OpenBLAS/lapack-netlib/SRC/zhgeqz.c

1760 lines
53 KiB
C

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif
#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif
#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif
typedef blasint integer;
typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
#ifdef _MSC_VER
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
#else
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#endif
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef blasint logical;
typedef char logical1;
typedef char integer1;
#define TRUE_ (1)
#define FALSE_ (0)
/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif
/* I/O stuff */
typedef int flag;
typedef int ftnlen;
typedef int ftnint;
/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;
/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;
/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;
/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;
/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;
/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;
#define VOID void
union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};
typedef union Multitype Multitype;
struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;
struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;
#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#ifdef _MSC_VER
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
#else
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#endif
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimagf(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
/* procedure parameter types for -A and -C++ */
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif
static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#ifdef _MSC_VER
static _Fcomplex cpow_ui(complex x, integer n) {
complex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
for(u = n; ; ) {
if(u & 01) pow.r *= x.r, pow.i *= x.i;
if(u >>= 1) x.r *= x.r, x.i *= x.i;
else break;
}
}
_Fcomplex p={pow.r, pow.i};
return p;
}
#else
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
#ifdef _MSC_VER
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
_Dcomplex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
for(u = n; ; ) {
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
else break;
}
}
_Dcomplex p = {pow._Val[0], pow._Val[1]};
return p;
}
#else
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
/* Table of constant values */
static doublecomplex c_b1 = {0.,0.};
static doublecomplex c_b2 = {1.,0.};
static integer c__1 = 1;
static integer c__2 = 2;
/* > \brief \b ZHGEQZ */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download ZHGEQZ + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhgeqz.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhgeqz.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhgeqz.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE ZHGEQZ( JOB, COMPQ, COMPZ, N, ILO, IHI, H, LDH, T, LDT, */
/* ALPHA, BETA, Q, LDQ, Z, LDZ, WORK, LWORK, */
/* RWORK, INFO ) */
/* CHARACTER COMPQ, COMPZ, JOB */
/* INTEGER IHI, ILO, INFO, LDH, LDQ, LDT, LDZ, LWORK, N */
/* DOUBLE PRECISION RWORK( * ) */
/* COMPLEX*16 ALPHA( * ), BETA( * ), H( LDH, * ), */
/* $ Q( LDQ, * ), T( LDT, * ), WORK( * ), */
/* $ Z( LDZ, * ) */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > ZHGEQZ computes the eigenvalues of a complex matrix pair (H,T), */
/* > where H is an upper Hessenberg matrix and T is upper triangular, */
/* > using the single-shift QZ method. */
/* > Matrix pairs of this type are produced by the reduction to */
/* > generalized upper Hessenberg form of a complex matrix pair (A,B): */
/* > */
/* > A = Q1*H*Z1**H, B = Q1*T*Z1**H, */
/* > */
/* > as computed by ZGGHRD. */
/* > */
/* > If JOB='S', then the Hessenberg-triangular pair (H,T) is */
/* > also reduced to generalized Schur form, */
/* > */
/* > H = Q*S*Z**H, T = Q*P*Z**H, */
/* > */
/* > where Q and Z are unitary matrices and S and P are upper triangular. */
/* > */
/* > Optionally, the unitary matrix Q from the generalized Schur */
/* > factorization may be postmultiplied into an input matrix Q1, and the */
/* > unitary matrix Z may be postmultiplied into an input matrix Z1. */
/* > If Q1 and Z1 are the unitary matrices from ZGGHRD that reduced */
/* > the matrix pair (A,B) to generalized Hessenberg form, then the output */
/* > matrices Q1*Q and Z1*Z are the unitary factors from the generalized */
/* > Schur factorization of (A,B): */
/* > */
/* > A = (Q1*Q)*S*(Z1*Z)**H, B = (Q1*Q)*P*(Z1*Z)**H. */
/* > */
