OpenBLAS/lapack-netlib/SRC/zlaqp3rk.c

1158 lines
35 KiB
C

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif
#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif
#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif
typedef blasint integer;
typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
#ifdef _MSC_VER
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
#else
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#endif
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef blasint logical;
typedef char logical1;
typedef char integer1;
#define TRUE_ (1)
#define FALSE_ (0)
/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif
/* I/O stuff */
typedef int flag;
typedef int ftnlen;
typedef int ftnint;
/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;
/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;
/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;
/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;
/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;
/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;
#define VOID void
union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};
typedef union Multitype Multitype;
struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;
struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;
#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#ifdef _MSC_VER
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
#else
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#endif
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimagf(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle_() continue;
#define myceiling_(w) {ceil(w)}
#define myhuge_(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc_(w,s,e,n) dmaxloc_(w,*(s),*(e),n)
/* procedure parameter types for -A and -C++ */
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif
static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#ifdef _MSC_VER
static _Fcomplex cpow_ui(complex x, integer n) {
complex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
for(u = n; ; ) {
if(u & 01) pow.r *= x.r, pow.i *= x.i;
if(u >>= 1) x.r *= x.r, x.i *= x.i;
else break;
}
}
_Fcomplex p={pow.r, pow.i};
return p;
}
#else
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
#ifdef _MSC_VER
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
_Dcomplex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
for(u = n; ; ) {
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
else break;
}
}
_Dcomplex p = {pow._Val[0], pow._Val[1]};
return p;
}
#else
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
/* Table of constant values */
static doublecomplex c_b1 = {0.,0.};
static doublecomplex c_b2 = {1.,0.};
static integer c__1 = 1;
/* Subroutine */ int zlaqp3rk_(integer *m, integer *n, integer *nrhs, integer
*ioffset, integer *nb, doublereal *abstol, doublereal *reltol,
integer *kp1, doublereal *maxc2nrm, doublecomplex *a, integer *lda,
logical *done, integer *kb, doublereal *maxc2nrmk, doublereal *
relmaxc2nrmk, integer *jpiv, doublecomplex *tau, doublereal *vn1,
doublereal *vn2, doublecomplex *auxv, doublecomplex *f, integer *ldf,
integer *iwork, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, f_dim1, f_offset, i__1, i__2, i__3;
doublereal d__1, d__2;
doublecomplex z__1;
/* Local variables */
doublereal temp, temp2;
integer i__, j, k;
doublereal tol3z;
integer itemp;
extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *,
integer *, doublecomplex *, doublecomplex *, integer *,
