OpenBLAS/lapack-netlib/SRC/zlatrd.c

985 lines
30 KiB
C

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif
#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif
#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif
typedef blasint integer;
typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
#ifdef _MSC_VER
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
#else
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#endif
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef blasint logical;
typedef char logical1;
typedef char integer1;
#define TRUE_ (1)
#define FALSE_ (0)
/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif
/* I/O stuff */
typedef int flag;
typedef int ftnlen;
typedef int ftnint;
/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;
/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;
/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;
/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;
/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;
/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;
#define VOID void
union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};
typedef union Multitype Multitype;
struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;
struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;
#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#ifdef _MSC_VER
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
#else
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#endif
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimagf(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
/* procedure parameter types for -A and -C++ */
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif
static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#ifdef _MSC_VER
static _Fcomplex cpow_ui(complex x, integer n) {
complex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
for(u = n; ; ) {
if(u & 01) pow.r *= x.r, pow.i *= x.i;
if(u >>= 1) x.r *= x.r, x.i *= x.i;
else break;
}
}
_Fcomplex p={pow.r, pow.i};
return p;
}
#else
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
#ifdef _MSC_VER
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
_Dcomplex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
for(u = n; ; ) {
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
else break;
}
}
_Dcomplex p = {pow._Val[0], pow._Val[1]};
return p;
}
#else
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
/* Table of constant values */
static doublecomplex c_b1 = {0.,0.};
static doublecomplex c_b2 = {1.,0.};
static integer c__1 = 1;
/* > \brief \b ZLATRD reduces the first nb rows and columns of a symmetric/Hermitian matrix A to real tridiago
nal form by an unitary similarity transformation. */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download ZLATRD + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlatrd.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlatrd.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlatrd.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE ZLATRD( UPLO, N, NB, A, LDA, E, TAU, W, LDW ) */
/* CHARACTER UPLO */
/* INTEGER LDA, LDW, N, NB */
/* DOUBLE PRECISION E( * ) */
/* COMPLEX*16 A( LDA, * ), TAU( * ), W( LDW, * ) */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > ZLATRD reduces NB rows and columns of a complex Hermitian matrix A to */
/* > Hermitian tridiagonal form by a unitary similarity */
/* > transformation Q**H * A * Q, and returns the matrices V and W which are */
/* > needed to apply the transformation to the unreduced part of A. */
/* > */
/* > If UPLO = 'U', ZLATRD reduces the last NB rows and columns of a */
/* > matrix, of which the upper triangle is supplied; */
/* > if UPLO = 'L', ZLATRD reduces the first NB rows and columns of a */
/* > matrix, of which the lower triangle is supplied. */
/* > */
/* > This is an auxiliary routine called by ZHETRD. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] UPLO */
/* > \verbatim */