/* > To avoid overflow, eigenvalues of the matrix pair (H,T) */
/* > (equivalently, of (A,B)) are computed as a pair of complex values */
/* > (alpha,beta). If beta is nonzero, lambda = alpha / beta is an */
/* > eigenvalue of the generalized nonsymmetric eigenvalue problem (GNEP) */
/* > A*x = lambda*B*x */
/* > and if alpha is nonzero, mu = beta / alpha is an eigenvalue of the */
/* > alternate form of the GNEP */
/* > mu*A*y = B*y. */
/* > The values of alpha and beta for the i-th eigenvalue can be read */
/* > directly from the generalized Schur form: alpha = S(i,i), */
/* > beta = P(i,i). */
/* > */
/* > Ref: C.B. Moler & G.W. Stewart, "An Algorithm for Generalized Matrix */
/* > Eigenvalue Problems", SIAM J. Numer. Anal., 10(1973), */
/* > pp. 241--256. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] JOB */
/* > \verbatim */
/* > JOB is CHARACTER*1 */
/* > = 'E': Compute eigenvalues only; */
/* > = 'S': Computer eigenvalues and the Schur form. */
/* > \endverbatim */
/* > */
/* > \param[in] COMPQ */
/* > \verbatim */
/* > COMPQ is CHARACTER*1 */
/* > = 'N': Left Schur vectors (Q) are not computed; */
/* > = 'I': Q is initialized to the unit matrix and the matrix Q */
/* > of left Schur vectors of (H,T) is returned; */
/* > = 'V': Q must contain a unitary matrix Q1 on entry and */
/* > the product Q1*Q is returned. */
/* > \endverbatim */
/* > */
/* > \param[in] COMPZ */
/* > \verbatim */
/* > COMPZ is CHARACTER*1 */
/* > = 'N': Right Schur vectors (Z) are not computed; */
/* > = 'I': Q is initialized to the unit matrix and the matrix Z */
/* > of right Schur vectors of (H,T) is returned; */
/* > = 'V': Z must contain a unitary matrix Z1 on entry and */
/* > the product Z1*Z is returned. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrices H, T, Q, and Z. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] ILO */
/* > \verbatim */
/* > ILO is INTEGER */
/* > \endverbatim */
/* > */
/* > \param[in] IHI */
/* > \verbatim */
/* > IHI is INTEGER */
/* > ILO and IHI mark the rows and columns of H which are in */
/* > Hessenberg form. It is assumed that A is already upper */
/* > triangular in rows and columns 1:ILO-1 and IHI+1:N. */
/* > If N > 0, 1 <= ILO <= IHI <= N; if N = 0, ILO=1 and IHI=0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] H */
/* > \verbatim */
/* > H is COMPLEX*16 array, dimension (LDH, N) */
/* > On entry, the N-by-N upper Hessenberg matrix H. */
/* > On exit, if JOB = 'S', H contains the upper triangular */
/* > matrix S from the generalized Schur factorization. */
/* > If JOB = 'E', the diagonal of H matches that of S, but */
/* > the rest of H is unspecified. */
/* > \endverbatim */
/* > */
/* > \param[in] LDH */
/* > \verbatim */
/* > LDH is INTEGER */
/* > The leading dimension of the array H. LDH >= f2cmax( 1, N ). */
/* > \endverbatim */
/* > */
/* > \param[in,out] T */
/* > \verbatim */
/* > T is COMPLEX*16 array, dimension (LDT, N) */
/* > On entry, the N-by-N upper triangular matrix T. */
/* > On exit, if JOB = 'S', T contains the upper triangular */
/* > matrix P from the generalized Schur factorization. */
/* > If JOB = 'E', the diagonal of T matches that of P, but */
/* > the rest of T is unspecified. */
/* > \endverbatim */
/* > */
/* > \param[in] LDT */
/* > \verbatim */
/* > LDT is INTEGER */
/* > The leading dimension of the array T. LDT >= f2cmax( 1, N ). */
/* > \endverbatim */
/* > */
/* > \param[out] ALPHA */
/* > \verbatim */
/* > ALPHA is COMPLEX*16 array, dimension (N) */
/* > The complex scalars alpha that define the eigenvalues of */
/* > GNEP. ALPHA(i) = S(i,i) in the generalized Schur */
/* > factorization. */
/* > \endverbatim */
/* > */
/* > \param[out] BETA */
/* > \verbatim */
/* > BETA is COMPLEX*16 array, dimension (N) */
/* > The real non-negative scalars beta that define the */
/* > eigenvalues of GNEP. BETA(i) = P(i,i) in the generalized */
/* > Schur factorization. */
/* > */
/* > Together, the quantities alpha = ALPHA(j) and beta = BETA(j) */
/* > represent the j-th eigenvalue of the matrix pair (A,B), in */
/* > one of the forms lambda = alpha/beta or mu = beta/alpha. */
/* > Since either lambda or mu may overflow, they should not, */
/* > in general, be computed. */
/* > \endverbatim */
/* > */
/* > \param[in,out] Q */
/* > \verbatim */
/* > Q is COMPLEX*16 array, dimension (LDQ, N) */
/* > On entry, if COMPQ = 'V', the unitary matrix Q1 used in the */
/* > reduction of (A,B) to generalized Hessenberg form. */
/* > On exit, if COMPQ = 'I', the unitary matrix of left Schur */
