OpenBLAS/lapack-netlib/SRC/zlaqr0.c

1371 lines
42 KiB
C

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif
#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif
#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif
typedef blasint integer;
typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
#ifdef _MSC_VER
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
#else
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#endif
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef blasint logical;
typedef char logical1;
typedef char integer1;
#define TRUE_ (1)
#define FALSE_ (0)
/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif
/* I/O stuff */
typedef int flag;
typedef int ftnlen;
typedef int ftnint;
/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;
/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;
/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;
/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;
/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;
/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;
#define VOID void
union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};
typedef union Multitype Multitype;
struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;
struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;
#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#ifdef _MSC_VER
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
#else
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#endif
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimagf(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
/* procedure parameter types for -A and -C++ */
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif
static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#ifdef _MSC_VER
static _Fcomplex cpow_ui(complex x, integer n) {
complex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
for(u = n; ; ) {
if(u & 01) pow.r *= x.r, pow.i *= x.i;
if(u >>= 1) x.r *= x.r, x.i *= x.i;
else break;
}
}
_Fcomplex p={pow.r, pow.i};
return p;
}
#else
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
#ifdef _MSC_VER
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
_Dcomplex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
for(u = n; ; ) {
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
else break;
}
}
_Dcomplex p = {pow._Val[0], pow._Val[1]};
return p;
}
#else
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
/* Table of constant values */
static integer c__13 = 13;
static integer c__15 = 15;
static integer c_n1 = -1;
static integer c__12 = 12;
static integer c__14 = 14;
static integer c__16 = 16;
static logical c_false = FALSE_;
static integer c__1 = 1;
static integer c__3 = 3;
/* > \brief \b ZLAQR0 computes the eigenvalues of a Hessenberg matrix, and optionally the matrices from the Sc
hur decomposition. */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download ZLAQR0 + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaqr0.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaqr0.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaqr0.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE ZLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ, */
/* IHIZ, Z, LDZ, WORK, LWORK, INFO ) */
/* INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N */
/* LOGICAL WANTT, WANTZ */
