OpenBLAS/lapack-netlib/SRC/zsytrf_aa.c

1047 lines
29 KiB
C

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif
#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif
#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif
typedef blasint integer;
typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
#ifdef _MSC_VER
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
#else
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#endif
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef blasint logical;
typedef char logical1;
typedef char integer1;
#define TRUE_ (1)
#define FALSE_ (0)
/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif
/* I/O stuff */
typedef int flag;
typedef int ftnlen;
typedef int ftnint;
/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;
/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;
/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;
/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;
/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;
/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;
#define VOID void
union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};
typedef union Multitype Multitype;
struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;
struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;
#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#ifdef _MSC_VER
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
#else
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#endif
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimagf(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle_() continue;
#define myceiling_(w) {ceil(w)}
#define myhuge_(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
/* procedure parameter types for -A and -C++ */
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif
static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#ifdef _MSC_VER
static _Fcomplex cpow_ui(complex x, integer n) {
complex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
for(u = n; ; ) {
if(u & 01) pow.r *= x.r, pow.i *= x.i;
if(u >>= 1) x.r *= x.r, x.i *= x.i;
else break;
}
}
_Fcomplex p={pow.r, pow.i};
return p;
}
#else
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
#ifdef _MSC_VER
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
_Dcomplex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
for(u = n; ; ) {
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
else break;
}
}
_Dcomplex p = {pow._Val[0], pow._Val[1]};
return p;
}
#else
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
/* Table of constant values */
static integer c__1 = 1;
static integer c_n1 = -1;
static doublecomplex c_b15 = {1.,0.};
static doublecomplex c_b19 = {-1.,0.};
/* > \brief \b ZSYTRF_AA */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download ZSYTRF_AA + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsytrf_
aa.f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsytrf_
aa.f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsytrf_
aa.f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE ZSYTRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO ) */
/* CHARACTER UPLO */
/* INTEGER N, LDA, LWORK, INFO */
/* INTEGER IPIV( * ) */
/* COMPLEX*16 A( LDA, * ), WORK( * ) */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > ZSYTRF_AA computes the factorization of a complex symmetric matrix A */
/* > using the Aasen's algorithm. The form of the factorization is */
/* > */
/* > A = U**T*T*U or A = L*T*L**T */
/* > */
/* > where U (or L) is a product of permutation and unit upper (lower) */
/* > triangular matrices, and T is a complex symmetric tridiagonal matrix. */
/* > */