/* > UPLO is CHARACTER*1 */
/* > Specifies whether the upper or lower triangular part of the */
/* > Hermitian matrix A is stored: */
/* > = 'U': Upper triangular */
/* > = 'L': Lower triangular */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrix A. */
/* > \endverbatim */
/* > */
/* > \param[in] NB */
/* > \verbatim */
/* > NB is INTEGER */
/* > The number of rows and columns to be reduced. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is COMPLEX*16 array, dimension (LDA,N) */
/* > On entry, the Hermitian matrix A. If UPLO = 'U', the leading */
/* > n-by-n upper triangular part of A contains the upper */
/* > triangular part of the matrix A, and the strictly lower */
/* > triangular part of A is not referenced. If UPLO = 'L', the */
/* > leading n-by-n lower triangular part of A contains the lower */
/* > triangular part of the matrix A, and the strictly upper */
/* > triangular part of A is not referenced. */
/* > On exit: */
/* > if UPLO = 'U', the last NB columns have been reduced to */
/* > tridiagonal form, with the diagonal elements overwriting */
/* > the diagonal elements of A; the elements above the diagonal */
/* > with the array TAU, represent the unitary matrix Q as a */
/* > product of elementary reflectors; */
/* > if UPLO = 'L', the first NB columns have been reduced to */
/* > tridiagonal form, with the diagonal elements overwriting */
/* > the diagonal elements of A; the elements below the diagonal */
/* > with the array TAU, represent the unitary matrix Q as a */
/* > product of elementary reflectors. */
/* > See Further Details. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
/* > \endverbatim */
/* > */
/* > \param[out] E */
/* > \verbatim */
/* > E is DOUBLE PRECISION array, dimension (N-1) */
/* > If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal */
/* > elements of the last NB columns of the reduced matrix; */
/* > if UPLO = 'L', E(1:nb) contains the subdiagonal elements of */
/* > the first NB columns of the reduced matrix. */
/* > \endverbatim */
/* > */
/* > \param[out] TAU */
/* > \verbatim */
/* > TAU is COMPLEX*16 array, dimension (N-1) */
/* > The scalar factors of the elementary reflectors, stored in */
/* > TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'. */
/* > See Further Details. */
/* > \endverbatim */
/* > */
/* > \param[out] W */
/* > \verbatim */
/* > W is COMPLEX*16 array, dimension (LDW,NB) */
/* > The n-by-nb matrix W required to update the unreduced part */
/* > of A. */
/* > \endverbatim */
/* > */
/* > \param[in] LDW */
/* > \verbatim */
/* > LDW is INTEGER */
/* > The leading dimension of the array W. LDW >= f2cmax(1,N). */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date December 2016 */
/* > \ingroup complex16OTHERauxiliary */
/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > If UPLO = 'U', the matrix Q is represented as a product of elementary */
/* > reflectors */
/* > */
/* > Q = H(n) H(n-1) . . . H(n-nb+1). */
/* > */
/* > Each H(i) has the form */
/* > */
/* > H(i) = I - tau * v * v**H */
/* > */
/* > where tau is a complex scalar, and v is a complex vector with */
/* > v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i), */
/* > and tau in TAU(i-1). */
/* > */
/* > If UPLO = 'L', the matrix Q is represented as a product of elementary */
/* > reflectors */
/* > */
/* > Q = H(1) H(2) . . . H(nb). */
/* > */
/* > Each H(i) has the form */
/* > */
/* > H(i) = I - tau * v * v**H */
/* > */
/* > where tau is a complex scalar, and v is a complex vector with */
/* > v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i), */
/* > and tau in TAU(i). */
/* > */
/* > The elements of the vectors v together form the n-by-nb matrix V */
/* > which is needed, with W, to apply the transformation to the unreduced */
/* > part of the matrix, using a Hermitian rank-2k update of the form: */
/* > A := A - V*W**H - W*V**H. */
/* > */
/* > The contents of A on exit are illustrated by the following examples */