/* COMPLEX*16 H( LDH, * ), W( * ), WORK( * ), Z( LDZ, * ) */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > ZLAQR0 computes the eigenvalues of a Hessenberg matrix H */
/* > and, optionally, the matrices T and Z from the Schur decomposition */
/* > H = Z T Z**H, where T is an upper triangular matrix (the */
/* > Schur form), and Z is the unitary matrix of Schur vectors. */
/* > */
/* > Optionally Z may be postmultiplied into an input unitary */
/* > matrix Q so that this routine can give the Schur factorization */
/* > of a matrix A which has been reduced to the Hessenberg form H */
/* > by the unitary matrix Q: A = Q*H*Q**H = (QZ)*H*(QZ)**H. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] WANTT */
/* > \verbatim */
/* > WANTT is LOGICAL */
/* > = .TRUE. : the full Schur form T is required; */
/* > = .FALSE.: only eigenvalues are required. */
/* > \endverbatim */
/* > */
/* > \param[in] WANTZ */
/* > \verbatim */
/* > WANTZ is LOGICAL */
/* > = .TRUE. : the matrix of Schur vectors Z is required; */
/* > = .FALSE.: Schur vectors are not required. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrix H. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] ILO */
/* > \verbatim */
/* > ILO is INTEGER */
/* > \endverbatim */
/* > */
/* > \param[in] IHI */
/* > \verbatim */
/* > IHI is INTEGER */
/* > */
/* > It is assumed that H is already upper triangular in rows */
/* > and columns 1:ILO-1 and IHI+1:N and, if ILO > 1, */
/* > H(ILO,ILO-1) is zero. ILO and IHI are normally set by a */
/* > previous call to ZGEBAL, and then passed to ZGEHRD when the */
/* > matrix output by ZGEBAL is reduced to Hessenberg form. */
/* > Otherwise, ILO and IHI should be set to 1 and N, */
/* > respectively. If N > 0, then 1 <= ILO <= IHI <= N. */
/* > If N = 0, then ILO = 1 and IHI = 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] H */
/* > \verbatim */
/* > H is COMPLEX*16 array, dimension (LDH,N) */
/* > On entry, the upper Hessenberg matrix H. */
/* > On exit, if INFO = 0 and WANTT is .TRUE., then H */
/* > contains the upper triangular matrix T from the Schur */
/* > decomposition (the Schur form). If INFO = 0 and WANT is */
/* > .FALSE., then the contents of H are unspecified on exit. */
/* > (The output value of H when INFO > 0 is given under the */
/* > description of INFO below.) */
/* > */
/* > This subroutine may explicitly set H(i,j) = 0 for i > j and */
/* > j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N. */
/* > \endverbatim */
/* > */
/* > \param[in] LDH */
/* > \verbatim */
/* > LDH is INTEGER */
/* > The leading dimension of the array H. LDH >= f2cmax(1,N). */
/* > \endverbatim */
/* > */
/* > \param[out] W */
/* > \verbatim */
/* > W is COMPLEX*16 array, dimension (N) */
/* > The computed eigenvalues of H(ILO:IHI,ILO:IHI) are stored */
/* > in W(ILO:IHI). If WANTT is .TRUE., then the eigenvalues are */
/* > stored in the same order as on the diagonal of the Schur */
/* > form returned in H, with W(i) = H(i,i). */
/* > \endverbatim */
/* > */
/* > \param[in] ILOZ */
/* > \verbatim */
/* > ILOZ is INTEGER */
/* > \endverbatim */
/* > */
/* > \param[in] IHIZ */
/* > \verbatim */
/* > IHIZ is INTEGER */
/* > Specify the rows of Z to which transformations must be */
/* > applied if WANTZ is .TRUE.. */
/* > 1 <= ILOZ <= ILO; IHI <= IHIZ <= N. */
/* > \endverbatim */
/* > */
