z__ -= z_offset;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
|
|
/* Quick return if possible */
|
|
|
|
if (*n <= 1) {
|
|
return;
|
|
}
|
|
|
|
m = 2;
|
|
weak = FALSE_;
|
|
dtrong = FALSE_;
|
|
|
|
/* Make a local copy of selected block in (A, B) */
|
|
|
|
zlacpy_("Full", &m, &m, &a[*j1 + *j1 * a_dim1], lda, s, &c__2);
|
|
zlacpy_("Full", &m, &m, &b[*j1 + *j1 * b_dim1], ldb, t, &c__2);
|
|
|
|
/* Compute the threshold for testing the acceptance of swapping. */
|
|
|
|
eps = dlamch_("P");
|
|
smlnum = dlamch_("S") / eps;
|
|
scale = 0.;
|
|
sum = 1.;
|
|
zlacpy_("Full", &m, &m, s, &c__2, work, &m);
|
|
zlacpy_("Full", &m, &m, t, &c__2, &work[m * m], &m);
|
|
i__1 = (m << 1) * m;
|
|
zlassq_(&i__1, work, &c__1, &scale, &sum);
|
|
sa = scale * sqrt(sum);
|
|
|
|
/* THRES has been changed from */
|
|
/* THRESH = MAX( TEN*EPS*SA, SMLNUM ) */
|
|
/* to */
|
|
/* THRESH = MAX( TWENTY*EPS*SA, SMLNUM ) */
|
|
/* on 04/01/10. */
|
|
/* "Bug" reported by Ondra Kamenik, confirmed by Julie Langou, fixed by */
|
|
/* Jim Demmel and Guillaume Revy. See forum post 1783. */
|
|
|
|
/* Computing MAX */
|
|
d__1 = eps * 20. * sa;
|
|
thresh = f2cmax(d__1,smlnum);
|
|
|
|
/* Compute unitary QL and RQ that swap 1-by-1 and 1-by-1 blocks */
|
|
/* using Givens rotations and perform the swap tentatively. */
|
|
|
|
z__2.r = s[3].r * t[0].r - s[3].i * t[0].i, z__2.i = s[3].r * t[0].i + s[
|
|
3].i * t[0].r;
|
|
z__3.r = t[3].r * s[0].r - t[3].i * s[0].i, z__3.i = t[3].r * s[0].i + t[
|
|
3].i * s[0].r;
|
|
z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
|
|
f.r = z__1.r, f.i = z__1.i;
|
|
z__2.r = s[3].r * t[2].r - s[3].i * t[2].i, z__2.i = s[3].r * t[2].i + s[
|
|
3].i * t[2].r;
|
|
z__3.r = t[3].r * s[2].r - t[3].i * s[2].i, z__3.i = t[3].r * s[2].i + t[
|
|
3].i * s[2].r;
|
|
z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
|
|
g.r = z__1.r, g.i = z__1.i;
|
|
sa = z_abs(&s[3]);
|
|
sb = z_abs(&t[3]);
|
|
zlartg_(&g, &f, &cz, &sz, &cdum);
|
|
z__1.r = -sz.r, z__1.i = -sz.i;
|
|
sz.r = z__1.r, sz.i = z__1.i;
|
|
d_cnjg(&z__1, &sz);
|
|
zrot_(&c__2, s, &c__1, &s[2], &c__1, &cz, &z__1);
|
|
d_cnjg(&z__1, &sz);
|
|
zrot_(&c__2, t, &c__1, &t[2], &c__1, &cz, &z__1);
|
|
if (sa >= sb) {
|
|
zlartg_(s, &s[1], &cq, &sq, &cdum);
|
|
} else {
|
|
zlartg_(t, &t[1], &cq, &sq, &cdum);
|
|
}
|
|
zrot_(&c__2, s, &c__2, &s[1], &c__2, &cq, &sq);
|
|
zrot_(&c__2, t, &c__2, &t[1], &c__2, &cq, &sq);
|
|
|
|
/* Weak stability test: |S21| + |T21| <= O(EPS F-norm((S, T))) */
|
|
|
|
ws = z_abs(&s[1]) + z_abs(&t[1]);
|
|
weak = ws <= thresh;
|
|
if (! weak) {
|
|
goto L20;
|
|
}
|
|
|
|
if (TRUE_) {
|
|
|
|
/* Strong stability test: */
|
|
/* F-norm((A-QL**H*S*QR, B-QL**H*T*QR)) <= O(EPS*F-norm((A, B))) */
|
|
|
|
zlacpy_("Full", &m, &m, s, &c__2, work, &m);
|
|
zlacpy_("Full", &m, &m, t, &c__2, &work[m * m], &m);
|
|
d_cnjg(&z__2, &sz);
|
|
z__1.r = -z__2.r, z__1.i = -z__2.i;
|
|
