OpenBLAS/lapack-netlib/SRC/zstedc.c

1060 lines
31 KiB
C

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif
#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif
#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif
typedef blasint integer;
typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
#ifdef _MSC_VER
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
#else
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#endif
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef blasint logical;
typedef char logical1;
typedef char integer1;
#define TRUE_ (1)
#define FALSE_ (0)
/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif
/* I/O stuff */
typedef int flag;
typedef int ftnlen;
typedef int ftnint;
/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;
/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;
/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;
/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;
/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;
/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;
#define VOID void
union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};
typedef union Multitype Multitype;
struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;
struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;
#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#ifdef _MSC_VER
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
#else
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#endif
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimagf(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle_() continue;
#define myceiling_(w) {ceil(w)}
#define myhuge_(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
/* procedure parameter types for -A and -C++ */
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif
static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#ifdef _MSC_VER
static _Fcomplex cpow_ui(complex x, integer n) {
complex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
for(u = n; ; ) {
if(u & 01) pow.r *= x.r, pow.i *= x.i;
if(u >>= 1) x.r *= x.r, x.i *= x.i;
else break;
}
}
_Fcomplex p={pow.r, pow.i};
return p;
}
#else
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
#ifdef _MSC_VER
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
_Dcomplex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
for(u = n; ; ) {
if(u & 01) pow = _Cmulcc(pow, x);
if(u >>= 1) x = _Cmulcc(x, x);
else break;
}
}
return pow;
}
#else
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
/* Table of constant values */
static integer c__9 = 9;
static integer c__0 = 0;
static integer c__2 = 2;
static doublereal c_b17 = 0.;
static doublereal c_b18 = 1.;
static integer c__1 = 1;
/* > \brief \b ZSTEDC */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download ZSTEDC + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zstedc.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zstedc.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zstedc.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE ZSTEDC( COMPZ, N, D, E, Z, LDZ, WORK, LWORK, RWORK, */
/* LRWORK, IWORK, LIWORK, INFO ) */
/* CHARACTER COMPZ */
/* INTEGER INFO, LDZ, LIWORK, LRWORK, LWORK, N */
/* INTEGER IWORK( * ) */
/* DOUBLE PRECISION D( * ), E( * ), RWORK( * ) */
/* COMPLEX*16 WORK( * ), Z( LDZ, * ) */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > ZSTEDC computes all eigenvalues and, optionally, eigenvectors of a */
/* > symmetric tridiagonal matrix using the divide and conquer method. */
/* > The eigenvectors of a full or band complex Hermitian matrix can also */
/* > be found if ZHETRD or ZHPTRD or ZHBTRD has been used to reduce this */
/* > matrix to tridiagonal form. */
/* > */
/* > This code makes very mild assumptions about floating point */
/* > arithmetic. It will work on machines with a guard digit in */
/* > add/subtract, or on those binary machines without guard digits */
/* > which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. */
/* > It could conceivably fail on hexadecimal or decimal machines */
/* > without guard digits, but we know of none. See DLAED3 for details. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] COMPZ */
/* > \verbatim */
/* > COMPZ is CHARACTER*1 */
/* > = 'N': Compute eigenvalues only. */
/* > = 'I': Compute eigenvectors of tridiagonal matrix also. */