/* > \param[in,out] Z */
/* > \verbatim */
/* > Z is COMPLEX*16 array, dimension (LDZ,IHI) */
/* > If WANTZ is .FALSE., then Z is not referenced. */
/* > If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is */
/* > replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the */
/* > orthogonal Schur factor of H(ILO:IHI,ILO:IHI). */
/* > (The output value of Z when INFO > 0 is given under */
/* > the description of INFO below.) */
/* > \endverbatim */
/* > */
/* > \param[in] LDZ */
/* > \verbatim */
/* > LDZ is INTEGER */
/* > The leading dimension of the array Z. if WANTZ is .TRUE. */
/* > then LDZ >= MAX(1,IHIZ). Otherwise, LDZ >= 1. */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is COMPLEX*16 array, dimension LWORK */
/* > On exit, if LWORK = -1, WORK(1) returns an estimate of */
/* > the optimal value for LWORK. */
/* > \endverbatim */
/* > */
/* > \param[in] LWORK */
/* > \verbatim */
/* > LWORK is INTEGER */
/* > The dimension of the array WORK. LWORK >= f2cmax(1,N) */
/* > is sufficient, but LWORK typically as large as 6*N may */
/* > be required for optimal performance. A workspace query */
/* > to determine the optimal workspace size is recommended. */
/* > */
/* > If LWORK = -1, then ZLAQR0 does a workspace query. */
/* > In this case, ZLAQR0 checks the input parameters and */
/* > estimates the optimal workspace size for the given */
/* > values of N, ILO and IHI. The estimate is returned */
/* > in WORK(1). No error message related to LWORK is */
/* > issued by XERBLA. Neither H nor Z are accessed. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > > 0: if INFO = i, ZLAQR0 failed to compute all of */
/* > the eigenvalues. Elements 1:ilo-1 and i+1:n of WR */
/* > and WI contain those eigenvalues which have been */
/* > successfully computed. (Failures are rare.) */
/* > */
/* > If INFO > 0 and WANT is .FALSE., then on exit, */
/* > the remaining unconverged eigenvalues are the eigen- */
/* > values of the upper Hessenberg matrix rows and */
/* > columns ILO through INFO of the final, output */
/* > value of H. */
/* > */
/* > If INFO > 0 and WANTT is .TRUE., then on exit */
/* > */
/* > (*) (initial value of H)*U = U*(final value of H) */
/* > */
/* > where U is a unitary matrix. The final */
/* > value of H is upper Hessenberg and triangular in */
/* > rows and columns INFO+1 through IHI. */
/* > */
/* > If INFO > 0 and WANTZ is .TRUE., then on exit */
/* > */
/* > (final value of Z(ILO:IHI,ILOZ:IHIZ) */
/* > = (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U */
/* > */
/* > where U is the unitary matrix in (*) (regard- */
/* > less of the value of WANTT.) */
/* > */
/* > If INFO > 0 and WANTZ is .FALSE., then Z is not */
/* > accessed. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date December 2016 */
/* > \ingroup complex16OTHERauxiliary */
/* > \par Contributors: */
/* ================== */
/* > */
/* > Karen Braman and Ralph Byers, Department of Mathematics, */
/* > University of Kansas, USA */
/* > \par References: */
/* ================ */
/* > */
/* > K. Braman, R. Byers and R. Mathias, The Multi-Shift QR */
/* > Algorithm Part I: Maintaining Well Focused Shifts, and Level 3 */
/* > Performance, SIAM Journal of Matrix Analysis, volume 23, pages */
/* > 929--947, 2002. */
/* > \n */
/* > K. Braman, R. Byers and R. Mathias, The Multi-Shift QR */
