OpenBLAS/lapack-netlib/SRC/ztfttr.c

1131 lines
30 KiB
C

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif
#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif
#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif
typedef blasint integer;
typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
#ifdef _MSC_VER
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
#else
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#endif
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef blasint logical;
typedef char logical1;
typedef char integer1;
#define TRUE_ (1)
#define FALSE_ (0)
/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif
/* I/O stuff */
typedef int flag;
typedef int ftnlen;
typedef int ftnint;
/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;
/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;
/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;
/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;
/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;
/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;
#define VOID void
union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};
typedef union Multitype Multitype;
struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;
struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;
#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#ifdef _MSC_VER
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
#else
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#endif
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimagf(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle_() continue;
#define myceiling_(w) {ceil(w)}
#define myhuge_(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
/* procedure parameter types for -A and -C++ */
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif
static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#ifdef _MSC_VER
static _Fcomplex cpow_ui(complex x, integer n) {
complex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
for(u = n; ; ) {
if(u & 01) pow.r *= x.r, pow.i *= x.i;
if(u >>= 1) x.r *= x.r, x.i *= x.i;
else break;
}
}
_Fcomplex p={pow.r, pow.i};
return p;
}
#else
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
#ifdef _MSC_VER
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
_Dcomplex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
for(u = n; ; ) {
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
else break;
}
}
_Dcomplex p = {pow._Val[0], pow._Val[1]};
return p;
}
#else
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
/* > \brief \b ZTFTTR copies a triangular matrix from the rectangular full packed format (TF) to the standard
full format (TR). */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download ZTFTTR + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztfttr.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztfttr.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztfttr.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE ZTFTTR( TRANSR, UPLO, N, ARF, A, LDA, INFO ) */
/* CHARACTER TRANSR, UPLO */
/* INTEGER INFO, N, LDA */
/* COMPLEX*16 A( 0: LDA-1, 0: * ), ARF( 0: * ) */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > ZTFTTR copies a triangular matrix A from rectangular full packed */
/* > format (TF) to standard full format (TR). */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] TRANSR */
/* > \verbatim */
/* > TRANSR is CHARACTER*1 */
/* > = 'N': ARF is in Normal format; */
/* > = 'C': ARF is in Conjugate-transpose format; */
/* > \endverbatim */
/* > */
/* > \param[in] UPLO */
/* > \verbatim */
/* > UPLO is CHARACTER*1 */
/* > = 'U': A is upper triangular; */
/* > = 'L': A is lower triangular. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] ARF */
/* > \verbatim */
/* > ARF is COMPLEX*16 array, dimension ( N*(N+1)/2 ), */