/* > = 'V': Compute eigenvectors of original Hermitian matrix */
/* > also. On entry, Z contains the unitary matrix used */
/* > to reduce the original matrix to tridiagonal form. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The dimension of the symmetric tridiagonal matrix. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] D */
/* > \verbatim */
/* > D is DOUBLE PRECISION array, dimension (N) */
/* > On entry, the diagonal elements of the tridiagonal matrix. */
/* > On exit, if INFO = 0, the eigenvalues in ascending order. */
/* > \endverbatim */
/* > */
/* > \param[in,out] E */
/* > \verbatim */
/* > E is DOUBLE PRECISION array, dimension (N-1) */
/* > On entry, the subdiagonal elements of the tridiagonal matrix. */
/* > On exit, E has been destroyed. */
/* > \endverbatim */
/* > */
/* > \param[in,out] Z */
/* > \verbatim */
/* > Z is COMPLEX*16 array, dimension (LDZ,N) */
/* > On entry, if COMPZ = 'V', then Z contains the unitary */
/* > matrix used in the reduction to tridiagonal form. */
/* > On exit, if INFO = 0, then if COMPZ = 'V', Z contains the */
/* > orthonormal eigenvectors of the original Hermitian matrix, */
/* > and if COMPZ = 'I', Z contains the orthonormal eigenvectors */
/* > of the symmetric tridiagonal matrix. */
/* > If COMPZ = 'N', then Z is not referenced. */
/* > \endverbatim */
/* > */
/* > \param[in] LDZ */
/* > \verbatim */
/* > LDZ is INTEGER */
/* > The leading dimension of the array Z. LDZ >= 1. */
/* > If eigenvectors are desired, then LDZ >= f2cmax(1,N). */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) */
/* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* > \endverbatim */
/* > */
/* > \param[in] LWORK */
/* > \verbatim */
/* > LWORK is INTEGER */
/* > The dimension of the array WORK. */
/* > If COMPZ = 'N' or 'I', or N <= 1, LWORK must be at least 1. */
/* > If COMPZ = 'V' and N > 1, LWORK must be at least N*N. */
/* > Note that for COMPZ = 'V', then if N is less than or */
/* > equal to the minimum divide size, usually 25, then LWORK need */
/* > only be 1. */
/* > */
/* > If LWORK = -1, then a workspace query is assumed; the routine */
/* > only calculates the optimal sizes of the WORK, RWORK and */
/* > IWORK arrays, returns these values as the first entries of */
/* > the WORK, RWORK and IWORK arrays, and no error message */
/* > related to LWORK or LRWORK or LIWORK is issued by XERBLA. */
/* > \endverbatim */
/* > */
/* > \param[out] RWORK */
/* > \verbatim */
/* > RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK)) */
/* > On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK. */
/* > \endverbatim */
/* > */
/* > \param[in] LRWORK */
/* > \verbatim */
/* > LRWORK is INTEGER */
/* > The dimension of the array RWORK. */
/* > If COMPZ = 'N' or N <= 1, LRWORK must be at least 1. */
/* > If COMPZ = 'V' and N > 1, LRWORK must be at least */
/* > 1 + 3*N + 2*N*lg N + 4*N**2 , */
/* > where lg( N ) = smallest integer k such */
/* > that 2**k >= N. */
/* > If COMPZ = 'I' and N > 1, LRWORK must be at least */
/* > 1 + 4*N + 2*N**2 . */
/* > Note that for COMPZ = 'I' or 'V', then if N is less than or */
/* > equal to the minimum divide size, usually 25, then LRWORK */
/* > need only be f2cmax(1,2*(N-1)). */
/* > */
/* > If LRWORK = -1, then a workspace query is assumed; the */
/* > routine only calculates the optimal sizes of the WORK, RWORK */
/* > and IWORK arrays, returns these values as the first entries */
/* > of the WORK, RWORK and IWORK arrays, and no error message */
/* > related to LWORK or LRWORK or LIWORK is issued by XERBLA. */
/* > \endverbatim */
/* > */
/* > \param[out] IWORK */
/* > \verbatim */
/* > IWORK is INTEGER array, dimension (MAX(1,LIWORK)) */
/* > On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */
/* > \endverbatim */
/* > */
/* > \param[in] LIWORK */
/* > \verbatim */
/* > LIWORK is INTEGER */
/* > The dimension of the array IWORK. */
/* > If COMPZ = 'N' or N <= 1, LIWORK must be at least 1. */
/* > If COMPZ = 'V' or N > 1, LIWORK must be at least */
/* > 6 + 6*N + 5*N*lg N. */
/* > If COMPZ = 'I' or N > 1, LIWORK must be at least */
/* > 3 + 5*N . */
/* > Note that for COMPZ = 'I' or 'V', then if N is less than or */
/* > equal to the minimum divide size, usually 25, then LIWORK */
/* > need only be 1. */