/* > Algorithm Part II: Aggressive Early Deflation, SIAM Journal */
/* > of Matrix Analysis, volume 23, pages 948--973, 2002. */
/* > */
/* ===================================================================== */
/* Subroutine */ void zlaqr0_(logical *wantt, logical *wantz, integer *n,
integer *ilo, integer *ihi, doublecomplex *h__, integer *ldh,
doublecomplex *w, integer *iloz, integer *ihiz, doublecomplex *z__,
integer *ldz, doublecomplex *work, integer *lwork, integer *info)
{
/* System generated locals */
integer h_dim1, h_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5;
doublereal d__1, d__2, d__3, d__4, d__5, d__6, d__7, d__8;
doublecomplex z__1, z__2, z__3, z__4, z__5;
/* Local variables */
integer ndec, ndfl, kbot, nmin;
doublecomplex swap;
integer ktop;
doublecomplex zdum[1] /* was [1][1] */;
integer kacc22, i__, k;
doublereal s;
integer itmax, nsmax, nwmax, kwtop;
doublecomplex aa, bb, cc, dd;
extern /* Subroutine */ void zlaqr3_(logical *, logical *, integer *,
integer *, integer *, integer *, doublecomplex *, integer *,
integer *, integer *, doublecomplex *, integer *, integer *,
integer *, doublecomplex *, doublecomplex *, integer *, integer *,
doublecomplex *, integer *, integer *, doublecomplex *, integer *
, doublecomplex *, integer *), zlaqr4_(logical *, logical *,
integer *, integer *, integer *, doublecomplex *, integer *,
doublecomplex *, integer *, integer *, doublecomplex *, integer *,
doublecomplex *, integer *, integer *), zlaqr5_(logical *,
logical *, integer *, integer *, integer *, integer *, integer *,
doublecomplex *, doublecomplex *, integer *, integer *, integer *,
doublecomplex *, integer *, doublecomplex *, integer *,
doublecomplex *, integer *, integer *, doublecomplex *, integer *,
integer *, doublecomplex *, integer *);
integer ld, nh, nibble, it, ks, kt, ku, kv, ls, ns, nw;
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *, ftnlen, ftnlen);
char jbcmpz[2];
doublecomplex rtdisc;
integer nwupbd;
logical sorted;
extern /* Subroutine */ void zlahqr_(logical *, logical *, integer *,
integer *, integer *, doublecomplex *, integer *, doublecomplex *,
integer *, integer *, doublecomplex *, integer *, integer *),
zlacpy_(char *, integer *, integer *, doublecomplex *, integer *,
doublecomplex *, integer *);
integer lwkopt;
doublecomplex tr2, det;
integer inf, kdu, nho, nve, kwh, nsr, nwr, kwv;
/* -- LAPACK auxiliary routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */
/* ================================================================ */
/* ==== Matrices of order NTINY or smaller must be processed by */
/* . ZLAHQR because of insufficient subdiagonal scratch space. */
/* . (This is a hard limit.) ==== */
/* ==== Exceptional deflation windows: try to cure rare */
/* . slow convergence by varying the size of the */
/* . deflation window after KEXNW iterations. ==== */
/* ==== Exceptional shifts: try to cure rare slow convergence */
/* . with ad-hoc exceptional shifts every KEXSH iterations. */
/* . ==== */
/* ==== The constant WILK1 is used to form the exceptional */
/* . shifts. ==== */
/* Parameter adjustments */
h_dim1 = *ldh;
h_offset = 1 + h_dim1 * 1;
h__ -= h_offset;
--w;
z_dim1 = *ldz;
z_offset = 1 + z_dim1 * 1;
z__ -= z_offset;
--work;
/* Function Body */
*info = 0;
/* ==== Quick return for N = 0: nothing to do. ==== */