/* > On entry, the upper or lower triangular matrix A stored in */
/* > RFP format. For a further discussion see Notes below. */
/* > \endverbatim */
/* > */
/* > \param[out] A */
/* > \verbatim */
/* > A is COMPLEX*16 array, dimension ( LDA, N ) */
/* > On exit, the triangular matrix A. If UPLO = 'U', the */
/* > leading N-by-N upper triangular part of the array A contains */
/* > the upper triangular matrix, and the strictly lower */
/* > triangular part of A is not referenced. If UPLO = 'L', the */
/* > leading N-by-N lower triangular part of the array A contains */
/* > the lower triangular matrix, and the strictly upper */
/* > triangular part of A is not referenced. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date December 2016 */
/* > \ingroup complex16OTHERcomputational */
/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > We first consider Standard Packed Format when N is even. */
/* > We give an example where N = 6. */
/* > */
/* > AP is Upper AP is Lower */
/* > */
/* > 00 01 02 03 04 05 00 */
/* > 11 12 13 14 15 10 11 */
/* > 22 23 24 25 20 21 22 */
/* > 33 34 35 30 31 32 33 */
/* > 44 45 40 41 42 43 44 */
/* > 55 50 51 52 53 54 55 */
/* > */
/* > */
/* > Let TRANSR = 'N'. RFP holds AP as follows: */
/* > For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last */
/* > three columns of AP upper. The lower triangle A(4:6,0:2) consists of */
/* > conjugate-transpose of the first three columns of AP upper. */
/* > For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first */
/* > three columns of AP lower. The upper triangle A(0:2,0:2) consists of */
/* > conjugate-transpose of the last three columns of AP lower. */
/* > To denote conjugate we place -- above the element. This covers the */
/* > case N even and TRANSR = 'N'. */
/* > */
/* > RFP A RFP A */
/* > */
/* > -- -- -- */
/* > 03 04 05 33 43 53 */
/* > -- -- */
/* > 13 14 15 00 44 54 */
/* > -- */
/* > 23 24 25 10 11 55 */
/* > */
/* > 33 34 35 20 21 22 */
/* > -- */
/* > 00 44 45 30 31 32 */
/* > -- -- */
/* > 01 11 55 40 41 42 */
/* > -- -- -- */
/* > 02 12 22 50 51 52 */
/* > */
/* > Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- */
/* > transpose of RFP A above. One therefore gets: */
/* > */
/* > */
/* > RFP A RFP A */
/* > */
/* > -- -- -- -- -- -- -- -- -- -- */
/* > 03 13 23 33 00 01 02 33 00 10 20 30 40 50 */
/* > -- -- -- -- -- -- -- -- -- -- */
/* > 04 14 24 34 44 11 12 43 44 11 21 31 41 51 */
/* > -- -- -- -- -- -- -- -- -- -- */
/* > 05 15 25 35 45 55 22 53 54 55 22 32 42 52 */
/* > */
/* > */
/* > We next consider Standard Packed Format when N is odd. */
/* > We give an example where N = 5. */
/* > */
/* > AP is Upper AP is Lower */
/* > */
/* > 00 01 02 03 04 00 */
/* > 11 12 13 14 10 11 */
/* > 22 23 24 20 21 22 */
/* > 33 34 30 31 32 33 */
/* > 44 40 41 42 43 44 */
/* > */
/* > */
/* > Let TRANSR = 'N'. RFP holds AP as follows: */
/* > For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last */
/* > three columns of AP upper. The lower triangle A(3:4,0:1) consists of */
/* > conjugate-transpose of the first two columns of AP upper. */
/* > For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first */
/* > three columns of AP lower. The upper triangle A(0:1,1:2) consists of */
/* > conjugate-transpose of the last two columns of AP lower. */
/* > To denote conjugate we place -- above the element. This covers the */
/* > case N odd and TRANSR = 'N'. */
/* > */
/* > RFP A RFP A */
/* > */
/* > -- -- */
/* > 02 03 04 00 33 43 */
/* > -- */
/* > 12 13 14 10 11 44 */
/* > */
/* > 22 23 24 20 21 22 */
/* > -- */
/* > 00 33 34 30 31 32 */
/* > -- -- */
/* > 01 11 44 40 41 42 */
/* > */
/* > Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- */
/* > transpose of RFP A above. One therefore gets: */
/* > */
/* > */
/* > RFP A RFP A */
/* > */
/* > -- -- -- -- -- -- -- -- -- */
/* > 02 12 22 00 01 00 10 20 30 40 50 */