/* > vectors of (H,T), and if COMPQ = 'V', the unitary matrix of */
/* > left Schur vectors of (A,B). */
/* > Not referenced if COMPQ = 'N'. */
/* > \endverbatim */
/* > */
/* > \param[in] LDQ */
/* > \verbatim */
/* > LDQ is INTEGER */
/* > The leading dimension of the array Q. LDQ >= 1. */
/* > If COMPQ='V' or 'I', then LDQ >= N. */
/* > \endverbatim */
/* > */
/* > \param[in,out] Z */
/* > \verbatim */
/* > Z is COMPLEX*16 array, dimension (LDZ, N) */
/* > On entry, if COMPZ = 'V', the unitary matrix Z1 used in the */
/* > reduction of (A,B) to generalized Hessenberg form. */
/* > On exit, if COMPZ = 'I', the unitary matrix of right Schur */
/* > vectors of (H,T), and if COMPZ = 'V', the unitary matrix of */
/* > right Schur vectors of (A,B). */
/* > Not referenced if COMPZ = 'N'. */
/* > \endverbatim */
/* > */
/* > \param[in] LDZ */
/* > \verbatim */
/* > LDZ is INTEGER */
/* > The leading dimension of the array Z. LDZ >= 1. */
/* > If COMPZ='V' or 'I', then LDZ >= N. */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) */
/* > On exit, if INFO >= 0, WORK(1) returns the optimal LWORK. */
/* > \endverbatim */
/* > */
/* > \param[in] LWORK */
/* > \verbatim */
/* > LWORK is INTEGER */
/* > The dimension of the array WORK. LWORK >= f2cmax(1,N). */
/* > */
/* > If LWORK = -1, then a workspace query is assumed; the routine */
/* > only calculates the optimal size of the WORK array, returns */
/* > this value as the first entry of the WORK array, and no error */
/* > message related to LWORK is issued by XERBLA. */
/* > \endverbatim */
/* > */
/* > \param[out] RWORK */
/* > \verbatim */
/* > RWORK is DOUBLE PRECISION array, dimension (N) */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > = 1,...,N: the QZ iteration did not converge. (H,T) is not */
/* > in Schur form, but ALPHA(i) and BETA(i), */
/* > i=INFO+1,...,N should be correct. */
/* > = N+1,...,2*N: the shift calculation failed. (H,T) is not */
/* > in Schur form, but ALPHA(i) and BETA(i), */
/* > i=INFO-N+1,...,N should be correct. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date April 2012 */
/* > \ingroup complex16GEcomputational */
/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > We assume that complex ABS works as long as its value is less than */
/* > overflow. */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */ void zhgeqz_(char *job, char *compq, char *compz, integer *n,
integer *ilo, integer *ihi, doublecomplex *h__, integer *ldh,
doublecomplex *t, integer *ldt, doublecomplex *alpha, doublecomplex *
beta, doublecomplex *q, integer *ldq, doublecomplex *z__, integer *
ldz, doublecomplex *work, integer *lwork, doublereal *rwork, integer *
info)
{
/* System generated locals */
integer h_dim1, h_offset, q_dim1, q_offset, t_dim1, t_offset, z_dim1,
z_offset, i__1, i__2, i__3, i__4, i__5, i__6;
doublereal d__1, d__2, d__3, d__4, d__5, d__6;
doublecomplex z__1, z__2, z__3, z__4, z__5, z__6, z__7;
/* Local variables */
doublereal absb, atol, btol, temp;
extern /* Subroutine */ void zrot_(integer *, doublecomplex *, integer *,
doublecomplex *, integer *, doublereal *, doublecomplex *);
doublereal temp2, c__;
integer j;
doublecomplex s, x, y;
extern logical lsame_(char *, char *);
doublecomplex ctemp;
integer iiter, ilast, jiter;
doublereal anorm, bnorm;
integer maxit;
doublecomplex shift;
extern /* Subroutine */ void zscal_(integer *, doublecomplex *,
doublecomplex *, integer *);
doublereal tempr;
doublecomplex ctemp2, ctemp3;
logical ilazr2;
integer jc, in;
doublereal ascale, bscale;
doublecomplex u12;
extern doublereal dlamch_(char *);
integer jr;
doublecomplex signbc;
doublereal safmin;
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
doublecomplex eshift;
logical ilschr;
integer icompq, ilastm;
extern /* Double Complex */ VOID zladiv_(doublecomplex *, doublecomplex *,
doublecomplex *);
integer ischur;
extern doublereal zlanhs_(char *, integer *, doublecomplex *, integer *,
doublereal *);
logical ilazro;
integer icompz, ifirst;
extern /* Subroutine */ void zlartg_(doublecomplex *, doublecomplex *,
doublereal *, doublecomplex *, doublecomplex *);
integer ifrstm;
extern /* Subroutine */ void zlaset_(char *, integer *, integer *,
doublecomplex *, doublecomplex *, doublecomplex *, integer *);
integer istart;
logical lquery;
doublecomplex ad11, ad12, ad21, ad22;
integer jch;
logical ilq, ilz;
doublereal ulp;
doublecomplex abi12, abi22;
/* -- LAPACK computational routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* April 2012 */
/* ===================================================================== */