if (*n == 0) {
work[1].r = 1., work[1].i = 0.;
return;
}
if (*n <= 15) {
/* ==== Tiny matrices must use ZLAHQR. ==== */
lwkopt = 1;
if (*lwork != -1) {
zlahqr_(wantt, wantz, n, ilo, ihi, &h__[h_offset], ldh, &w[1],
iloz, ihiz, &z__[z_offset], ldz, info);
}
} else {
/* ==== Use small bulge multi-shift QR with aggressive early */
/* . deflation on larger-than-tiny matrices. ==== */
/* ==== Hope for the best. ==== */
*info = 0;
/* ==== Set up job flags for ILAENV. ==== */
if (*wantt) {
*(unsigned char *)jbcmpz = 'S';
} else {
*(unsigned char *)jbcmpz = 'E';
}
if (*wantz) {
*(unsigned char *)&jbcmpz[1] = 'V';
} else {
*(unsigned char *)&jbcmpz[1] = 'N';
}
/* ==== NWR = recommended deflation window size. At this */
/* . point, N .GT. NTINY = 15, so there is enough */
/* . subdiagonal workspace for NWR.GE.2 as required. */
/* . (In fact, there is enough subdiagonal space for */
/* . NWR.GE.4.) ==== */
nwr = ilaenv_(&c__13, "ZLAQR0", jbcmpz, n, ilo, ihi, lwork, (ftnlen)6,
(ftnlen)2);
nwr = f2cmax(2,nwr);
/* Computing MIN */
i__1 = *ihi - *ilo + 1, i__2 = (*n - 1) / 3, i__1 = f2cmin(i__1,i__2);
nwr = f2cmin(i__1,nwr);
/* ==== NSR = recommended number of simultaneous shifts. */
/* . At this point N .GT. NTINY = 15, so there is at */
/* . enough subdiagonal workspace for NSR to be even */
/* . and greater than or equal to two as required. ==== */
nsr = ilaenv_(&c__15, "ZLAQR0", jbcmpz, n, ilo, ihi, lwork, (ftnlen)6,
(ftnlen)2);
/* Computing MIN */
i__1 = nsr, i__2 = (*n - 3) / 6, i__1 = f2cmin(i__1,i__2), i__2 = *ihi -
*ilo;
nsr = f2cmin(i__1,i__2);
/* Computing MAX */
i__1 = 2, i__2 = nsr - nsr % 2;
nsr = f2cmax(i__1,i__2);
/* ==== Estimate optimal workspace ==== */
/* ==== Workspace query call to ZLAQR3 ==== */
i__1 = nwr + 1;
zlaqr3_(wantt, wantz, n, ilo, ihi, &i__1, &h__[h_offset], ldh, iloz,
ihiz, &z__[z_offset], ldz, &ls, &ld, &w[1], &h__[h_offset],
ldh, n, &h__[h_offset], ldh, n, &h__[h_offset], ldh, &work[1],
&c_n1);
/* ==== Optimal workspace = MAX(ZLAQR5, ZLAQR3) ==== */
/* Computing MAX */
i__1 = nsr * 3 / 2, i__2 = (integer) work[1].r;
lwkopt = f2cmax(i__1,i__2);
/* ==== Quick return in case of workspace query. ==== */
if (*lwork == -1) {
d__1 = (doublereal) lwkopt;
z__1.r = d__1, z__1.i = 0.;
work[1].r = z__1.r, work[1].i = z__1.i;
return;
}
/* ==== ZLAHQR/ZLAQR0 crossover point ==== */
nmin = ilaenv_(&c__12, "ZLAQR0", jbcmpz, n, ilo, ihi, lwork, (ftnlen)
6, (ftnlen)2);
nmin = f2cmax(15,nmin);
/* ==== Nibble crossover point ==== */
nibble = ilaenv_(&c__14, "ZLAQR0", jbcmpz, n, ilo, ihi, lwork, (
ftnlen)6, (ftnlen)2);
nibble = f2cmax(0,nibble);
/* ==== Accumulate reflections during ttswp? Use block */
/* . 2-by-2 structure during matrix-matrix multiply? ==== */
kacc22 = ilaenv_(&c__16, "ZLAQR0", jbcmpz, n, ilo, ihi, lwork, (
ftnlen)6, (ftnlen)2);
kacc22 = f2cmax(0,kacc22);
kacc22 = f2cmin(2,kacc22);
/* ==== NWMAX = the largest possible deflation window for */
/* . which there is sufficient workspace. ==== */
/* Computing MIN */
i__1 = (*n - 1) / 3, i__2 = *lwork / 2;
nwmax = f2cmin(i__1,i__2);
nw = nwmax;
/* ==== NSMAX = the Largest number of simultaneous shifts */
/* . for which there is sufficient workspace. ==== */
/* Computing MIN */
i__1 = (*n - 3) / 6, i__2 = (*lwork << 1) / 3;
nsmax = f2cmin(i__1,i__2);
nsmax -= nsmax % 2;
/* ==== NDFL: an iteration count restarted at deflation. ==== */