/* > with n = 5 and nb = 2: */
/* > */
/* > if UPLO = 'U': if UPLO = 'L': */
/* > */
/* > ( a a a v4 v5 ) ( d ) */
/* > ( a a v4 v5 ) ( 1 d ) */
/* > ( a 1 v5 ) ( v1 1 a ) */
/* > ( d 1 ) ( v1 v2 a a ) */
/* > ( d ) ( v1 v2 a a a ) */
/* > */
/* > where d denotes a diagonal element of the reduced matrix, a denotes */
/* > an element of the original matrix that is unchanged, and vi denotes */
/* > an element of the vector defining H(i). */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */ void zlatrd_(char *uplo, integer *n, integer *nb,
doublecomplex *a, integer *lda, doublereal *e, doublecomplex *tau,
doublecomplex *w, integer *ldw)
{
/* System generated locals */
integer a_dim1, a_offset, w_dim1, w_offset, i__1, i__2, i__3;
doublereal d__1;
doublecomplex z__1, z__2, z__3, z__4;
/* Local variables */
integer i__;
doublecomplex alpha;
extern logical lsame_(char *, char *);
extern /* Subroutine */ void zscal_(integer *, doublecomplex *,
doublecomplex *, integer *);
extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *,
doublecomplex *, integer *, doublecomplex *, integer *);
extern /* Subroutine */ void zgemv_(char *, integer *, integer *,
doublecomplex *, doublecomplex *, integer *, doublecomplex *,
integer *, doublecomplex *, doublecomplex *, integer *),
zhemv_(char *, integer *, doublecomplex *, doublecomplex *,
integer *, doublecomplex *, integer *, doublecomplex *,
doublecomplex *, integer *), zaxpy_(integer *,
doublecomplex *, doublecomplex *, integer *, doublecomplex *,
integer *);
integer iw;
extern /* Subroutine */ void zlarfg_(integer *, doublecomplex *,
doublecomplex *, integer *, doublecomplex *), zlacgv_(integer *,
doublecomplex *, integer *);
/* -- LAPACK auxiliary routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */
/* ===================================================================== */
/* Quick return if possible */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--e;
--tau;
w_dim1 = *ldw;
w_offset = 1 + w_dim1 * 1;
w -= w_offset;
/* Function Body */
if (*n <= 0) {
return;
}
if (lsame_(uplo, "U")) {
/* Reduce last NB columns of upper triangle */
i__1 = *n - *nb + 1;
for (i__ = *n; i__ >= i__1; --i__) {
iw = i__ - *n + *nb;
if (i__ < *n) {
/* Update A(1:i,i) */
i__2 = i__ + i__ * a_dim1;
i__3 = i__ + i__ * a_dim1;
d__1 = a[i__3].r;
a[i__2].r = d__1, a[i__2].i = 0.;
i__2 = *n - i__;
zlacgv_(&i__2, &w[i__ + (iw + 1) * w_dim1], ldw);
i__2 = *n - i__;
z__1.r = -1., z__1.i = 0.;
zgemv_("No transpose", &i__, &i__2, &z__1, &a[(i__ + 1) *
a_dim1 + 1], lda, &w[i__ + (iw + 1) * w_dim1], ldw, &
c_b2, &a[i__ * a_dim1 + 1], &c__1);
i__2 = *n - i__;
zlacgv_(&i__2, &w[i__ + (iw + 1) * w_dim1], ldw);
i__2 = *n - i__;
zlacgv_(&i__2, &a[i__ + (i__ + 1) * a_dim1], lda);
i__2 = *n - i__;
z__1.r = -1., z__1.i = 0.;
zgemv_("No transpose", &i__, &i__2, &z__1, &w[(iw + 1) *
w_dim1 + 1], ldw, &a[i__ + (i__ + 1) * a_dim1], lda, &
c_b2, &a[i__ * a_dim1 + 1], &c__1);
i__2 = *n - i__;
zlacgv_(&i__2, &a[i__ + (i__ + 1) * a_dim1], lda);
i__2 = i__ + i__ * a_dim1;
i__3 = i__ + i__ * a_dim1;
d__1 = a[i__3].r;
a[i__2].r = d__1, a[i__2].i = 0.;
}
if (i__ > 1) {
/* Generate elementary reflector H(i) to annihilate */
/* A(1:i-2,i) */
i__2 = i__ - 1 + i__ * a_dim1;
alpha.r = a[i__2].r, alpha.i = a[i__2].i;
i__2 = i__ - 1;
zlarfg_(&i__2, &alpha, &a[i__ * a_dim1 + 1], &c__1, &tau[i__
- 1]);
i__2 = i__ - 1;
e[i__2] = alpha.r;
i__2 = i__ - 1 + i__ * a_dim1;
a[i__2].r = 1., a[i__2].i = 0.;
/* Compute W(1:i-1,i) */
i__2 = i__ - 1;
zhemv_("Upper", &i__2, &c_b2, &a[a_offset], lda, &a[i__ *
a_dim1 + 1], &c__1, &c_b1, &w[iw * w_dim1 + 1], &c__1);
if (i__ < *n) {
i__2 = i__ - 1;
i__3 = *n - i__;
zgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &w[(iw
+ 1) * w_dim1 + 1], ldw, &a[i__ * a_dim1 + 1], &
c__1, &c_b1, &w[i__ + 1 + iw * w_dim1], &c__1);
i__2 = i__ - 1;
i__3 = *n - i__;
z__1.r = -1., z__1.i = 0.;
zgemv_("No transpose", &i__2, &i__3, &z__1, &a[(i__ + 1) *
a_dim1 + 1], lda, &w[i__ + 1 + iw * w_dim1], &