zrot_(&c__2, work, &c__1, &work[2], &c__1, &cz, &z__1);
|
|
d_cnjg(&z__2, &sz);
|
|
z__1.r = -z__2.r, z__1.i = -z__2.i;
|
|
zrot_(&c__2, &work[4], &c__1, &work[6], &c__1, &cz, &z__1);
|
|
z__1.r = -sq.r, z__1.i = -sq.i;
|
|
zrot_(&c__2, work, &c__2, &work[1], &c__2, &cq, &z__1);
|
|
z__1.r = -sq.r, z__1.i = -sq.i;
|
|
zrot_(&c__2, &work[4], &c__2, &work[5], &c__2, &cq, &z__1);
|
|
for (i__ = 1; i__ <= 2; ++i__) {
|
|
i__1 = i__ - 1;
|
|
i__2 = i__ - 1;
|
|
i__3 = *j1 + i__ - 1 + *j1 * a_dim1;
|
|
z__1.r = work[i__2].r - a[i__3].r, z__1.i = work[i__2].i - a[i__3]
|
|
.i;
|
|
work[i__1].r = z__1.r, work[i__1].i = z__1.i;
|
|
i__1 = i__ + 1;
|
|
i__2 = i__ + 1;
|
|
i__3 = *j1 + i__ - 1 + (*j1 + 1) * a_dim1;
|
|
z__1.r = work[i__2].r - a[i__3].r, z__1.i = work[i__2].i - a[i__3]
|
|
.i;
|
|
work[i__1].r = z__1.r, work[i__1].i = z__1.i;
|
|
i__1 = i__ + 3;
|
|
i__2 = i__ + 3;
|
|
i__3 = *j1 + i__ - 1 + *j1 * b_dim1;
|
|
z__1.r = work[i__2].r - b[i__3].r, z__1.i = work[i__2].i - b[i__3]
|
|
.i;
|
|
work[i__1].r = z__1.r, work[i__1].i = z__1.i;
|
|
i__1 = i__ + 5;
|
|
i__2 = i__ + 5;
|
|
i__3 = *j1 + i__ - 1 + (*j1 + 1) * b_dim1;
|
|
z__1.r = work[i__2].r - b[i__3].r, z__1.i = work[i__2].i - b[i__3]
|
|
.i;
|
|
work[i__1].r = z__1.r, work[i__1].i = z__1.i;
|
|
/* L10: */
|
|
}
|
|
scale = 0.;
|
|
sum = 1.;
|
|
i__1 = (m << 1) * m;
|
|
zlassq_(&i__1, work, &c__1, &scale, &sum);
|
|
ss = scale * sqrt(sum);
|
|
dtrong = ss <= thresh;
|
|
if (! dtrong) {
|
|
goto L20;
|
|
}
|
|
}
|
|
|
|
/* If the swap is accepted ("weakly" and "strongly"), apply the */
|
|
/* equivalence transformations to the original matrix pair (A,B) */
|
|
|
|
i__1 = *j1 + 1;
|
|
d_cnjg(&z__1, &sz);
|
|
zrot_(&i__1, &a[*j1 * a_dim1 + 1], &c__1, &a[(*j1 + 1) * a_dim1 + 1], &
|
|
c__1, &cz, &z__1);
|
|
i__1 = *j1 + 1;
|
|
d_cnjg(&z__1, &sz);
|
|
zrot_(&i__1, &b[*j1 * b_dim1 + 1], &c__1, &b[(*j1 + 1) * b_dim1 + 1], &
|
|
c__1, &cz, &z__1);
|
|
i__1 = *n - *j1 + 1;
|
|
zrot_(&i__1, &a[*j1 + *j1 * a_dim1], lda, &a[*j1 + 1 + *j1 * a_dim1], lda,
|
|
&cq, &sq);
|
|
i__1 = *n - *j1 + 1;
|
|
zrot_(&i__1, &b[*j1 + *j1 * b_dim1], ldb, &b[*j1 + 1 + *j1 * b_dim1], ldb,
|
|
&cq, &sq);
|
|
|
|
/* Set N1 by N2 (2,1) blocks to 0 */
|
|
|
|
i__1 = *j1 + 1 + *j1 * a_dim1;
|
|
a[i__1].r = 0., a[i__1].i = 0.;
|
|
i__1 = *j1 + 1 + *j1 * b_dim1;
|
|
b[i__1].r = 0., b[i__1].i = 0.;
|
|
|
|
/* Accumulate transformations into Q and Z if requested. */
|
|
|
|
if (*wantz) {
|
|
d_cnjg(&z__1, &sz);
|
|
zrot_(n, &z__[*j1 * z_dim1 + 1], &c__1, &z__[(*j1 + 1) * z_dim1 + 1],
|
|
&c__1, &cz, &z__1);
|
|
}
|
|
if (*wantq) {
|
|
d_cnjg(&z__1, &sq);
|
|
zrot_(n, &q[*j1 * q_dim1 + 1], &c__1, &q[(*j1 + 1) * q_dim1 + 1], &
|
|
c__1, &cq, &z__1);
|
|
}
|
|
|
|
/* Exit with INFO = 0 if swap was successfully performed. */
|
|
|
|
return;
|
|
|
|
/* Exit with INFO = 1 if swap was rejected. */
|
|
|
|
L20:
|
|
*info = 1;
|
|
return;
|
|
|
|
/* End of ZTGEX2 */
|
|
|
|
} /* ztgex2_ */
|
|
|