/* Decode JOB, COMPQ, COMPZ */
/* Parameter adjustments */
h_dim1 = *ldh;
h_offset = 1 + h_dim1 * 1;
h__ -= h_offset;
t_dim1 = *ldt;
t_offset = 1 + t_dim1 * 1;
t -= t_offset;
--alpha;
--beta;
q_dim1 = *ldq;
q_offset = 1 + q_dim1 * 1;
q -= q_offset;
z_dim1 = *ldz;
z_offset = 1 + z_dim1 * 1;
z__ -= z_offset;
--work;
--rwork;
/* Function Body */
if (lsame_(job, "E")) {
ilschr = FALSE_;
ischur = 1;
} else if (lsame_(job, "S")) {
ilschr = TRUE_;
ischur = 2;
} else {
ilschr = TRUE_;
ischur = 0;
}
if (lsame_(compq, "N")) {
ilq = FALSE_;
icompq = 1;
} else if (lsame_(compq, "V")) {
ilq = TRUE_;
icompq = 2;
} else if (lsame_(compq, "I")) {
ilq = TRUE_;
icompq = 3;
} else {
ilq = TRUE_;
icompq = 0;
}
if (lsame_(compz, "N")) {
ilz = FALSE_;
icompz = 1;
} else if (lsame_(compz, "V")) {
ilz = TRUE_;
icompz = 2;
} else if (lsame_(compz, "I")) {
ilz = TRUE_;
icompz = 3;
} else {
ilz = TRUE_;
icompz = 0;
}
/* Check Argument Values */
*info = 0;
i__1 = f2cmax(1,*n);
work[1].r = (doublereal) i__1, work[1].i = 0.;
lquery = *lwork == -1;
if (ischur == 0) {
*info = -1;
} else if (icompq == 0) {
*info = -2;
} else if (icompz == 0) {
*info = -3;
} else if (*n < 0) {
*info = -4;
} else if (*ilo < 1) {
*info = -5;
} else if (*ihi > *n || *ihi < *ilo - 1) {
*info = -6;
} else if (*ldh < *n) {
*info = -8;
} else if (*ldt < *n) {
*info = -10;
} else if (*ldq < 1 || ilq && *ldq < *n) {
*info = -14;
} else if (*ldz < 1 || ilz && *ldz < *n) {
*info = -16;
} else if (*lwork < f2cmax(1,*n) && ! lquery) {
*info = -18;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("ZHGEQZ", &i__1, (ftnlen)6);
return;
} else if (lquery) {
return;
}
/* Quick return if possible */
/* WORK( 1 ) = CMPLX( 1 ) */
if (*n <= 0) {
work[1].r = 1., work[1].i = 0.;
return;
}
/* Initialize Q and Z */
if (icompq == 3) {
zlaset_("Full", n, n, &c_b1, &c_b2, &q[q_offset], ldq);
}
if (icompz == 3) {
zlaset_("Full", n, n, &c_b1, &c_b2, &z__[z_offset], ldz);
}
/* Machine Constants */
in = *ihi + 1 - *ilo;
safmin = dlamch_("S");
ulp = dlamch_("E") * dlamch_("B");
anorm = zlanhs_("F", &in, &h__[*ilo + *ilo * h_dim1], ldh, &rwork[1]);
bnorm = zlanhs_("F", &in, &t[*ilo + *ilo * t_dim1], ldt, &rwork[1]);
/* Computing MAX */
d__1 = safmin, d__2 = ulp * anorm;
atol = f2cmax(d__1,d__2);
/* Computing MAX */
d__1 = safmin, d__2 = ulp * bnorm;
btol = f2cmax(d__1,d__2);
ascale = 1. / f2cmax(safmin,anorm);
bscale = 1. / f2cmax(safmin,bnorm);
/* Set Eigenvalues IHI+1:N */
i__1 = *n;
for (j = *ihi + 1; j <= i__1; ++j) {
absb = z_abs(&t[j + j * t_dim1]);
if (absb > safmin) {
i__2 = j + j * t_dim1;
z__2.r = t[i__2].r / absb, z__2.i = t[i__2].i / absb;
d_cnjg(&z__1, &z__2);
signbc.r = z__1.r, signbc.i = z__1.i;
i__2 = j + j * t_dim1;
t[i__2].r = absb, t[i__2].i = 0.;
if (ilschr) {
i__2 = j - 1;
zscal_(&i__2, &signbc, &t[j * t_dim1 + 1], &c__1);
zscal_(&j, &signbc, &h__[j * h_dim1 + 1], &c__1);
} else {
zscal_(&c__1, &signbc, &h__[j + j * h_dim1], &c__1);
}
if (ilz) {
zscal_(n, &signbc, &z__[j * z_dim1 + 1], &c__1);
}
} else {
i__2 = j + j * t_dim1;
t[i__2].r = 0., t[i__2].i = 0.;
}
i__2 = j;
i__3 = j + j * h_dim1;
alpha[i__2].r = h__[i__3].r, alpha[i__2].i = h__[i__3].i;
i__2 = j;
i__3 = j + j * t_dim1;
beta[i__2].r = t[i__3].r, beta[i__2].i = t[i__3].i;
/* L10: */
}
/* If IHI < ILO, skip QZ steps */
if (*ihi < *ilo) {
goto L190;
}
/* MAIN QZ ITERATION LOOP */
/* Initialize dynamic indices */
/* Eigenvalues ILAST+1:N have been found. */
/* Column operations modify rows IFRSTM:whatever */
/* Row operations modify columns whatever:ILASTM */
/* If only eigenvalues are being computed, then */
/* IFRSTM is the row of the last splitting row above row ILAST; */
/* this is always at least ILO. */
/* IITER counts iterations since the last eigenvalue was found, */
/* to tell when to use an extraordinary shift. */
/* MAXIT is the maximum number of QZ sweeps allowed. */
ilast = *ihi;
if (ilschr) {
ifrstm = 1;
ilastm = *n;
} else {
ifrstm = *ilo;
ilastm = *ihi;
}
iiter = 0;
eshift.r = 0., eshift.i = 0.;
maxit = (*ihi - *ilo + 1) * 30;
i__1 = maxit;
for (jiter = 1; jiter <= i__1; ++jiter) {
/* Check for too many iterations. */
if (jiter > maxit) {
goto L180;
}
/* Split the matrix if possible. */
/* Two tests: */
/* 1: H(j,j-1)=0 or j=ILO */
/* 2: T(j,j)=0 */
/* Special case: j=ILAST */
if (ilast == *ilo) {
goto L60;
} else {
i__2 = ilast + (ilast - 1) * h_dim1;
if ((d__1 = h__[i__2].r, abs(d__1)) + (d__2 = d_imag(&h__[ilast +
(ilast - 1) * h_dim1]), abs(d__2)) <= atol) {
i__2 = ilast + (ilast - 1) * h_dim1;
h__[i__2].r = 0., h__[i__2].i = 0.;
goto L60;
}
}