ndfl = 1;
/* ==== ITMAX = iteration limit ==== */
/* Computing MAX */
i__1 = 10, i__2 = *ihi - *ilo + 1;
itmax = 30 * f2cmax(i__1,i__2);
/* ==== Last row and column in the active block ==== */
kbot = *ihi;
/* ==== Main Loop ==== */
i__1 = itmax;
for (it = 1; it <= i__1; ++it) {
/* ==== Done when KBOT falls below ILO ==== */
if (kbot < *ilo) {
goto L80;
}
/* ==== Locate active block ==== */
i__2 = *ilo + 1;
for (k = kbot; k >= i__2; --k) {
i__3 = k + (k - 1) * h_dim1;
if (h__[i__3].r == 0. && h__[i__3].i == 0.) {
goto L20;
}
/* L10: */
}
k = *ilo;
L20:
ktop = k;
/* ==== Select deflation window size: */
/* . Typical Case: */
/* . If possible and advisable, nibble the entire */
/* . active block. If not, use size MIN(NWR,NWMAX) */
/* . or MIN(NWR+1,NWMAX) depending upon which has */
/* . the smaller corresponding subdiagonal entry */
/* . (a heuristic). */
/* . */
/* . Exceptional Case: */
/* . If there have been no deflations in KEXNW or */
/* . more iterations, then vary the deflation window */
/* . size. At first, because, larger windows are, */
/* . in general, more powerful than smaller ones, */
/* . rapidly increase the window to the maximum possible. */
/* . Then, gradually reduce the window size. ==== */
nh = kbot - ktop + 1;
nwupbd = f2cmin(nh,nwmax);
if (ndfl < 5) {
nw = f2cmin(nwupbd,nwr);
} else {
/* Computing MIN */
i__2 = nwupbd, i__3 = nw << 1;
nw = f2cmin(i__2,i__3);
}
if (nw < nwmax) {
if (nw >= nh - 1) {
nw = nh;
} else {
kwtop = kbot - nw + 1;
i__2 = kwtop + (kwtop - 1) * h_dim1;
i__3 = kwtop - 1 + (kwtop - 2) * h_dim1;
if ((d__1 = h__[i__2].r, abs(d__1)) + (d__2 = d_imag(&h__[
kwtop + (kwtop - 1) * h_dim1]), abs(d__2)) > (
d__3 = h__[i__3].r, abs(d__3)) + (d__4 = d_imag(&
h__[kwtop - 1 + (kwtop - 2) * h_dim1]), abs(d__4))
) {
++nw;
}
}
}
if (ndfl < 5) {
ndec = -1;
} else if (ndec >= 0 || nw >= nwupbd) {
++ndec;
if (nw - ndec < 2) {
ndec = 0;
}
nw -= ndec;
}
/* ==== Aggressive early deflation: */
/* . split workspace under the subdiagonal into */
/* . - an nw-by-nw work array V in the lower */
/* . left-hand-corner, */
/* . - an NW-by-at-least-NW-but-more-is-better */
/* . (NW-by-NHO) horizontal work array along */
/* . the bottom edge, */
/* . - an at-least-NW-but-more-is-better (NHV-by-NW) */
/* . vertical work array along the left-hand-edge. */
/* . ==== */
kv = *n - nw + 1;
kt = nw + 1;
nho = *n - nw - 1 - kt + 1;
kwv = nw + 2;
nve = *n - nw - kwv + 1;
/* ==== Aggressive early deflation ==== */
zlaqr3_(wantt, wantz, n, &ktop, &kbot, &nw, &h__[h_offset], ldh,
iloz, ihiz, &z__[z_offset], ldz, &ls, &ld, &w[1], &h__[kv
+ h_dim1], ldh, &nho, &h__[kv + kt * h_dim1], ldh, &nve, &
h__[kwv + h_dim1], ldh, &work[1], lwork);
/* ==== Adjust KBOT accounting for new deflations. ==== */
kbot -= ld;
/* ==== KS points to the shifts. ==== */
ks = kbot - ls + 1;
/* ==== Skip an expensive QR sweep if there is a (partly */
/* . heuristic) reason to expect that many eigenvalues */
/* . will deflate without it. Here, the QR sweep is */
/* . skipped if many eigenvalues have just been deflated */
/* . or if the remaining active block is small. */
if (ld == 0 || ld * 100 <= nw * nibble && kbot - ktop + 1 > f2cmin(
nmin,nwmax)) {
/* ==== NS = nominal number of simultaneous shifts. */
/* . This may be lowered (slightly) if ZLAQR3 */
/* . did not provide that many shifts. ==== */