/* > This is the blocked version of the algorithm, calling Level 3 BLAS. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] UPLO */
/* > \verbatim */
/* > UPLO is CHARACTER*1 */
/* > = 'U': Upper triangle of A is stored; */
/* > = 'L': Lower triangle of A is stored. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is COMPLEX*16 array, dimension (LDA,N) */
/* > On entry, the symmetric matrix A. If UPLO = 'U', the leading */
/* > N-by-N upper triangular part of A contains the upper */
/* > triangular part of the matrix A, and the strictly lower */
/* > triangular part of A is not referenced. If UPLO = 'L', the */
/* > leading N-by-N lower triangular part of A contains the lower */
/* > triangular part of the matrix A, and the strictly upper */
/* > triangular part of A is not referenced. */
/* > */
/* > On exit, the tridiagonal matrix is stored in the diagonals */
/* > and the subdiagonals of A just below (or above) the diagonals, */
/* > and L is stored below (or above) the subdiaonals, when UPLO */
/* > is 'L' (or 'U'). */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
/* > \endverbatim */
/* > */
/* > \param[out] IPIV */
/* > \verbatim */
/* > IPIV is INTEGER array, dimension (N) */
/* > On exit, it contains the details of the interchanges, i.e., */
/* > the row and column k of A were interchanged with the */
/* > row and column IPIV(k). */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) */
/* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* > \endverbatim */
/* > */
/* > \param[in] LWORK */
/* > \verbatim */
/* > LWORK is INTEGER */
/* > The length of WORK. LWORK >=MAX(1,2*N). For optimum performance */
/* > LWORK >= N*(1+NB), where NB is the optimal blocksize. */
/* > */
/* > If LWORK = -1, then a workspace query is assumed; the routine */
/* > only calculates the optimal size of the WORK array, returns */
/* > this value as the first entry of the WORK array, and no error */
/* > message related to LWORK is issued by XERBLA. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date November 2017 */
/* > \ingroup complex16SYcomputational */
/* ===================================================================== */
/* Subroutine */ void zsytrf_aa_(char *uplo, integer *n, doublecomplex *a,
integer *lda, integer *ipiv, doublecomplex *work, integer *lwork,
integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
/* Local variables */
integer j;
doublecomplex alpha;
extern logical lsame_(char *, char *);
extern /* Subroutine */ void zscal_(integer *, doublecomplex *,
doublecomplex *, integer *), zgemm_(char *, char *, integer *,
integer *, integer *, doublecomplex *, doublecomplex *, integer *,
doublecomplex *, integer *, doublecomplex *, doublecomplex *,
integer *), zlasyf_aa_(char *, integer *,
integer *, integer *, doublecomplex *, integer *, integer *,
doublecomplex *, integer *, doublecomplex *), zgemv_(char
*, integer *, integer *, doublecomplex *, doublecomplex *,
integer *, doublecomplex *, integer *, doublecomplex *,
doublecomplex *, integer *);
logical upper;
integer k1, k2, j1, j2, j3;
extern /* Subroutine */ void zcopy_(integer *, doublecomplex *, integer *,
doublecomplex *, integer *), zswap_(integer *, doublecomplex *,
integer *, doublecomplex *, integer *);
integer jb, nb, mj, nj;
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *, ftnlen, ftnlen);
integer lwkopt;
logical lquery;
/* -- LAPACK computational routine (version 3.8.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* November 2017 */
/* ===================================================================== */
/* Determine the block size */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--ipiv;
--work;
/* Function Body */