if (z_abs(&t[ilast + ilast * t_dim1]) <= btol) {
i__2 = ilast + ilast * t_dim1;
t[i__2].r = 0., t[i__2].i = 0.;
goto L50;
}
/* General case: j<ILAST */
i__2 = *ilo;
for (j = ilast - 1; j >= i__2; --j) {
/* Test 1: for H(j,j-1)=0 or j=ILO */
if (j == *ilo) {
ilazro = TRUE_;
} else {
i__3 = j + (j - 1) * h_dim1;
if ((d__1 = h__[i__3].r, abs(d__1)) + (d__2 = d_imag(&h__[j +
(j - 1) * h_dim1]), abs(d__2)) <= atol) {
i__3 = j + (j - 1) * h_dim1;
h__[i__3].r = 0., h__[i__3].i = 0.;
ilazro = TRUE_;
} else {
ilazro = FALSE_;
}
}
/* Test 2: for T(j,j)=0 */
if (z_abs(&t[j + j * t_dim1]) < btol) {
i__3 = j + j * t_dim1;
t[i__3].r = 0., t[i__3].i = 0.;
/* Test 1a: Check for 2 consecutive small subdiagonals in A */
ilazr2 = FALSE_;
if (! ilazro) {
i__3 = j + (j - 1) * h_dim1;
i__4 = j + 1 + j * h_dim1;
i__5 = j + j * h_dim1;
if (((d__1 = h__[i__3].r, abs(d__1)) + (d__2 = d_imag(&
h__[j + (j - 1) * h_dim1]), abs(d__2))) * (ascale
* ((d__3 = h__[i__4].r, abs(d__3)) + (d__4 =
d_imag(&h__[j + 1 + j * h_dim1]), abs(d__4)))) <=
((d__5 = h__[i__5].r, abs(d__5)) + (d__6 = d_imag(
&h__[j + j * h_dim1]), abs(d__6))) * (ascale *
atol)) {
ilazr2 = TRUE_;
}
}
/* If both tests pass (1 & 2), i.e., the leading diagonal */
/* element of B in the block is zero, split a 1x1 block off */
/* at the top. (I.e., at the J-th row/column) The leading */
/* diagonal element of the remainder can also be zero, so */
/* this may have to be done repeatedly. */
if (ilazro || ilazr2) {
i__3 = ilast - 1;
for (jch = j; jch <= i__3; ++jch) {
i__4 = jch + jch * h_dim1;
ctemp.r = h__[i__4].r, ctemp.i = h__[i__4].i;
zlartg_(&ctemp, &h__[jch + 1 + jch * h_dim1], &c__, &
s, &h__[jch + jch * h_dim1]);
i__4 = jch + 1 + jch * h_dim1;
h__[i__4].r = 0., h__[i__4].i = 0.;
i__4 = ilastm - jch;
zrot_(&i__4, &h__[jch + (jch + 1) * h_dim1], ldh, &
h__[jch + 1 + (jch + 1) * h_dim1], ldh, &c__,
&s);
i__4 = ilastm - jch;
zrot_(&i__4, &t[jch + (jch + 1) * t_dim1], ldt, &t[
jch + 1 + (jch + 1) * t_dim1], ldt, &c__, &s);
if (ilq) {
d_cnjg(&z__1, &s);
zrot_(n, &q[jch * q_dim1 + 1], &c__1, &q[(jch + 1)
* q_dim1 + 1], &c__1, &c__, &z__1);
}
if (ilazr2) {
i__4 = jch + (jch - 1) * h_dim1;
i__5 = jch + (jch - 1) * h_dim1;
z__1.r = c__ * h__[i__5].r, z__1.i = c__ * h__[
i__5].i;
h__[i__4].r = z__1.r, h__[i__4].i = z__1.i;
}
ilazr2 = FALSE_;
i__4 = jch + 1 + (jch + 1) * t_dim1;
if ((d__1 = t[i__4].r, abs(d__1)) + (d__2 = d_imag(&t[
jch + 1 + (jch + 1) * t_dim1]), abs(d__2)) >=
btol) {
if (jch + 1 >= ilast) {
goto L60;
} else {
ifirst = jch + 1;
goto L70;
}
}
i__4 = jch + 1 + (jch + 1) * t_dim1;
t[i__4].r = 0., t[i__4].i = 0.;
/* L20: */
}
goto L50;
} else {
/* Only test 2 passed -- chase the zero to T(ILAST,ILAST) */
/* Then process as in the case T(ILAST,ILAST)=0 */
i__3 = ilast - 1;
for (jch = j; jch <= i__3; ++jch) {
i__4 = jch + (jch + 1) * t_dim1;
ctemp.r = t[i__4].r, ctemp.i = t[i__4].i;
zlartg_(&ctemp, &t[jch + 1 + (jch + 1) * t_dim1], &
c__, &s, &t[jch + (jch + 1) * t_dim1]);
i__4 = jch + 1 + (jch + 1) * t_dim1;
t[i__4].r = 0., t[i__4].i = 0.;
if (jch < ilastm - 1) {
i__4 = ilastm - jch - 1;
zrot_(&i__4, &t[jch + (jch + 2) * t_dim1], ldt, &
t[jch + 1 + (jch + 2) * t_dim1], ldt, &
c__, &s);
}
i__4 = ilastm - jch + 2;
zrot_(&i__4, &h__[jch + (jch - 1) * h_dim1], ldh, &
h__[jch + 1 + (jch - 1) * h_dim1], ldh, &c__,
&s);
if (ilq) {
d_cnjg(&z__1, &s);
zrot_(n, &q[jch * q_dim1 + 1], &c__1, &q[(jch + 1)
* q_dim1 + 1], &c__1, &c__, &z__1);
}
i__4 = jch + 1 + jch * h_dim1;
ctemp.r = h__[i__4].r, ctemp.i = h__[i__4].i;
zlartg_(&ctemp, &h__[jch + 1 + (jch - 1) * h_dim1], &
c__, &s, &h__[jch + 1 + jch * h_dim1]);
i__4 = jch + 1 + (jch - 1) * h_dim1;
h__[i__4].r = 0., h__[i__4].i = 0.;
i__4 = jch + 1 - ifrstm;
zrot_(&i__4, &h__[ifrstm + jch * h_dim1], &c__1, &h__[
ifrstm + (jch - 1) * h_dim1], &c__1, &c__, &s)
;
i__4 = jch - ifrstm;
zrot_(&i__4, &t[ifrstm + jch * t_dim1], &c__1, &t[
ifrstm + (jch - 1) * t_dim1], &c__1, &c__, &s)
;
if (ilz) {
zrot_(n, &z__[jch * z_dim1 + 1], &c__1, &z__[(jch
- 1) * z_dim1 + 1], &c__1, &c__, &s);
}
/* L30: */
}
goto L50;
}
} else if (ilazro) {
/* Only test 1 passed -- work on J:ILAST */
ifirst = j;
goto L70;
}
/* Neither test passed -- try next J */
/* L40: */
}
/* (Drop-through is "impossible") */
*info = (*n << 1) + 1;
goto L210;
/* T(ILAST,ILAST)=0 -- clear H(ILAST,ILAST-1) to split off a */
/* 1x1 block. */
L50:
i__2 = ilast + ilast * h_dim1;
ctemp.r = h__[i__2].r, ctemp.i = h__[i__2].i;
zlartg_(&ctemp, &h__[ilast + (ilast - 1) * h_dim1], &c__, &s, &h__[
ilast + ilast * h_dim1]);
i__2 = ilast + (ilast - 1) * h_dim1;