/* Computing MIN */
/* Computing MAX */
i__4 = 2, i__5 = kbot - ktop;
i__2 = f2cmin(nsmax,nsr), i__3 = f2cmax(i__4,i__5);
ns = f2cmin(i__2,i__3);
ns -= ns % 2;
/* ==== If there have been no deflations */
/* . in a multiple of KEXSH iterations, */
/* . then try exceptional shifts. */
/* . Otherwise use shifts provided by */
/* . ZLAQR3 above or from the eigenvalues */
/* . of a trailing principal submatrix. ==== */
if (ndfl % 6 == 0) {
ks = kbot - ns + 1;
i__2 = ks + 1;
for (i__ = kbot; i__ >= i__2; i__ += -2) {
i__3 = i__;
i__4 = i__ + i__ * h_dim1;
i__5 = i__ + (i__ - 1) * h_dim1;
d__3 = ((d__1 = h__[i__5].r, abs(d__1)) + (d__2 =
d_imag(&h__[i__ + (i__ - 1) * h_dim1]), abs(
d__2))) * .75;
z__1.r = h__[i__4].r + d__3, z__1.i = h__[i__4].i;
w[i__3].r = z__1.r, w[i__3].i = z__1.i;
i__3 = i__ - 1;
i__4 = i__;
w[i__3].r = w[i__4].r, w[i__3].i = w[i__4].i;
/* L30: */
}
} else {
/* ==== Got NS/2 or fewer shifts? Use ZLAQR4 or */
/* . ZLAHQR on a trailing principal submatrix to */
/* . get more. (Since NS.LE.NSMAX.LE.(N-3)/6, */
/* . there is enough space below the subdiagonal */
/* . to fit an NS-by-NS scratch array.) ==== */
if (kbot - ks + 1 <= ns / 2) {
ks = kbot - ns + 1;
kt = *n - ns + 1;
zlacpy_("A", &ns, &ns, &h__[ks + ks * h_dim1], ldh, &
h__[kt + h_dim1], ldh);
if (ns > nmin) {
zlaqr4_(&c_false, &c_false, &ns, &c__1, &ns, &h__[
kt + h_dim1], ldh, &w[ks], &c__1, &c__1,
zdum, &c__1, &work[1], lwork, &inf);
} else {
zlahqr_(&c_false, &c_false, &ns, &c__1, &ns, &h__[
kt + h_dim1], ldh, &w[ks], &c__1, &c__1,
zdum, &c__1, &inf);
}
ks += inf;
/* ==== In case of a rare QR failure use */
/* . eigenvalues of the trailing 2-by-2 */
/* . principal submatrix. Scale to avoid */
/* . overflows, underflows and subnormals. */
/* . (The scale factor S can not be zero, */
/* . because H(KBOT,KBOT-1) is nonzero.) ==== */
if (ks >= kbot) {
i__2 = kbot - 1 + (kbot - 1) * h_dim1;
i__3 = kbot + (kbot - 1) * h_dim1;
i__4 = kbot - 1 + kbot * h_dim1;
i__5 = kbot + kbot * h_dim1;
s = (d__1 = h__[i__2].r, abs(d__1)) + (d__2 =
d_imag(&h__[kbot - 1 + (kbot - 1) *
h_dim1]), abs(d__2)) + ((d__3 = h__[i__3]
.r, abs(d__3)) + (d__4 = d_imag(&h__[kbot
+ (kbot - 1) * h_dim1]), abs(d__4))) + ((
d__5 = h__[i__4].r, abs(d__5)) + (d__6 =
d_imag(&h__[kbot - 1 + kbot * h_dim1]),
abs(d__6))) + ((d__7 = h__[i__5].r, abs(
d__7)) + (d__8 = d_imag(&h__[kbot + kbot *
h_dim1]), abs(d__8)));
i__2 = kbot - 1 + (kbot - 1) * h_dim1;
z__1.r = h__[i__2].r / s, z__1.i = h__[i__2].i /
s;
aa.r = z__1.r, aa.i = z__1.i;
i__2 = kbot + (kbot - 1) * h_dim1;
z__1.r = h__[i__2].r / s, z__1.i = h__[i__2].i /
s;
cc.r = z__1.r, cc.i = z__1.i;
i__2 = kbot - 1 + kbot * h_dim1;
z__1.r = h__[i__2].r / s, z__1.i = h__[i__2].i /
s;
bb.r = z__1.r, bb.i = z__1.i;
i__2 = kbot + kbot * h_dim1;
z__1.r = h__[i__2].r / s, z__1.i = h__[i__2].i /
s;
dd.r = z__1.r, dd.i = z__1.i;
z__2.r = aa.r + dd.r, z__2.i = aa.i + dd.i;
z__1.r = z__2.r / 2., z__1.i = z__2.i / 2.;
tr2.r = z__1.r, tr2.i = z__1.i;
z__3.r = aa.r - tr2.r, z__3.i = aa.i - tr2.i;
z__4.r = dd.r - tr2.r, z__4.i = dd.i - tr2.i;
z__2.r = z__3.r * z__4.r - z__3.i * z__4.i,
z__2.i = z__3.r * z__4.i + z__3.i *
z__4.r;
z__5.r = bb.r * cc.r - bb.i * cc.i, z__5.i = bb.r
* cc.i + bb.i * cc.r;
z__1.r = z__2.r - z__5.r, z__1.i = z__2.i -
z__5.i;
det.r = z__1.r, det.i = z__1.i;
z__2.r = -det.r, z__2.i = -det.i;