doublecomplex *, integer *, doublecomplex *, doublecomplex *,
integer *), zgemv_(char *, integer *, integer *,
doublecomplex *, doublecomplex *, integer *, doublecomplex *,
integer *, doublecomplex *, doublecomplex *, integer *);
integer minmnfact;
extern /* Subroutine */ int zswap_(integer *, doublecomplex *, integer *,
doublecomplex *, integer *);
doublereal myhugeval;
integer minmnupdt;
extern doublereal dznrm2_(integer *, doublecomplex *, integer *);
integer if__;
extern doublereal dlamch_(char *);
integer kp;
extern integer idamax_(integer *, doublereal *, integer *);
extern logical disnan_(doublereal *);
integer lsticc;
extern /* Subroutine */ int zlarfg_(integer *, doublecomplex *,
doublecomplex *, integer *, doublecomplex *);
doublereal taunan;
doublecomplex aik;
/* -- LAPACK auxiliary routine -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* ===================================================================== */
/* Initialize INFO */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--jpiv;
--tau;
--vn1;
--vn2;
--auxv;
f_dim1 = *ldf;
f_offset = 1 + f_dim1 * 1;
f -= f_offset;
--iwork;
/* Function Body */
*info = 0;
/* MINMNFACT in the smallest dimension of the submatrix */
/* A(IOFFSET+1:M,1:N) to be factorized. */
/* Computing MIN */
i__1 = *m - *ioffset;
minmnfact = f2cmin(i__1,*n);
/* Computing MIN */
i__1 = *m - *ioffset, i__2 = *n + *nrhs;
minmnupdt = f2cmin(i__1,i__2);
*nb = f2cmin(*nb,minmnfact);
tol3z = sqrt(dlamch_("Epsilon"));
myhugeval = dlamch_("Overflow");
/* Compute factorization in a while loop over NB columns, */
/* K is the column index in the block A(1:M,1:N). */
k = 0;
lsticc = 0;
*done = FALSE_;
while(k < *nb && lsticc == 0) {
++k;
i__ = *ioffset + k;
if (i__ == 1) {
/* We are at the first column of the original whole matrix A_orig, */
/* therefore we use the computed KP1 and MAXC2NRM from the */
/* main routine. */
kp = *kp1;
} else {
/* Determine the pivot column in K-th step, i.e. the index */
/* of the column with the maximum 2-norm in the */
/* submatrix A(I:M,K:N). */
i__1 = *n - k + 1;
kp = k - 1 + idamax_(&i__1, &vn1[k], &c__1);
/* Determine the maximum column 2-norm and the relative maximum */
/* column 2-norm of the submatrix A(I:M,K:N) in step K. */
*maxc2nrmk = vn1[kp];
/* ============================================================ */
/* Check if the submatrix A(I:M,K:N) contains NaN, set */
/* INFO parameter to the column number, where the first NaN */
/* is found and return from the routine. */
/* We need to check the condition only if the */
/* column index (same as row index) of the original whole */
/* matrix is larger than 1, since the condition for whole */
/* original matrix is checked in the main routine. */
if (disnan_(maxc2nrmk)) {
*done = TRUE_;
/* Set KB, the number of factorized partial columns */
/* that are non-zero in each step in the block, */
/* i.e. the rank of the factor R. */
/* Set IF, the number of processed rows in the block, which */
/* is the same as the number of processed rows in */
/* the original whole matrix A_orig. */
*kb = k - 1;
if__ = i__ - 1;
*info = *kb + kp;
/* Set RELMAXC2NRMK to NaN. */
*relmaxc2nrmk = *maxc2nrmk;
/* There is no need to apply the block reflector to the */
/* residual of the matrix A stored in A(KB+1:M,KB+1:N), */
/* since the submatrix contains NaN and we stop */
/* the computation. */
/* But, we need to apply the block reflector to the residual */
/* right hand sides stored in A(KB+1:M,N+1:N+NRHS), if the */