h__[i__2].r = 0., h__[i__2].i = 0.;
i__2 = ilast - ifrstm;
zrot_(&i__2, &h__[ifrstm + ilast * h_dim1], &c__1, &h__[ifrstm + (
ilast - 1) * h_dim1], &c__1, &c__, &s);
i__2 = ilast - ifrstm;
zrot_(&i__2, &t[ifrstm + ilast * t_dim1], &c__1, &t[ifrstm + (ilast -
1) * t_dim1], &c__1, &c__, &s);
if (ilz) {
zrot_(n, &z__[ilast * z_dim1 + 1], &c__1, &z__[(ilast - 1) *
z_dim1 + 1], &c__1, &c__, &s);
}
/* H(ILAST,ILAST-1)=0 -- Standardize B, set ALPHA and BETA */
L60:
absb = z_abs(&t[ilast + ilast * t_dim1]);
if (absb > safmin) {
i__2 = ilast + ilast * t_dim1;
z__2.r = t[i__2].r / absb, z__2.i = t[i__2].i / absb;
d_cnjg(&z__1, &z__2);
signbc.r = z__1.r, signbc.i = z__1.i;
i__2 = ilast + ilast * t_dim1;
t[i__2].r = absb, t[i__2].i = 0.;
if (ilschr) {
i__2 = ilast - ifrstm;
zscal_(&i__2, &signbc, &t[ifrstm + ilast * t_dim1], &c__1);
i__2 = ilast + 1 - ifrstm;
zscal_(&i__2, &signbc, &h__[ifrstm + ilast * h_dim1], &c__1);
} else {
zscal_(&c__1, &signbc, &h__[ilast + ilast * h_dim1], &c__1);
}
if (ilz) {
zscal_(n, &signbc, &z__[ilast * z_dim1 + 1], &c__1);
}
} else {
i__2 = ilast + ilast * t_dim1;
t[i__2].r = 0., t[i__2].i = 0.;
}
i__2 = ilast;
i__3 = ilast + ilast * h_dim1;
alpha[i__2].r = h__[i__3].r, alpha[i__2].i = h__[i__3].i;
i__2 = ilast;
i__3 = ilast + ilast * t_dim1;
beta[i__2].r = t[i__3].r, beta[i__2].i = t[i__3].i;
/* Go to next block -- exit if finished. */
--ilast;
if (ilast < *ilo) {
goto L190;
}
/* Reset counters */
iiter = 0;
eshift.r = 0., eshift.i = 0.;
if (! ilschr) {
ilastm = ilast;
if (ifrstm > ilast) {
ifrstm = *ilo;
}
}
goto L160;
/* QZ step */
/* This iteration only involves rows/columns IFIRST:ILAST. We */
/* assume IFIRST < ILAST, and that the diagonal of B is non-zero. */
L70:
++iiter;
if (! ilschr) {
ifrstm = ifirst;
}
/* Compute the Shift. */
/* At this point, IFIRST < ILAST, and the diagonal elements of */
/* T(IFIRST:ILAST,IFIRST,ILAST) are larger than BTOL (in */
/* magnitude) */
if (iiter / 10 * 10 != iiter) {
/* The Wilkinson shift (AEP p.512), i.e., the eigenvalue of */
/* the bottom-right 2x2 block of A inv(B) which is nearest to */
/* the bottom-right element. */
/* We factor B as U*D, where U has unit diagonals, and */
/* compute (A*inv(D))*inv(U). */
i__2 = ilast - 1 + ilast * t_dim1;
z__2.r = bscale * t[i__2].r, z__2.i = bscale * t[i__2].i;
i__3 = ilast + ilast * t_dim1;
z__3.r = bscale * t[i__3].r, z__3.i = bscale * t[i__3].i;
z_div(&z__1, &z__2, &z__3);
u12.r = z__1.r, u12.i = z__1.i;
i__2 = ilast - 1 + (ilast - 1) * h_dim1;
z__2.r = ascale * h__[i__2].r, z__2.i = ascale * h__[i__2].i;
i__3 = ilast - 1 + (ilast - 1) * t_dim1;
z__3.r = bscale * t[i__3].r, z__3.i = bscale * t[i__3].i;
z_div(&z__1, &z__2, &z__3);
ad11.r = z__1.r, ad11.i = z__1.i;
i__2 = ilast + (ilast - 1) * h_dim1;
z__2.r = ascale * h__[i__2].r, z__2.i = ascale * h__[i__2].i;
i__3 = ilast - 1 + (ilast - 1) * t_dim1;
z__3.r = bscale * t[i__3].r, z__3.i = bscale * t[i__3].i;
z_div(&z__1, &z__2, &z__3);
ad21.r = z__1.r, ad21.i = z__1.i;
i__2 = ilast - 1 + ilast * h_dim1;
z__2.r = ascale * h__[i__2].r, z__2.i = ascale * h__[i__2].i;
i__3 = ilast + ilast * t_dim1;
z__3.r = bscale * t[i__3].r, z__3.i = bscale * t[i__3].i;
z_div(&z__1, &z__2, &z__3);
ad12.r = z__1.r, ad12.i = z__1.i;
i__2 = ilast + ilast * h_dim1;
z__2.r = ascale * h__[i__2].r, z__2.i = ascale * h__[i__2].i;
i__3 = ilast + ilast * t_dim1;
z__3.r = bscale * t[i__3].r, z__3.i = bscale * t[i__3].i;
z_div(&z__1, &z__2, &z__3);
ad22.r = z__1.r, ad22.i = z__1.i;
z__2.r = u12.r * ad21.r - u12.i * ad21.i, z__2.i = u12.r * ad21.i
+ u12.i * ad21.r;
z__1.r = ad22.r - z__2.r, z__1.i = ad22.i - z__2.i;
abi22.r = z__1.r, abi22.i = z__1.i;
z__2.r = u12.r * ad11.r - u12.i * ad11.i, z__2.i = u12.r * ad11.i
+ u12.i * ad11.r;
z__1.r = ad12.r - z__2.r, z__1.i = ad12.i - z__2.i;
abi12.r = z__1.r, abi12.i = z__1.i;
shift.r = abi22.r, shift.i = abi22.i;
z_sqrt(&z__2, &abi12);
z_sqrt(&z__3, &ad21);
z__1.r = z__2.r * z__3.r - z__2.i * z__3.i, z__1.i = z__2.r *
z__3.i + z__2.i * z__3.r;
ctemp.r = z__1.r, ctemp.i = z__1.i;
temp = (d__1 = ctemp.r, abs(d__1)) + (d__2 = d_imag(&ctemp), abs(
d__2));
if (ctemp.r != 0. || ctemp.i != 0.) {
z__2.r = ad11.r - shift.r, z__2.i = ad11.i - shift.i;
z__1.r = z__2.r * .5, z__1.i = z__2.i * .5;
x.r = z__1.r, x.i = z__1.i;
temp2 = (d__1 = x.r, abs(d__1)) + (d__2 = d_imag(&x), abs(
d__2));
/* Computing MAX */
d__3 = temp, d__4 = (d__1 = x.r, abs(d__1)) + (d__2 = d_imag(&
x), abs(d__2));
temp = f2cmax(d__3,d__4);
z__5.r = x.r / temp, z__5.i = x.i / temp;
pow_zi(&z__4, &z__5, &c__2);
z__7.r = ctemp.r / temp, z__7.i = ctemp.i / temp;