z_sqrt(&z__1, &z__2);
rtdisc.r = z__1.r, rtdisc.i = z__1.i;
i__2 = kbot - 1;
z__2.r = tr2.r + rtdisc.r, z__2.i = tr2.i +
rtdisc.i;
z__1.r = s * z__2.r, z__1.i = s * z__2.i;
w[i__2].r = z__1.r, w[i__2].i = z__1.i;
i__2 = kbot;
z__2.r = tr2.r - rtdisc.r, z__2.i = tr2.i -
rtdisc.i;
z__1.r = s * z__2.r, z__1.i = s * z__2.i;
w[i__2].r = z__1.r, w[i__2].i = z__1.i;
ks = kbot - 1;
}
}
if (kbot - ks + 1 > ns) {
/* ==== Sort the shifts (Helps a little) ==== */
sorted = FALSE_;
i__2 = ks + 1;
for (k = kbot; k >= i__2; --k) {
if (sorted) {
goto L60;
}
sorted = TRUE_;
i__3 = k - 1;
for (i__ = ks; i__ <= i__3; ++i__) {
i__4 = i__;
i__5 = i__ + 1;
if ((d__1 = w[i__4].r, abs(d__1)) + (d__2 =
d_imag(&w[i__]), abs(d__2)) < (d__3 =
w[i__5].r, abs(d__3)) + (d__4 =
d_imag(&w[i__ + 1]), abs(d__4))) {
sorted = FALSE_;
i__4 = i__;
swap.r = w[i__4].r, swap.i = w[i__4].i;
i__4 = i__;
i__5 = i__ + 1;
w[i__4].r = w[i__5].r, w[i__4].i = w[i__5]
.i;
i__4 = i__ + 1;
w[i__4].r = swap.r, w[i__4].i = swap.i;
}
/* L40: */
}
/* L50: */
}
L60:
;
}
}
/* ==== If there are only two shifts, then use */
/* . only one. ==== */
if (kbot - ks + 1 == 2) {
i__2 = kbot;
i__3 = kbot + kbot * h_dim1;
z__2.r = w[i__2].r - h__[i__3].r, z__2.i = w[i__2].i -
h__[i__3].i;
z__1.r = z__2.r, z__1.i = z__2.i;
i__4 = kbot - 1;
i__5 = kbot + kbot * h_dim1;
z__4.r = w[i__4].r - h__[i__5].r, z__4.i = w[i__4].i -
h__[i__5].i;
z__3.r = z__4.r, z__3.i = z__4.i;
if ((d__1 = z__1.r, abs(d__1)) + (d__2 = d_imag(&z__1),
abs(d__2)) < (d__3 = z__3.r, abs(d__3)) + (d__4 =
d_imag(&z__3), abs(d__4))) {
i__2 = kbot - 1;
i__3 = kbot;
w[i__2].r = w[i__3].r, w[i__2].i = w[i__3].i;
} else {
i__2 = kbot;
i__3 = kbot - 1;
w[i__2].r = w[i__3].r, w[i__2].i = w[i__3].i;
}
}
/* ==== Use up to NS of the the smallest magnitude */
/* . shifts. If there aren't NS shifts available, */
/* . then use them all, possibly dropping one to */
/* . make the number of shifts even. ==== */
/* Computing MIN */
i__2 = ns, i__3 = kbot - ks + 1;
ns = f2cmin(i__2,i__3);
ns -= ns % 2;
ks = kbot - ns + 1;
/* ==== Small-bulge multi-shift QR sweep: */
/* . split workspace under the subdiagonal into */
/* . - a KDU-by-KDU work array U in the lower */
/* . left-hand-corner, */
/* . - a KDU-by-at-least-KDU-but-more-is-better */
/* . (KDU-by-NHo) horizontal work array WH along */
/* . the bottom edge, */
/* . - and an at-least-KDU-but-more-is-better-by-KDU */
/* . (NVE-by-KDU) vertical work WV arrow along */
/* . the left-hand-edge. ==== */
kdu = ns << 1;
ku = *n - kdu + 1;
kwh = kdu + 1;
nho = *n - kdu - 3 - (kdu + 1) + 1;
kwv = kdu + 4;
nve = *n - kdu - kwv + 1;
/* ==== Small-bulge multi-shift QR sweep ==== */
zlaqr5_(wantt, wantz, &kacc22, n, &ktop, &kbot, &ns, &w[ks], &
h__[h_offset], ldh, iloz, ihiz, &z__[z_offset], ldz, &
work[1], &c__3, &h__[ku + h_dim1], ldh, &nve, &h__[
kwv + h_dim1], ldh, &nho, &h__[ku + kwh * h_dim1],
ldh);
}
/* ==== Note progress (or the lack of it). ==== */
if (ld > 0) {
ndfl = 1;
} else {
++ndfl;
}
/* ==== End of main loop ==== */
/* L70: */
}
/* ==== Iteration limit exceeded. Set INFO to show where */
/* . the problem occurred and exit. ==== */
*info = kbot;
L80:
;
}
/* ==== Return the optimal value of LWORK. ==== */
d__1 = (doublereal) lwkopt;
z__1.r = d__1, z__1.i = 0.;
work[1].r = z__1.r, work[1].i = z__1.i;
/* ==== End of ZLAQR0 ==== */
return;
} /* zlaqr0_ */