/* residual right hand sides exist. This occurs */
/* when ( NRHS != 0 AND KB <= (M-IOFFSET) ): */
/* A(I+1:M,N+1:N+NRHS) := A(I+1:M,N+1:N+NRHS) - */
/* A(I+1:M,1:KB) * F(N+1:N+NRHS,1:KB)**H. */
if (*nrhs > 0 && *kb < *m - *ioffset) {
i__1 = *m - if__;
z__1.r = -1., z__1.i = 0.;
zgemm_("No transpose", "Conjugate transpose", &i__1, nrhs,
kb, &z__1, &a[if__ + 1 + a_dim1], lda, &f[*n + 1
+ f_dim1], ldf, &c_b2, &a[if__ + 1 + (*n + 1) *
a_dim1], lda);
}
/* There is no need to recompute the 2-norm of the */
/* difficult columns, since we stop the factorization. */
/* Array TAU(KF+1:MINMNFACT) is not set and contains */
/* undefined elements. */
/* Return from the routine. */
return 0;
}
/* Quick return, if the submatrix A(I:M,K:N) is */
/* a zero matrix. We need to check it only if the column index */
/* (same as row index) is larger than 1, since the condition */
/* for the whole original matrix A_orig is checked in the main */
/* routine. */
if (*maxc2nrmk == 0.) {
*done = TRUE_;
/* Set KB, the number of factorized partial columns */
/* that are non-zero in each step in the block, */
/* i.e. the rank of the factor R. */
/* Set IF, the number of processed rows in the block, which */
/* is the same as the number of processed rows in */
/* the original whole matrix A_orig. */
*kb = k - 1;
if__ = i__ - 1;
*relmaxc2nrmk = 0.;
/* There is no need to apply the block reflector to the */
/* residual of the matrix A stored in A(KB+1:M,KB+1:N), */
/* since the submatrix is zero and we stop the computation. */
/* But, we need to apply the block reflector to the residual */
/* right hand sides stored in A(KB+1:M,N+1:N+NRHS), if the */
/* residual right hand sides exist. This occurs */
/* when ( NRHS != 0 AND KB <= (M-IOFFSET) ): */
/* A(I+1:M,N+1:N+NRHS) := A(I+1:M,N+1:N+NRHS) - */
/* A(I+1:M,1:KB) * F(N+1:N+NRHS,1:KB)**H. */
if (*nrhs > 0 && *kb < *m - *ioffset) {
i__1 = *m - if__;
z__1.r = -1., z__1.i = 0.;
zgemm_("No transpose", "Conjugate transpose", &i__1, nrhs,
kb, &z__1, &a[if__ + 1 + a_dim1], lda, &f[*n + 1
+ f_dim1], ldf, &c_b2, &a[if__ + 1 + (*n + 1) *
a_dim1], lda);
}
/* There is no need to recompute the 2-norm of the */
/* difficult columns, since we stop the factorization. */
/* Set TAUs corresponding to the columns that were not */
/* factorized to ZERO, i.e. set TAU(KB+1:MINMNFACT) = CZERO, */
/* which is equivalent to seting TAU(K:MINMNFACT) = CZERO. */
i__1 = minmnfact;
for (j = k; j <= i__1; ++j) {
i__2 = j;
tau[i__2].r = 0., tau[i__2].i = 0.;
}
/* Return from the routine. */
return 0;
}
/* ============================================================ */
/* Check if the submatrix A(I:M,K:N) contains Inf, */
/* set INFO parameter to the column number, where */
/* the first Inf is found plus N, and continue */
/* the computation. */
/* We need to check the condition only if the */
/* column index (same as row index) of the original whole */
/* matrix is larger than 1, since the condition for whole */
/* original matrix is checked in the main routine. */
if (*info == 0 && *maxc2nrmk > myhugeval) {
*info = *n + k - 1 + kp;
}
/* ============================================================ */
/* Test for the second and third tolerance stopping criteria. */
/* NOTE: There is no need to test for ABSTOL.GE.ZERO, since */
/* MAXC2NRMK is non-negative. Similarly, there is no need */
/* to test for RELTOL.GE.ZERO, since RELMAXC2NRMK is */
/* non-negative. */
/* We need to check the condition only if the */
/* column index (same as row index) of the original whole */