pow_zi(&z__6, &z__7, &c__2);
z__3.r = z__4.r + z__6.r, z__3.i = z__4.i + z__6.i;
z_sqrt(&z__2, &z__3);
z__1.r = temp * z__2.r, z__1.i = temp * z__2.i;
y.r = z__1.r, y.i = z__1.i;
if (temp2 > 0.) {
z__1.r = x.r / temp2, z__1.i = x.i / temp2;
z__2.r = x.r / temp2, z__2.i = x.i / temp2;
if (z__1.r * y.r + d_imag(&z__2) * d_imag(&y) < 0.) {
z__3.r = -y.r, z__3.i = -y.i;
y.r = z__3.r, y.i = z__3.i;
}
}
z__4.r = x.r + y.r, z__4.i = x.i + y.i;
zladiv_(&z__3, &ctemp, &z__4);
z__2.r = ctemp.r * z__3.r - ctemp.i * z__3.i, z__2.i =
ctemp.r * z__3.i + ctemp.i * z__3.r;
z__1.r = shift.r - z__2.r, z__1.i = shift.i - z__2.i;
shift.r = z__1.r, shift.i = z__1.i;
}
} else {
/* Exceptional shift. Chosen for no particularly good reason. */
i__2 = ilast + ilast * t_dim1;
if (iiter / 20 * 20 == iiter && bscale * ((d__1 = t[i__2].r, abs(
d__1)) + (d__2 = d_imag(&t[ilast + ilast * t_dim1]), abs(
d__2))) > safmin) {
i__2 = ilast + ilast * h_dim1;
z__3.r = ascale * h__[i__2].r, z__3.i = ascale * h__[i__2].i;
i__3 = ilast + ilast * t_dim1;
z__4.r = bscale * t[i__3].r, z__4.i = bscale * t[i__3].i;
z_div(&z__2, &z__3, &z__4);
z__1.r = eshift.r + z__2.r, z__1.i = eshift.i + z__2.i;
eshift.r = z__1.r, eshift.i = z__1.i;
} else {
i__2 = ilast + (ilast - 1) * h_dim1;
z__3.r = ascale * h__[i__2].r, z__3.i = ascale * h__[i__2].i;
i__3 = ilast - 1 + (ilast - 1) * t_dim1;
z__4.r = bscale * t[i__3].r, z__4.i = bscale * t[i__3].i;
z_div(&z__2, &z__3, &z__4);
z__1.r = eshift.r + z__2.r, z__1.i = eshift.i + z__2.i;
eshift.r = z__1.r, eshift.i = z__1.i;
}
shift.r = eshift.r, shift.i = eshift.i;
}
/* Now check for two consecutive small subdiagonals. */
i__2 = ifirst + 1;
for (j = ilast - 1; j >= i__2; --j) {
istart = j;
i__3 = j + j * h_dim1;
z__2.r = ascale * h__[i__3].r, z__2.i = ascale * h__[i__3].i;
i__4 = j + j * t_dim1;
z__4.r = bscale * t[i__4].r, z__4.i = bscale * t[i__4].i;
z__3.r = shift.r * z__4.r - shift.i * z__4.i, z__3.i = shift.r *
z__4.i + shift.i * z__4.r;
z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
ctemp.r = z__1.r, ctemp.i = z__1.i;
temp = (d__1 = ctemp.r, abs(d__1)) + (d__2 = d_imag(&ctemp), abs(
d__2));
i__3 = j + 1 + j * h_dim1;
temp2 = ascale * ((d__1 = h__[i__3].r, abs(d__1)) + (d__2 =
d_imag(&h__[j + 1 + j * h_dim1]), abs(d__2)));
tempr = f2cmax(temp,temp2);
if (tempr < 1. && tempr != 0.) {
temp /= tempr;
temp2 /= tempr;
}
i__3 = j + (j - 1) * h_dim1;
if (((d__1 = h__[i__3].r, abs(d__1)) + (d__2 = d_imag(&h__[j + (j
- 1) * h_dim1]), abs(d__2))) * temp2 <= temp * atol) {
goto L90;
}
/* L80: */
}
istart = ifirst;
i__2 = ifirst + ifirst * h_dim1;
z__2.r = ascale * h__[i__2].r, z__2.i = ascale * h__[i__2].i;
i__3 = ifirst + ifirst * t_dim1;
z__4.r = bscale * t[i__3].r, z__4.i = bscale * t[i__3].i;
z__3.r = shift.r * z__4.r - shift.i * z__4.i, z__3.i = shift.r *
z__4.i + shift.i * z__4.r;
z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
ctemp.r = z__1.r, ctemp.i = z__1.i;
L90:
/* Do an implicit-shift QZ sweep. */
/* Initial Q */
i__2 = istart + 1 + istart * h_dim1;
z__1.r = ascale * h__[i__2].r, z__1.i = ascale * h__[i__2].i;
ctemp2.r = z__1.r, ctemp2.i = z__1.i;
zlartg_(&ctemp, &ctemp2, &c__, &s, &ctemp3);
/* Sweep */
i__2 = ilast - 1;
for (j = istart; j <= i__2; ++j) {
if (j > istart) {
i__3 = j + (j - 1) * h_dim1;
ctemp.r = h__[i__3].r, ctemp.i = h__[i__3].i;
zlartg_(&ctemp, &h__[j + 1 + (j - 1) * h_dim1], &c__, &s, &
h__[j + (j - 1) * h_dim1]);
i__3 = j + 1 + (j - 1) * h_dim1;
h__[i__3].r = 0., h__[i__3].i = 0.;
}
i__3 = ilastm;
for (jc = j; jc <= i__3; ++jc) {
i__4 = j + jc * h_dim1;
z__2.r = c__ * h__[i__4].r, z__2.i = c__ * h__[i__4].i;
i__5 = j + 1 + jc * h_dim1;
z__3.r = s.r * h__[i__5].r - s.i * h__[i__5].i, z__3.i = s.r *
h__[i__5].i + s.i * h__[i__5].r;
z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
ctemp.r = z__1.r, ctemp.i = z__1.i;
i__4 = j + 1 + jc * h_dim1;
d_cnjg(&z__4, &s);
z__3.r = -z__4.r, z__3.i = -z__4.i;
i__5 = j + jc * h_dim1;
z__2.r = z__3.r * h__[i__5].r - z__3.i * h__[i__5].i, z__2.i =
z__3.r * h__[i__5].i + z__3.i * h__[i__5].r;
i__6 = j + 1 + jc * h_dim1;
z__5.r = c__ * h__[i__6].r, z__5.i = c__ * h__[i__6].i;
z__1.r = z__2.r + z__5.r, z__1.i = z__2.i + z__5.i;
h__[i__4].r = z__1.r, h__[i__4].i = z__1.i;
i__4 = j + jc * h_dim1;
h__[i__4].r = ctemp.r, h__[i__4].i = ctemp.i;
i__4 = j + jc * t_dim1;
z__2.r = c__ * t[i__4].r, z__2.i = c__ * t[i__4].i;
i__5 = j + 1 + jc * t_dim1;
z__3.r = s.r * t[i__5].r - s.i * t[i__5].i, z__3.i = s.r * t[
i__5].i + s.i * t[i__5].r;
z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
ctemp2.r = z__1.r, ctemp2.i = z__1.i;