/* > -- -- -- -- -- -- -- -- -- */
/* > 03 13 23 33 11 33 11 21 31 41 51 */
/* > -- -- -- -- -- -- -- -- -- */
/* > 04 14 24 34 44 43 44 22 32 42 52 */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */ void ztfttr_(char *transr, char *uplo, integer *n,
doublecomplex *arf, doublecomplex *a, integer *lda, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
doublecomplex z__1;
/* Local variables */
integer np1x2, i__, j, k, l;
logical normaltransr;
extern logical lsame_(char *, char *);
logical lower;
integer n1, n2, ij, nt;
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
logical nisodd;
integer nx2;
/* -- LAPACK computational routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */
/* ===================================================================== */
/* Test the input parameters. */
/* Parameter adjustments */
a_dim1 = *lda - 1 - 0 + 1;
a_offset = 0 + a_dim1 * 0;
a -= a_offset;
/* Function Body */
*info = 0;
normaltransr = lsame_(transr, "N");
lower = lsame_(uplo, "L");
if (! normaltransr && ! lsame_(transr, "C")) {
*info = -1;
} else if (! lower && ! lsame_(uplo, "U")) {
*info = -2;
} else if (*n < 0) {
*info = -3;
} else if (*lda < f2cmax(1,*n)) {
*info = -6;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("ZTFTTR", &i__1, (ftnlen)6);
return;
}
/* Quick return if possible */
if (*n <= 1) {
if (*n == 1) {
if (normaltransr) {
a[0].r = arf[0].r, a[0].i = arf[0].i;
} else {
d_cnjg(&z__1, arf);
a[0].r = z__1.r, a[0].i = z__1.i;
}
}
return;
}
/* Size of array ARF(1:2,0:nt-1) */
nt = *n * (*n + 1) / 2;
/* set N1 and N2 depending on LOWER: for N even N1=N2=K */
if (lower) {
n2 = *n / 2;
n1 = *n - n2;
} else {
n1 = *n / 2;
n2 = *n - n1;
}
/* If N is odd, set NISODD = .TRUE., LDA=N+1 and A is (N+1)--by--K2. */
/* If N is even, set K = N/2 and NISODD = .FALSE., LDA=N and A is */
/* N--by--(N+1)/2. */
if (*n % 2 == 0) {
k = *n / 2;
nisodd = FALSE_;
if (! lower) {
np1x2 = *n + *n + 2;
}
} else {
nisodd = TRUE_;
if (! lower) {
nx2 = *n + *n;
}
}
if (nisodd) {
/* N is odd */
if (normaltransr) {
/* N is odd and TRANSR = 'N' */
if (lower) {
/* SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) ) */
/* T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0) */
/* T1 -> a(0), T2 -> a(n), S -> a(n1); lda=n */
ij = 0;
i__1 = n2;
for (j = 0; j <= i__1; ++j) {
i__2 = n2 + j;
for (i__ = n1; i__ <= i__2; ++i__) {
i__3 = n2 + j + i__ * a_dim1;
d_cnjg(&z__1, &arf[ij]);
a[i__3].r = z__1.r, a[i__3].i = z__1.i;
++ij;
}
i__2 = *n - 1;
for (i__ = j; i__ <= i__2; ++i__) {
i__3 = i__ + j * a_dim1;
i__4 = ij;
a[i__3].r = arf[i__4].r, a[i__3].i = arf[i__4].i;
++ij;
}
}
} else {
/* SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1) */
/* T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0) */
/* T1 -> a(n2), T2 -> a(n1), S -> a(0); lda=n */
ij = nt - *n;
i__1 = n1;
for (j = *n - 1; j >= i__1; --j) {
i__2 = j;
for (i__ = 0; i__ <= i__2; ++i__) {
i__3 = i__ + j * a_dim1;
i__4 = ij;
a[i__3].r = arf[i__4].r, a[i__3].i = arf[i__4].i;
++ij;
}
i__2 = n1 - 1;
for (l = j - n1; l <= i__2; ++l) {
i__3 = j - n1 + l * a_dim1;
d_cnjg(&z__1, &arf[ij]);
a[i__3].r = z__1.r, a[i__3].i = z__1.i;
++ij;
}
ij -= nx2;
}
}
} else {
/* N is odd and TRANSR = 'C' */
if (lower) {
/* SRPA for LOWER, TRANSPOSE and N is odd */
/* T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1) */
/* T1 -> A(0+0) , T2 -> A(1+0) , S -> A(0+n1*n1); lda=n1 */
ij = 0;
i__1 = n2 - 1;
for (j = 0; j <= i__1; ++j) {
i__2 = j;
for (i__ = 0; i__ <= i__2; ++i__) {
i__3 = j + i__ * a_dim1;
d_cnjg(&z__1, &arf[ij]);
a[i__3].r = z__1.r, a[i__3].i = z__1.i;
++ij;
}
i__2 = *n - 1;
for (i__ = n1 + j; i__ <= i__2; ++i__) {
i__3 = i__ + (n1 + j) * a_dim1;
i__4 = ij;
a[i__3].r = arf[i__4].r, a[i__3].i = arf[i__4].i;
++ij;
}
}
i__1 = *n - 1;
for (j = n2; j <= i__1; ++j) {
i__2 = n1 - 1;
for (i__ = 0; i__ <= i__2; ++i__) {