/* matrix is larger than 1, since the condition for whole */
/* original matrix is checked in the main routine. */
*relmaxc2nrmk = *maxc2nrmk / *maxc2nrm;
if (*maxc2nrmk <= *abstol || *relmaxc2nrmk <= *reltol) {
*done = TRUE_;
/* Set KB, the number of factorized partial columns */
/* that are non-zero in each step in the block, */
/* i.e. the rank of the factor R. */
/* Set IF, the number of processed rows in the block, which */
/* is the same as the number of processed rows in */
/* the original whole matrix A_orig; */
*kb = k - 1;
if__ = i__ - 1;
/* Apply the block reflector to the residual of the */
/* matrix A and the residual of the right hand sides B, if */
/* the residual matrix and and/or the residual of the right */
/* hand sides exist, i.e. if the submatrix */
/* A(I+1:M,KB+1:N+NRHS) exists. This occurs when */
/* KB < MINMNUPDT = f2cmin( M-IOFFSET, N+NRHS ): */
/* A(IF+1:M,K+1:N+NRHS) := A(IF+1:M,KB+1:N+NRHS) - */
/* A(IF+1:M,1:KB) * F(KB+1:N+NRHS,1:KB)**H. */
if (*kb < minmnupdt) {
i__1 = *m - if__;
i__2 = *n + *nrhs - *kb;
z__1.r = -1., z__1.i = 0.;
zgemm_("No transpose", "Conjugate transpose", &i__1, &
i__2, kb, &z__1, &a[if__ + 1 + a_dim1], lda, &f[*
kb + 1 + f_dim1], ldf, &c_b2, &a[if__ + 1 + (*kb
+ 1) * a_dim1], lda);
}
/* There is no need to recompute the 2-norm of the */
/* difficult columns, since we stop the factorization. */
/* Set TAUs corresponding to the columns that were not */
/* factorized to ZERO, i.e. set TAU(KB+1:MINMNFACT) = CZERO, */
/* which is equivalent to seting TAU(K:MINMNFACT) = CZERO. */
i__1 = minmnfact;
for (j = k; j <= i__1; ++j) {
i__2 = j;
tau[i__2].r = 0., tau[i__2].i = 0.;
}
/* Return from the routine. */
return 0;
}
/* ============================================================ */
/* End ELSE of IF(I.EQ.1) */
}
/* =============================================================== */
/* If the pivot column is not the first column of the */
/* subblock A(1:M,K:N): */
/* 1) swap the K-th column and the KP-th pivot column */
/* in A(1:M,1:N); */
/* 2) swap the K-th row and the KP-th row in F(1:N,1:K-1) */
/* 3) copy the K-th element into the KP-th element of the partial */
/* and exact 2-norm vectors VN1 and VN2. (Swap is not needed */
/* for VN1 and VN2 since we use the element with the index */
/* larger than K in the next loop step.) */
/* 4) Save the pivot interchange with the indices relative to the */
/* the original matrix A_orig, not the block A(1:M,1:N). */
if (kp != k) {
zswap_(m, &a[kp * a_dim1 + 1], &c__1, &a[k * a_dim1 + 1], &c__1);
i__1 = k - 1;
zswap_(&i__1, &f[kp + f_dim1], ldf, &f[k + f_dim1], ldf);
vn1[kp] = vn1[k];
vn2[kp] = vn2[k];
itemp = jpiv[kp];
jpiv[kp] = jpiv[k];
jpiv[k] = itemp;
}
/* Apply previous Householder reflectors to column K: */
/* A(I:M,K) := A(I:M,K) - A(I:M,1:K-1)*F(K,1:K-1)**H. */
if (k > 1) {
i__1 = k - 1;
for (j = 1; j <= i__1; ++j) {
i__2 = k + j * f_dim1;
d_cnjg(&z__1, &f[k + j * f_dim1]);
f[i__2].r = z__1.r, f[i__2].i = z__1.i;
}
i__1 = *m - i__ + 1;
i__2 = k - 1;
z__1.r = -1., z__1.i = 0.;
zgemv_("No transpose", &i__1, &i__2, &z__1, &a[i__ + a_dim1], lda,
&f[k + f_dim1], ldf, &c_b2, &a[i__ + k * a_dim1], &c__1);
i__1 = k - 1;
for (j = 1; j <= i__1; ++j) {
i__2 = k + j * f_dim1;
d_cnjg(&z__1, &f[k + j * f_dim1]);
f[i__2].r = z__1.r, f[i__2].i = z__1.i;
}
}
/* Generate elementary reflector H(k) using the column A(I:M,K). */
if (i__ < *m) {
i__1 = *m - i__ + 1;
zlarfg_(&i__1, &a[i__ + k * a_dim1], &a[i__ + 1 + k * a_dim1], &
c__1, &tau[k]);
} else {