nb = ilaenv_(&c__1, "ZSYTRF_AA", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)9,
(ftnlen)1);
/* Test the input parameters. */
*info = 0;
upper = lsame_(uplo, "U");
lquery = *lwork == -1;
if (! upper && ! lsame_(uplo, "L")) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*lda < f2cmax(1,*n)) {
*info = -4;
} else /* if(complicated condition) */ {
/* Computing MAX */
i__1 = 1, i__2 = *n << 1;
if (*lwork < f2cmax(i__1,i__2) && ! lquery) {
*info = -7;
}
}
if (*info == 0) {
lwkopt = (nb + 1) * *n;
work[1].r = (doublereal) lwkopt, work[1].i = 0.;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("ZSYTRF_AA", &i__1, (ftnlen)9);
return;
} else if (lquery) {
return;
}
/* Quick return */
if (*n == 0) {
return;
}
ipiv[1] = 1;
if (*n == 1) {
return;
}
/* Adjust block size based on the workspace size */
if (*lwork < (nb + 1) * *n) {
nb = (*lwork - *n) / *n;
}
if (upper) {
/* ..................................................... */
/* Factorize A as U**T*D*U using the upper triangle of A */
/* ..................................................... */
/* Copy first row A(1, 1:N) into H(1:n) (stored in WORK(1:N)) */
zcopy_(n, &a[a_dim1 + 1], lda, &work[1], &c__1);
/* J is the main loop index, increasing from 1 to N in steps of */
/* JB, where JB is the number of columns factorized by ZLASYF; */
/* JB is either NB, or N-J+1 for the last block */
j = 0;
L10:
if (j >= *n) {
goto L20;
}
/* each step of the main loop */
/* J is the last column of the previous panel */
/* J1 is the first column of the current panel */
/* K1 identifies if the previous column of the panel has been */
/* explicitly stored, e.g., K1=1 for the first panel, and */
/* K1=0 for the rest */
j1 = j + 1;
/* Computing MIN */
i__1 = *n - j1 + 1;
jb = f2cmin(i__1,nb);
k1 = f2cmax(1,j) - j;
/* Panel factorization */
i__1 = 2 - k1;
i__2 = *n - j;
zlasyf_aa_(uplo, &i__1, &i__2, &jb, &a[f2cmax(1,j) + (j + 1) * a_dim1],
lda, &ipiv[j + 1], &work[1], n, &work[*n * nb + 1])
;
/* Adjust IPIV and apply it back (J-th step picks (J+1)-th pivot) */
/* Computing MIN */
i__2 = *n, i__3 = j + jb + 1;
i__1 = f2cmin(i__2,i__3);
for (j2 = j + 2; j2 <= i__1; ++j2) {
ipiv[j2] += j;
if (j2 != ipiv[j2] && j1 - k1 > 2) {
i__2 = j1 - k1 - 2;
zswap_(&i__2, &a[j2 * a_dim1 + 1], &c__1, &a[ipiv[j2] *
a_dim1 + 1], &c__1);
}
}
j += jb;
/* Trailing submatrix update, where */
/* the row A(J1-1, J2-1:N) stores U(J1, J2+1:N) and */
/* WORK stores the current block of the auxiriarly matrix H */
if (j < *n) {
/* If first panel and JB=1 (NB=1), then nothing to do */
if (j1 > 1 || jb > 1) {
/* Merge rank-1 update with BLAS-3 update */
i__1 = j + (j + 1) * a_dim1;
alpha.r = a[i__1].r, alpha.i = a[i__1].i;
i__1 = j + (j + 1) * a_dim1;
a[i__1].r = 1., a[i__1].i = 0.;
i__1 = *n - j;
zcopy_(&i__1, &a[j - 1 + (j + 1) * a_dim1], lda, &work[j + 1
- j1 + 1 + jb * *n], &c__1);
i__1 = *n - j;
zscal_(&i__1, &alpha, &work[j + 1 - j1 + 1 + jb * *n], &c__1);
/* K1 identifies if the previous column of the panel has been */
/* explicitly stored, e.g., K1=1 and K2= 0 for the first panel, */
/* while K1=0 and K2=1 for the rest */
if (j1 > 1) {
/* Not first panel */
k2 = 1;
} else {
/* First panel */
k2 = 0;
/* First update skips the first column */
--jb;
}
i__1 = *n;
i__2 = nb;
for (j2 = j + 1; i__2 < 0 ? j2 >= i__1 : j2 <= i__1; j2 +=
i__2) {
/* Computing MIN */
i__3 = nb, i__4 = *n - j2 + 1;
nj = f2cmin(i__3,i__4);
/* Update (J2, J2) diagonal block with ZGEMV */
j3 = j2;
for (mj = nj - 1; mj >= 1; --mj) {
i__3 = jb + 1;
zgemv_("No transpose", &mj, &i__3, &c_b19, &work[j3 -
j1 + 1 + k1 * *n], n, &a[j1 - k2 + j3 *
a_dim1], &c__1, &c_b15, &a[j3 + j3 * a_dim1],
lda);
++j3;
}
/* Update off-diagonal block of J2-th block row with ZGEMM */
i__3 = *n - j3 + 1;