i__3 = j + i__ * a_dim1;
d_cnjg(&z__1, &arf[ij]);
a[i__3].r = z__1.r, a[i__3].i = z__1.i;
++ij;
}
}
} else {
/* SRPA for UPPER, TRANSPOSE and N is odd */
/* T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0) */
/* T1 -> A(n2*n2), T2 -> A(n1*n2), S -> A(0); lda = n2 */
ij = 0;
i__1 = n1;
for (j = 0; j <= i__1; ++j) {
i__2 = *n - 1;
for (i__ = n1; i__ <= i__2; ++i__) {
i__3 = j + i__ * a_dim1;
d_cnjg(&z__1, &arf[ij]);
a[i__3].r = z__1.r, a[i__3].i = z__1.i;
++ij;
}
}
i__1 = n1 - 1;
for (j = 0; j <= i__1; ++j) {
i__2 = j;
for (i__ = 0; i__ <= i__2; ++i__) {
i__3 = i__ + j * a_dim1;
i__4 = ij;
a[i__3].r = arf[i__4].r, a[i__3].i = arf[i__4].i;
++ij;
}
i__2 = *n - 1;
for (l = n2 + j; l <= i__2; ++l) {
i__3 = n2 + j + l * a_dim1;
d_cnjg(&z__1, &arf[ij]);
a[i__3].r = z__1.r, a[i__3].i = z__1.i;
++ij;
}
}
}
}
} else {
/* N is even */
if (normaltransr) {
/* N is even and TRANSR = 'N' */
if (lower) {
/* SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) ) */
/* T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0) */
/* T1 -> a(1), T2 -> a(0), S -> a(k+1); lda=n+1 */
ij = 0;
i__1 = k - 1;
for (j = 0; j <= i__1; ++j) {
i__2 = k + j;
for (i__ = k; i__ <= i__2; ++i__) {
i__3 = k + j + i__ * a_dim1;
d_cnjg(&z__1, &arf[ij]);
a[i__3].r = z__1.r, a[i__3].i = z__1.i;
++ij;
}
i__2 = *n - 1;
for (i__ = j; i__ <= i__2; ++i__) {
i__3 = i__ + j * a_dim1;
i__4 = ij;
a[i__3].r = arf[i__4].r, a[i__3].i = arf[i__4].i;
++ij;
}
}
} else {
/* SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) ) */
/* T1 -> a(k+1,0) , T2 -> a(k,0), S -> a(0,0) */
/* T1 -> a(k+1), T2 -> a(k), S -> a(0); lda=n+1 */
ij = nt - *n - 1;
i__1 = k;
for (j = *n - 1; j >= i__1; --j) {
i__2 = j;
for (i__ = 0; i__ <= i__2; ++i__) {
i__3 = i__ + j * a_dim1;
i__4 = ij;
a[i__3].r = arf[i__4].r, a[i__3].i = arf[i__4].i;
++ij;
}
i__2 = k - 1;
for (l = j - k; l <= i__2; ++l) {
i__3 = j - k + l * a_dim1;
d_cnjg(&z__1, &arf[ij]);
a[i__3].r = z__1.r, a[i__3].i = z__1.i;
++ij;
}
ij -= np1x2;
}
}
} else {
/* N is even and TRANSR = 'C' */
if (lower) {
/* SRPA for LOWER, TRANSPOSE and N is even (see paper, A=B) */
/* T1 -> A(0,1) , T2 -> A(0,0) , S -> A(0,k+1) : */
/* T1 -> A(0+k) , T2 -> A(0+0) , S -> A(0+k*(k+1)); lda=k */
ij = 0;
j = k;
i__1 = *n - 1;
for (i__ = k; i__ <= i__1; ++i__) {
i__2 = i__ + j * a_dim1;
i__3 = ij;
a[i__2].r = arf[i__3].r, a[i__2].i = arf[i__3].i;
++ij;
}
i__1 = k - 2;
for (j = 0; j <= i__1; ++j) {
i__2 = j;
for (i__ = 0; i__ <= i__2; ++i__) {
i__3 = j + i__ * a_dim1;
d_cnjg(&z__1, &arf[ij]);
a[i__3].r = z__1.r, a[i__3].i = z__1.i;
++ij;
}
i__2 = *n - 1;
for (i__ = k + 1 + j; i__ <= i__2; ++i__) {
i__3 = i__ + (k + 1 + j) * a_dim1;
i__4 = ij;
a[i__3].r = arf[i__4].r, a[i__3].i = arf[i__4].i;
++ij;
}
}
i__1 = *n - 1;
for (j = k - 1; j <= i__1; ++j) {
i__2 = k - 1;
for (i__ = 0; i__ <= i__2; ++i__) {
i__3 = j + i__ * a_dim1;
d_cnjg(&z__1, &arf[ij]);
a[i__3].r = z__1.r, a[i__3].i = z__1.i;
++ij;
}
}
} else {
/* SRPA for UPPER, TRANSPOSE and N is even (see paper, A=B) */
/* T1 -> A(0,k+1) , T2 -> A(0,k) , S -> A(0,0) */
/* T1 -> A(0+k*(k+1)) , T2 -> A(0+k*k) , S -> A(0+0)); lda=k */
ij = 0;
i__1 = k;
for (j = 0; j <= i__1; ++j) {
i__2 = *n - 1;
for (i__ = k; i__ <= i__2; ++i__) {
i__3 = j + i__ * a_dim1;
d_cnjg(&z__1, &arf[ij]);
a[i__3].r = z__1.r, a[i__3].i = z__1.i;
++ij;
}
}
i__1 = k - 2;
for (j = 0; j <= i__1; ++j) {
i__2 = j;
for (i__ = 0; i__ <= i__2; ++i__) {
i__3 = i__ + j * a_dim1;
i__4 = ij;
a[i__3].r = arf[i__4].r, a[i__3].i = arf[i__4].i;
++ij;
}
i__2 = *n - 1;
for (l = k + 1 + j; l <= i__2; ++l) {
i__3 = k + 1 + j + l * a_dim1;
d_cnjg(&z__1, &arf[ij]);
a[i__3].r = z__1.r, a[i__3].i = z__1.i;
++ij;
}
}
/* Note that here J = K-1 */
i__1 = j;
for (i__ = 0; i__ <= i__1; ++i__) {
i__2 = i__ + j * a_dim1;
i__3 = ij;
a[i__2].r = arf[i__3].r, a[i__2].i = arf[i__3].i;
++ij;
}
}
}
}
return;
/* End of ZTFTTR */
} /* ztfttr_ */