i__1 = k;
tau[i__1].r = 0., tau[i__1].i = 0.;
}
/* Check if TAU(K) contains NaN, set INFO parameter */
/* to the column number where NaN is found and return from */
/* the routine. */
/* NOTE: There is no need to check TAU(K) for Inf, */
/* since ZLARFG cannot produce TAU(KK) or Householder vector */
/* below the diagonal containing Inf. Only BETA on the diagonal, */
/* returned by ZLARFG can contain Inf, which requires */
/* TAU(K) to contain NaN. Therefore, this case of generating Inf */
/* by ZLARFG is covered by checking TAU(K) for NaN. */
i__1 = k;
d__1 = tau[i__1].r;
if (disnan_(&d__1)) {
i__1 = k;
taunan = tau[i__1].r;
} else /* if(complicated condition) */ {
d__1 = d_imag(&tau[k]);
if (disnan_(&d__1)) {
taunan = d_imag(&tau[k]);
} else {
taunan = 0.;
}
}
if (disnan_(&taunan)) {
*done = TRUE_;
/* Set KB, the number of factorized partial columns */
/* that are non-zero in each step in the block, */
/* i.e. the rank of the factor R. */
/* Set IF, the number of processed rows in the block, which */
/* is the same as the number of processed rows in */
/* the original whole matrix A_orig. */
*kb = k - 1;
if__ = i__ - 1;
*info = k;
/* Set MAXC2NRMK and RELMAXC2NRMK to NaN. */
*maxc2nrmk = taunan;
*relmaxc2nrmk = taunan;
/* There is no need to apply the block reflector to the */
/* residual of the matrix A stored in A(KB+1:M,KB+1:N), */
/* since the submatrix contains NaN and we stop */
/* the computation. */
/* But, we need to apply the block reflector to the residual */
/* right hand sides stored in A(KB+1:M,N+1:N+NRHS), if the */
/* residual right hand sides exist. This occurs */
/* when ( NRHS != 0 AND KB <= (M-IOFFSET) ): */
/* A(I+1:M,N+1:N+NRHS) := A(I+1:M,N+1:N+NRHS) - */
/* A(I+1:M,1:KB) * F(N+1:N+NRHS,1:KB)**H. */
if (*nrhs > 0 && *kb < *m - *ioffset) {
i__1 = *m - if__;
z__1.r = -1., z__1.i = 0.;
zgemm_("No transpose", "Conjugate transpose", &i__1, nrhs, kb,
&z__1, &a[if__ + 1 + a_dim1], lda, &f[*n + 1 +
f_dim1], ldf, &c_b2, &a[if__ + 1 + (*n + 1) * a_dim1],
lda);
}
/* There is no need to recompute the 2-norm of the */
/* difficult columns, since we stop the factorization. */
/* Array TAU(KF+1:MINMNFACT) is not set and contains */
/* undefined elements. */
/* Return from the routine. */
return 0;
}
/* =============================================================== */
i__1 = i__ + k * a_dim1;
aik.r = a[i__1].r, aik.i = a[i__1].i;
i__1 = i__ + k * a_dim1;
a[i__1].r = 1., a[i__1].i = 0.;
/* =============================================================== */
/* Compute the current K-th column of F: */
/* 1) F(K+1:N,K) := tau(K) * A(I:M,K+1:N)**H * A(I:M,K). */
if (k < *n + *nrhs) {
i__1 = *m - i__ + 1;
i__2 = *n + *nrhs - k;
zgemv_("Conjugate transpose", &i__1, &i__2, &tau[k], &a[i__ + (k
+ 1) * a_dim1], lda, &a[i__ + k * a_dim1], &c__1, &c_b1, &
f[k + 1 + k * f_dim1], &c__1);
}
/* 2) Zero out elements above and on the diagonal of the */
/* column K in matrix F, i.e elements F(1:K,K). */
i__1 = k;
for (j = 1; j <= i__1; ++j) {
i__2 = j + k * f_dim1;
f[i__2].r = 0., f[i__2].i = 0.;
}
/* 3) Incremental updating of the K-th column of F: */
/* F(1:N,K) := F(1:N,K) - tau(K) * F(1:N,1:K-1) * A(I:M,1:K-1)**H */
/* * A(I:M,K). */
if (k > 1) {
i__1 = *m - i__ + 1;
i__2 = k - 1;
i__3 = k;
z__1.r = -tau[i__3].r, z__1.i = -tau[i__3].i;
zgemv_("Conjugate Transpose", &i__1, &i__2, &z__1, &a[i__ +
a_dim1], lda, &a[i__ + k * a_dim1], &c__1, &c_b1, &auxv[1]
, &c__1);
i__1 = *n + *nrhs;
i__2 = k - 1;
zgemv_("No transpose", &i__1, &i__2, &c_b2, &f[f_dim1 + 1], ldf, &