/* > */
/* > If LIWORK = -1, then a workspace query is assumed; the */
/* > routine only calculates the optimal sizes of the WORK, RWORK */
/* > and IWORK arrays, returns these values as the first entries */
/* > of the WORK, RWORK and IWORK arrays, and no error message */
/* > related to LWORK or LRWORK or LIWORK is issued by XERBLA. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit. */
/* > < 0: if INFO = -i, the i-th argument had an illegal value. */
/* > > 0: The algorithm failed to compute an eigenvalue while */
/* > working on the submatrix lying in rows and columns */
/* > INFO/(N+1) through mod(INFO,N+1). */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date June 2017 */
/* > \ingroup complex16OTHERcomputational */
/* > \par Contributors: */
/* ================== */
/* > */
/* > Jeff Rutter, Computer Science Division, University of California */
/* > at Berkeley, USA */
/* ===================================================================== */
/* Subroutine */ void zstedc_(char *compz, integer *n, doublereal *d__,
doublereal *e, doublecomplex *z__, integer *ldz, doublecomplex *work,
integer *lwork, doublereal *rwork, integer *lrwork, integer *iwork,
integer *liwork, integer *info)
{
/* System generated locals */
integer z_dim1, z_offset, i__1, i__2, i__3, i__4;
doublereal d__1, d__2;
/* Local variables */
doublereal tiny;
integer i__, j, k, m;
doublereal p;
extern logical lsame_(char *, char *);
integer lwmin, start;
extern /* Subroutine */ void zswap_(integer *, doublecomplex *, integer *,
doublecomplex *, integer *), zlaed0_(integer *, integer *,
doublereal *, doublereal *, doublecomplex *, integer *,
doublecomplex *, integer *, doublereal *, integer *, integer *);
integer ii, ll;
extern doublereal dlamch_(char *);
extern /* Subroutine */ void dlascl_(char *, integer *, integer *,
doublereal *, doublereal *, integer *, integer *, doublereal *,
integer *, integer *), dstedc_(char *, integer *,
doublereal *, doublereal *, doublereal *, integer *, doublereal *,
integer *, integer *, integer *, integer *), dlaset_(
char *, integer *, integer *, doublereal *, doublereal *,
doublereal *, integer *);
extern int xerbla_(char *, integer *, ftnlen);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *, ftnlen, ftnlen);
integer finish;
extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
extern /* Subroutine */ void dsterf_(integer *, doublereal *, doublereal *,
integer *), zlacrm_(integer *, integer *, doublecomplex *,
integer *, doublereal *, integer *, doublecomplex *, integer *,
doublereal *);
integer liwmin, icompz;
extern /* Subroutine */ void dsteqr_(char *, integer *, doublereal *,
doublereal *, doublereal *, integer *, doublereal *, integer *), zlacpy_(char *, integer *, integer *, doublecomplex *,
integer *, doublecomplex *, integer *);
doublereal orgnrm;
integer lrwmin;
logical lquery;
integer smlsiz;
extern /* Subroutine */ void zsteqr_(char *, integer *, doublereal *,
doublereal *, doublecomplex *, integer *, doublereal *, integer *);
integer lgn;
doublereal eps;
/* -- LAPACK computational routine (version 3.7.1) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* June 2017 */
/* ===================================================================== */
/* Test the input parameters. */
/* Parameter adjustments */
--d__;
--e;
z_dim1 = *ldz;
z_offset = 1 + z_dim1 * 1;
z__ -= z_offset;
--work;
--rwork;
--iwork;
/* Function Body */
*info = 0;
lquery = *lwork == -1 || *lrwork == -1 || *liwork == -1;
if (lsame_(compz, "N")) {
icompz = 0;
} else if (lsame_(compz, "V")) {
icompz = 1;
} else if (lsame_(compz, "I")) {
icompz = 2;
} else {
icompz = -1;
}
if (icompz < 0) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*ldz < 1 || icompz > 0 && *ldz < f2cmax(1,*n)) {
*info = -6;
}
if (*info == 0) {
/* Compute the workspace requirements */
smlsiz = ilaenv_(&c__9, "ZSTEDC", " ", &c__0, &c__0, &c__0, &c__0, (
ftnlen)6, (ftnlen)1);
if (*n <= 1 || icompz == 0) {
lwmin = 1;
liwmin = 1;
lrwmin = 1;
} else if (*n <= smlsiz) {
lwmin = 1;
liwmin = 1;
lrwmin = *n - 1 << 1;
} else if (icompz == 1) {
lgn = (integer) (log((doublereal) (*n)) / log(2.));
if (pow_ii(c__2, lgn) < *n) {
++lgn;
}
if (pow_ii(c__2, lgn) < *n) {
++lgn;
}
lwmin = *n * *n;
/* Computing 2nd power */
i__1 = *n;
lrwmin = *n * 3 + 1 + (*n << 1) * lgn + (i__1 * i__1 << 2);