c__1, &c_b2, &w[iw * w_dim1 + 1], &c__1);
i__2 = i__ - 1;
i__3 = *n - i__;
zgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[(
i__ + 1) * a_dim1 + 1], lda, &a[i__ * a_dim1 + 1],
&c__1, &c_b1, &w[i__ + 1 + iw * w_dim1], &c__1);
i__2 = i__ - 1;
i__3 = *n - i__;
z__1.r = -1., z__1.i = 0.;
zgemv_("No transpose", &i__2, &i__3, &z__1, &w[(iw + 1) *
w_dim1 + 1], ldw, &w[i__ + 1 + iw * w_dim1], &
c__1, &c_b2, &w[iw * w_dim1 + 1], &c__1);
}
i__2 = i__ - 1;
zscal_(&i__2, &tau[i__ - 1], &w[iw * w_dim1 + 1], &c__1);
z__3.r = -.5, z__3.i = 0.;
i__2 = i__ - 1;
z__2.r = z__3.r * tau[i__2].r - z__3.i * tau[i__2].i, z__2.i =
z__3.r * tau[i__2].i + z__3.i * tau[i__2].r;
i__3 = i__ - 1;
zdotc_(&z__4, &i__3, &w[iw * w_dim1 + 1], &c__1, &a[i__ *
a_dim1 + 1], &c__1);
z__1.r = z__2.r * z__4.r - z__2.i * z__4.i, z__1.i = z__2.r *
z__4.i + z__2.i * z__4.r;
alpha.r = z__1.r, alpha.i = z__1.i;
i__2 = i__ - 1;
zaxpy_(&i__2, &alpha, &a[i__ * a_dim1 + 1], &c__1, &w[iw *
w_dim1 + 1], &c__1);
}
/* L10: */
}
} else {
/* Reduce first NB columns of lower triangle */
i__1 = *nb;
for (i__ = 1; i__ <= i__1; ++i__) {
/* Update A(i:n,i) */
i__2 = i__ + i__ * a_dim1;
i__3 = i__ + i__ * a_dim1;
d__1 = a[i__3].r;
a[i__2].r = d__1, a[i__2].i = 0.;
i__2 = i__ - 1;
zlacgv_(&i__2, &w[i__ + w_dim1], ldw);
i__2 = *n - i__ + 1;
i__3 = i__ - 1;
z__1.r = -1., z__1.i = 0.;
zgemv_("No transpose", &i__2, &i__3, &z__1, &a[i__ + a_dim1], lda,
&w[i__ + w_dim1], ldw, &c_b2, &a[i__ + i__ * a_dim1], &
c__1);
i__2 = i__ - 1;
zlacgv_(&i__2, &w[i__ + w_dim1], ldw);
i__2 = i__ - 1;
zlacgv_(&i__2, &a[i__ + a_dim1], lda);
i__2 = *n - i__ + 1;
i__3 = i__ - 1;
z__1.r = -1., z__1.i = 0.;
zgemv_("No transpose", &i__2, &i__3, &z__1, &w[i__ + w_dim1], ldw,
&a[i__ + a_dim1], lda, &c_b2, &a[i__ + i__ * a_dim1], &
c__1);
i__2 = i__ - 1;
zlacgv_(&i__2, &a[i__ + a_dim1], lda);
i__2 = i__ + i__ * a_dim1;
i__3 = i__ + i__ * a_dim1;
d__1 = a[i__3].r;
a[i__2].r = d__1, a[i__2].i = 0.;
if (i__ < *n) {
/* Generate elementary reflector H(i) to annihilate */
/* A(i+2:n,i) */
i__2 = i__ + 1 + i__ * a_dim1;
alpha.r = a[i__2].r, alpha.i = a[i__2].i;
i__2 = *n - i__;
/* Computing MIN */
i__3 = i__ + 2;
zlarfg_(&i__2, &alpha, &a[f2cmin(i__3,*n) + i__ * a_dim1], &c__1,
&tau[i__]);
i__2 = i__;
e[i__2] = alpha.r;
i__2 = i__ + 1 + i__ * a_dim1;
a[i__2].r = 1., a[i__2].i = 0.;
/* Compute W(i+1:n,i) */
i__2 = *n - i__;
zhemv_("Lower", &i__2, &c_b2, &a[i__ + 1 + (i__ + 1) * a_dim1]
, lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b1, &w[
i__ + 1 + i__ * w_dim1], &c__1);
i__2 = *n - i__;
i__3 = i__ - 1;
zgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &w[i__ + 1
+ w_dim1], ldw, &a[i__ + 1 + i__ * a_dim1], &c__1, &
c_b1, &w[i__ * w_dim1 + 1], &c__1);
i__2 = *n - i__;
i__3 = i__ - 1;
z__1.r = -1., z__1.i = 0.;
zgemv_("No transpose", &i__2, &i__3, &z__1, &a[i__ + 1 +
a_dim1], lda, &w[i__ * w_dim1 + 1], &c__1, &c_b2, &w[
i__ + 1 + i__ * w_dim1], &c__1);
i__2 = *n - i__;
i__3 = i__ - 1;
zgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[i__ + 1
+ a_dim1], lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &
c_b1, &w[i__ * w_dim1 + 1], &c__1);
i__2 = *n - i__;
i__3 = i__ - 1;
z__1.r = -1., z__1.i = 0.;
zgemv_("No transpose", &i__2, &i__3, &z__1, &w[i__ + 1 +
w_dim1], ldw, &w[i__ * w_dim1 + 1], &c__1, &c_b2, &w[
i__ + 1 + i__ * w_dim1], &c__1);
i__2 = *n - i__;
zscal_(&i__2, &tau[i__], &w[i__ + 1 + i__ * w_dim1], &c__1);
z__3.r = -.5, z__3.i = 0.;
i__2 = i__;
z__2.r = z__3.r * tau[i__2].r - z__3.i * tau[i__2].i, z__2.i =
z__3.r * tau[i__2].i + z__3.i * tau[i__2].r;
i__3 = *n - i__;
zdotc_(&z__4, &i__3, &w[i__ + 1 + i__ * w_dim1], &c__1, &a[
i__ + 1 + i__ * a_dim1], &c__1);
z__1.r = z__2.r * z__4.r - z__2.i * z__4.i, z__1.i = z__2.r *
z__4.i + z__2.i * z__4.r;
alpha.r = z__1.r, alpha.i = z__1.i;
i__2 = *n - i__;
zaxpy_(&i__2, &alpha, &a[i__ + 1 + i__ * a_dim1], &c__1, &w[
i__ + 1 + i__ * w_dim1], &c__1);
}
/* L20: */
}
}
return;
/* End of ZLATRD */
} /* zlatrd_ */