auxv[1], &c__1, &c_b2, &f[k * f_dim1 + 1], &c__1);
}
/* =============================================================== */
/* Update the current I-th row of A: */
/* A(I,K+1:N+NRHS) := A(I,K+1:N+NRHS) */
/* - A(I,1:K)*F(K+1:N+NRHS,1:K)**H. */
if (k < *n + *nrhs) {
i__1 = *n + *nrhs - k;
z__1.r = -1., z__1.i = 0.;
zgemm_("No transpose", "Conjugate transpose", &c__1, &i__1, &k, &
z__1, &a[i__ + a_dim1], lda, &f[k + 1 + f_dim1], ldf, &
c_b2, &a[i__ + (k + 1) * a_dim1], lda);
}
i__1 = i__ + k * a_dim1;
a[i__1].r = aik.r, a[i__1].i = aik.i;
/* Update the partial column 2-norms for the residual matrix, */
/* only if the residual matrix A(I+1:M,K+1:N) exists, i.e. */
/* when K < MINMNFACT = f2cmin( M-IOFFSET, N ). */
if (k < minmnfact) {
i__1 = *n;
for (j = k + 1; j <= i__1; ++j) {
if (vn1[j] != 0.) {
/* NOTE: The following lines follow from the analysis in */
/* Lapack Working Note 176. */
temp = z_abs(&a[i__ + j * a_dim1]) / vn1[j];
/* Computing MAX */
d__1 = 0., d__2 = (temp + 1.) * (1. - temp);
temp = f2cmax(d__1,d__2);
/* Computing 2nd power */
d__1 = vn1[j] / vn2[j];
temp2 = temp * (d__1 * d__1);
if (temp2 <= tol3z) {
/* At J-index, we have a difficult column for the */
/* update of the 2-norm. Save the index of the previous */
/* difficult column in IWORK(J-1). */
/* NOTE: ILSTCC > 1, threfore we can use IWORK only */
/* with N-1 elements, where the elements are */
/* shifted by 1 to the left. */
iwork[j - 1] = lsticc;
/* Set the index of the last difficult column LSTICC. */
lsticc = j;
} else {
vn1[j] *= sqrt(temp);
}
}
}
}
/* End of while loop. */
}
/* Now, afler the loop: */
/* Set KB, the number of factorized columns in the block; */
/* Set IF, the number of processed rows in the block, which */
/* is the same as the number of processed rows in */
/* the original whole matrix A_orig, IF = IOFFSET + KB. */
*kb = k;
if__ = i__;
/* Apply the block reflector to the residual of the matrix A */
/* and the residual of the right hand sides B, if the residual */
/* matrix and and/or the residual of the right hand sides */
/* exist, i.e. if the submatrix A(I+1:M,KB+1:N+NRHS) exists. */
/* This occurs when KB < MINMNUPDT = f2cmin( M-IOFFSET, N+NRHS ): */
/* A(IF+1:M,K+1:N+NRHS) := A(IF+1:M,KB+1:N+NRHS) - */
/* A(IF+1:M,1:KB) * F(KB+1:N+NRHS,1:KB)**H. */
if (*kb < minmnupdt) {
i__1 = *m - if__;
i__2 = *n + *nrhs - *kb;
z__1.r = -1., z__1.i = 0.;
zgemm_("No transpose", "Conjugate transpose", &i__1, &i__2, kb, &z__1,
&a[if__ + 1 + a_dim1], lda, &f[*kb + 1 + f_dim1], ldf, &c_b2,
&a[if__ + 1 + (*kb + 1) * a_dim1], lda);
}
/* Recompute the 2-norm of the difficult columns. */
/* Loop over the index of the difficult columns from the largest */
/* to the smallest index. */
while(lsticc > 0) {
/* LSTICC is the index of the last difficult column is greater */
/* than 1. */
/* ITEMP is the index of the previous difficult column. */
itemp = iwork[lsticc - 1];
/* Compute the 2-norm explicilty for the last difficult column and */
/* save it in the partial and exact 2-norm vectors VN1 and VN2. */
/* NOTE: The computation of VN1( LSTICC ) relies on the fact that */
/* DZNRM2 does not fail on vectors with norm below the value of */
/* SQRT(DLAMCH('S')) */
i__1 = *m - if__;
vn1[lsticc] = dznrm2_(&i__1, &a[if__ + 1 + lsticc * a_dim1], &c__1);
vn2[lsticc] = vn1[lsticc];
/* Downdate the index of the last difficult column to */
/* the index of the previous difficult column. */
lsticc = itemp;
}
return 0;
/* End of ZLAQP3RK */
} /* zlaqp3rk_ */