liwmin = *n * 6 + 6 + *n * 5 * lgn;
} else if (icompz == 2) {
lwmin = 1;
/* Computing 2nd power */
i__1 = *n;
lrwmin = (*n << 2) + 1 + (i__1 * i__1 << 1);
liwmin = *n * 5 + 3;
}
work[1].r = (doublereal) lwmin, work[1].i = 0.;
rwork[1] = (doublereal) lrwmin;
iwork[1] = liwmin;
if (*lwork < lwmin && ! lquery) {
*info = -8;
} else if (*lrwork < lrwmin && ! lquery) {
*info = -10;
} else if (*liwork < liwmin && ! lquery) {
*info = -12;
}
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("ZSTEDC", &i__1, (ftnlen)6);
return;
} else if (lquery) {
return;
}
/* Quick return if possible */
if (*n == 0) {
return;
}
if (*n == 1) {
if (icompz != 0) {
i__1 = z_dim1 + 1;
z__[i__1].r = 1., z__[i__1].i = 0.;
}
return;
}
/* If the following conditional clause is removed, then the routine */
/* will use the Divide and Conquer routine to compute only the */
/* eigenvalues, which requires (3N + 3N**2) real workspace and */
/* (2 + 5N + 2N lg(N)) integer workspace. */
/* Since on many architectures DSTERF is much faster than any other */
/* algorithm for finding eigenvalues only, it is used here */
/* as the default. If the conditional clause is removed, then */
/* information on the size of workspace needs to be changed. */
/* If COMPZ = 'N', use DSTERF to compute the eigenvalues. */
if (icompz == 0) {
dsterf_(n, &d__[1], &e[1], info);
goto L70;
}
/* If N is smaller than the minimum divide size (SMLSIZ+1), then */
/* solve the problem with another solver. */
if (*n <= smlsiz) {
zsteqr_(compz, n, &d__[1], &e[1], &z__[z_offset], ldz, &rwork[1],
info);
} else {
/* If COMPZ = 'I', we simply call DSTEDC instead. */
if (icompz == 2) {
dlaset_("Full", n, n, &c_b17, &c_b18, &rwork[1], n);
ll = *n * *n + 1;
i__1 = *lrwork - ll + 1;
dstedc_("I", n, &d__[1], &e[1], &rwork[1], n, &rwork[ll], &i__1, &
iwork[1], liwork, info);
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * z_dim1;
i__4 = (j - 1) * *n + i__;
z__[i__3].r = rwork[i__4], z__[i__3].i = 0.;
/* L10: */
}
/* L20: */
}
goto L70;
}
/* From now on, only option left to be handled is COMPZ = 'V', */
/* i.e. ICOMPZ = 1. */
/* Scale. */
orgnrm = dlanst_("M", n, &d__[1], &e[1]);
if (orgnrm == 0.) {
goto L70;
}
eps = dlamch_("Epsilon");
start = 1;
/* while ( START <= N ) */
L30:
if (start <= *n) {
/* Let FINISH be the position of the next subdiagonal entry */
/* such that E( FINISH ) <= TINY or FINISH = N if no such */
/* subdiagonal exists. The matrix identified by the elements */
/* between START and FINISH constitutes an independent */
/* sub-problem. */
finish = start;
L40:
if (finish < *n) {
tiny = eps * sqrt((d__1 = d__[finish], abs(d__1))) * sqrt((
d__2 = d__[finish + 1], abs(d__2)));
if ((d__1 = e[finish], abs(d__1)) > tiny) {
++finish;
goto L40;
}
}
/* (Sub) Problem determined. Compute its size and solve it. */
m = finish - start + 1;
if (m > smlsiz) {
/* Scale. */
orgnrm = dlanst_("M", &m, &d__[start], &e[start]);
dlascl_("G", &c__0, &c__0, &orgnrm, &c_b18, &m, &c__1, &d__[
start], &m, info);
i__1 = m - 1;
i__2 = m - 1;
dlascl_("G", &c__0, &c__0, &orgnrm, &c_b18, &i__1, &c__1, &e[
start], &i__2, info);
zlaed0_(n, &m, &d__[start], &e[start], &z__[start * z_dim1 +
1], ldz, &work[1], n, &rwork[1], &iwork[1], info);
if (*info > 0) {
*info = (*info / (m + 1) + start - 1) * (*n + 1) + *info %
(m + 1) + start - 1;
goto L70;
}
/* Scale back. */
dlascl_("G", &c__0, &c__0, &c_b18, &orgnrm, &m, &c__1, &d__[
start], &m, info);
} else {
dsteqr_("I", &m, &d__[start], &e[start], &rwork[1], &m, &
rwork[m * m + 1], info);
zlacrm_(n, &m, &z__[start * z_dim1 + 1], ldz, &rwork[1], &m, &
work[1], n, &rwork[m * m + 1]);
zlacpy_("A", n, &m, &work[1], n, &z__[start * z_dim1 + 1],
ldz);
if (*info > 0) {
*info = start * (*n + 1) + finish;
goto L70;
}
}
start = finish + 1;
goto L30;
}
/* endwhile */
/* Use Selection Sort to minimize swaps of eigenvectors */
i__1 = *n;
for (ii = 2; ii <= i__1; ++ii) {
i__ = ii - 1;
k = i__;
p = d__[i__];
i__2 = *n;
for (j = ii; j <= i__2; ++j) {
if (d__[j] < p) {
k = j;
p = d__[j];
}
/* L50: */
}
if (k != i__) {
d__[k] = d__[i__];
d__[i__] = p;
zswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[k * z_dim1 + 1],
&c__1);
}
/* L60: */
}
}
L70:
work[1].r = (doublereal) lwmin, work[1].i = 0.;
rwork[1] = (doublereal) lrwmin;
iwork[1] = liwmin;
return;
/* End of ZSTEDC */
} /* zstedc_ */