i__4 = jb + 1;
zgemm_("Transpose", "Transpose", &nj, &i__3, &i__4, &
c_b19, &a[j1 - k2 + j2 * a_dim1], lda, &work[j3 -
j1 + 1 + k1 * *n], n, &c_b15, &a[j2 + j3 * a_dim1]
, lda);
}
/* Recover T( J, J+1 ) */
i__2 = j + (j + 1) * a_dim1;
a[i__2].r = alpha.r, a[i__2].i = alpha.i;
}
/* WORK(J+1, 1) stores H(J+1, 1) */
i__2 = *n - j;
zcopy_(&i__2, &a[j + 1 + (j + 1) * a_dim1], lda, &work[1], &c__1);
}
goto L10;
} else {
/* ..................................................... */
/* Factorize A as L*D*L**T using the lower triangle of A */
/* ..................................................... */
/* copy first column A(1:N, 1) into H(1:N, 1) */
/* (stored in WORK(1:N)) */
zcopy_(n, &a[a_dim1 + 1], &c__1, &work[1], &c__1);
/* J is the main loop index, increasing from 1 to N in steps of */
/* JB, where JB is the number of columns factorized by ZLASYF; */
/* JB is either NB, or N-J+1 for the last block */
j = 0;
L11:
if (j >= *n) {
goto L20;
}
/* each step of the main loop */
/* J is the last column of the previous panel */
/* J1 is the first column of the current panel */
/* K1 identifies if the previous column of the panel has been */
/* explicitly stored, e.g., K1=1 for the first panel, and */
/* K1=0 for the rest */
j1 = j + 1;
/* Computing MIN */
i__2 = *n - j1 + 1;
jb = f2cmin(i__2,nb);
k1 = f2cmax(1,j) - j;
/* Panel factorization */
i__2 = 2 - k1;
i__1 = *n - j;
zlasyf_aa_(uplo, &i__2, &i__1, &jb, &a[j + 1 + f2cmax(1,j) * a_dim1],
lda, &ipiv[j + 1], &work[1], n, &work[*n * nb + 1])
;
/* Adjust IPIV and apply it back (J-th step picks (J+1)-th pivot) */
/* Computing MIN */
i__1 = *n, i__3 = j + jb + 1;
i__2 = f2cmin(i__1,i__3);
for (j2 = j + 2; j2 <= i__2; ++j2) {
ipiv[j2] += j;
if (j2 != ipiv[j2] && j1 - k1 > 2) {
i__1 = j1 - k1 - 2;
zswap_(&i__1, &a[j2 + a_dim1], lda, &a[ipiv[j2] + a_dim1],
lda);
}
}
j += jb;
/* Trailing submatrix update, where */
/* A(J2+1, J1-1) stores L(J2+1, J1) and */
/* WORK(J2+1, 1) stores H(J2+1, 1) */
if (j < *n) {
/* if first panel and JB=1 (NB=1), then nothing to do */
if (j1 > 1 || jb > 1) {
/* Merge rank-1 update with BLAS-3 update */
i__2 = j + 1 + j * a_dim1;
alpha.r = a[i__2].r, alpha.i = a[i__2].i;
i__2 = j + 1 + j * a_dim1;
a[i__2].r = 1., a[i__2].i = 0.;
i__2 = *n - j;
zcopy_(&i__2, &a[j + 1 + (j - 1) * a_dim1], &c__1, &work[j +
1 - j1 + 1 + jb * *n], &c__1);
i__2 = *n - j;
zscal_(&i__2, &alpha, &work[j + 1 - j1 + 1 + jb * *n], &c__1);
/* K1 identifies if the previous column of the panel has been */
/* explicitly stored, e.g., K1=1 and K2= 0 for the first panel, */
/* while K1=0 and K2=1 for the rest */
if (j1 > 1) {
/* Not first panel */
k2 = 1;
} else {
/* First panel */
k2 = 0;
/* First update skips the first column */
--jb;
}
i__2 = *n;
i__1 = nb;
for (j2 = j + 1; i__1 < 0 ? j2 >= i__2 : j2 <= i__2; j2 +=
i__1) {
/* Computing MIN */
i__3 = nb, i__4 = *n - j2 + 1;
nj = f2cmin(i__3,i__4);
/* Update (J2, J2) diagonal block with ZGEMV */
j3 = j2;
for (mj = nj - 1; mj >= 1; --mj) {
i__3 = jb + 1;
zgemv_("No transpose", &mj, &i__3, &c_b19, &work[j3 -
j1 + 1 + k1 * *n], n, &a[j3 + (j1 - k2) *
a_dim1], lda, &c_b15, &a[j3 + j3 * a_dim1], &
c__1);
++j3;
}
/* Update off-diagonal block in J2-th block column with ZGEMM */
i__3 = *n - j3 + 1;
i__4 = jb + 1;
zgemm_("No transpose", "Transpose", &i__3, &nj, &i__4, &
c_b19, &work[j3 - j1 + 1 + k1 * *n], n, &a[j2 + (
j1 - k2) * a_dim1], lda, &c_b15, &a[j3 + j2 *
a_dim1], lda);
}
/* Recover T( J+1, J ) */
i__1 = j + 1 + j * a_dim1;
a[i__1].r = alpha.r, a[i__1].i = alpha.i;
}
/* WORK(J+1, 1) stores H(J+1, 1) */
i__1 = *n - j;
zcopy_(&i__1, &a[j + 1 + (j + 1) * a_dim1], &c__1, &work[1], &
c__1);
}
goto L11;
}
L20:
return;
/* End of ZSYTRF_AA */
} /* zsytrf_aa__ */