i__4 = j + 1 + jc * t_dim1;
d_cnjg(&z__4, &s);
z__3.r = -z__4.r, z__3.i = -z__4.i;
i__5 = j + jc * t_dim1;
z__2.r = z__3.r * t[i__5].r - z__3.i * t[i__5].i, z__2.i =
z__3.r * t[i__5].i + z__3.i * t[i__5].r;
i__6 = j + 1 + jc * t_dim1;
z__5.r = c__ * t[i__6].r, z__5.i = c__ * t[i__6].i;
z__1.r = z__2.r + z__5.r, z__1.i = z__2.i + z__5.i;
t[i__4].r = z__1.r, t[i__4].i = z__1.i;
i__4 = j + jc * t_dim1;
t[i__4].r = ctemp2.r, t[i__4].i = ctemp2.i;
/* L100: */
}
if (ilq) {
i__3 = *n;
for (jr = 1; jr <= i__3; ++jr) {
i__4 = jr + j * q_dim1;
z__2.r = c__ * q[i__4].r, z__2.i = c__ * q[i__4].i;
d_cnjg(&z__4, &s);
i__5 = jr + (j + 1) * q_dim1;
z__3.r = z__4.r * q[i__5].r - z__4.i * q[i__5].i, z__3.i =
z__4.r * q[i__5].i + z__4.i * q[i__5].r;
z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
ctemp.r = z__1.r, ctemp.i = z__1.i;
i__4 = jr + (j + 1) * q_dim1;
z__3.r = -s.r, z__3.i = -s.i;
i__5 = jr + j * q_dim1;
z__2.r = z__3.r * q[i__5].r - z__3.i * q[i__5].i, z__2.i =
z__3.r * q[i__5].i + z__3.i * q[i__5].r;
i__6 = jr + (j + 1) * q_dim1;
z__4.r = c__ * q[i__6].r, z__4.i = c__ * q[i__6].i;
z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
q[i__4].r = z__1.r, q[i__4].i = z__1.i;
i__4 = jr + j * q_dim1;
q[i__4].r = ctemp.r, q[i__4].i = ctemp.i;
/* L110: */
}
}
i__3 = j + 1 + (j + 1) * t_dim1;
ctemp.r = t[i__3].r, ctemp.i = t[i__3].i;
zlartg_(&ctemp, &t[j + 1 + j * t_dim1], &c__, &s, &t[j + 1 + (j +
1) * t_dim1]);
i__3 = j + 1 + j * t_dim1;
t[i__3].r = 0., t[i__3].i = 0.;
/* Computing MIN */
i__4 = j + 2;
i__3 = f2cmin(i__4,ilast);
for (jr = ifrstm; jr <= i__3; ++jr) {
i__4 = jr + (j + 1) * h_dim1;
z__2.r = c__ * h__[i__4].r, z__2.i = c__ * h__[i__4].i;
i__5 = jr + j * h_dim1;
z__3.r = s.r * h__[i__5].r - s.i * h__[i__5].i, z__3.i = s.r *
h__[i__5].i + s.i * h__[i__5].r;
z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
ctemp.r = z__1.r, ctemp.i = z__1.i;
i__4 = jr + j * h_dim1;
d_cnjg(&z__4, &s);
z__3.r = -z__4.r, z__3.i = -z__4.i;
i__5 = jr + (j + 1) * h_dim1;
z__2.r = z__3.r * h__[i__5].r - z__3.i * h__[i__5].i, z__2.i =
z__3.r * h__[i__5].i + z__3.i * h__[i__5].r;
i__6 = jr + j * h_dim1;
z__5.r = c__ * h__[i__6].r, z__5.i = c__ * h__[i__6].i;
z__1.r = z__2.r + z__5.r, z__1.i = z__2.i + z__5.i;
h__[i__4].r = z__1.r, h__[i__4].i = z__1.i;
i__4 = jr + (j + 1) * h_dim1;
h__[i__4].r = ctemp.r, h__[i__4].i = ctemp.i;
/* L120: */
}
i__3 = j;
for (jr = ifrstm; jr <= i__3; ++jr) {
i__4 = jr + (j + 1) * t_dim1;
z__2.r = c__ * t[i__4].r, z__2.i = c__ * t[i__4].i;
i__5 = jr + j * t_dim1;
z__3.r = s.r * t[i__5].r - s.i * t[i__5].i, z__3.i = s.r * t[
i__5].i + s.i * t[i__5].r;
z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
ctemp.r = z__1.r, ctemp.i = z__1.i;
i__4 = jr + j * t_dim1;
d_cnjg(&z__4, &s);
z__3.r = -z__4.r, z__3.i = -z__4.i;
i__5 = jr + (j + 1) * t_dim1;
z__2.r = z__3.r * t[i__5].r - z__3.i * t[i__5].i, z__2.i =
z__3.r * t[i__5].i + z__3.i * t[i__5].r;
i__6 = jr + j * t_dim1;
z__5.r = c__ * t[i__6].r, z__5.i = c__ * t[i__6].i;
z__1.r = z__2.r + z__5.r, z__1.i = z__2.i + z__5.i;
t[i__4].r = z__1.r, t[i__4].i = z__1.i;
i__4 = jr + (j + 1) * t_dim1;
t[i__4].r = ctemp.r, t[i__4].i = ctemp.i;
/* L130: */
}
if (ilz) {
i__3 = *n;
for (jr = 1; jr <= i__3; ++jr) {
i__4 = jr + (j + 1) * z_dim1;
z__2.r = c__ * z__[i__4].r, z__2.i = c__ * z__[i__4].i;
i__5 = jr + j * z_dim1;
z__3.r = s.r * z__[i__5].r - s.i * z__[i__5].i, z__3.i =
s.r * z__[i__5].i + s.i * z__[i__5].r;
z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
ctemp.r = z__1.r, ctemp.i = z__1.i;
i__4 = jr + j * z_dim1;
d_cnjg(&z__4, &s);
z__3.r = -z__4.r, z__3.i = -z__4.i;
i__5 = jr + (j + 1) * z_dim1;
z__2.r = z__3.r * z__[i__5].r - z__3.i * z__[i__5].i,
z__2.i = z__3.r * z__[i__5].i + z__3.i * z__[i__5]
.r;
i__6 = jr + j * z_dim1;
z__5.r = c__ * z__[i__6].r, z__5.i = c__ * z__[i__6].i;
z__1.r = z__2.r + z__5.r, z__1.i = z__2.i + z__5.i;
z__[i__4].r = z__1.r, z__[i__4].i = z__1.i;
i__4 = jr + (j + 1) * z_dim1;
z__[i__4].r = ctemp.r, z__[i__4].i = ctemp.i;
/* L140: */
}
}
/* L150: */
}
L160:
/* L170: */
;
}
/* Drop-through = non-convergence */
L180:
*info = ilast;
goto L210;
/* Successful completion of all QZ steps */
L190:
/* Set Eigenvalues 1:ILO-1 */
i__1 = *ilo - 1;
for (j = 1; j <= i__1; ++j) {
absb = z_abs(&t[j + j * t_dim1]);
if (absb > safmin) {
i__2 = j + j * t_dim1;
z__2.r = t[i__2].r / absb, z__2.i = t[i__2].i / absb;
d_cnjg(&z__1, &z__2);
signbc.r = z__1.r, signbc.i = z__1.i;
i__2 = j + j * t_dim1;
t[i__2].r = absb, t[i__2].i = 0.;
if (ilschr) {
i__2 = j - 1;
zscal_(&i__2, &signbc, &t[j * t_dim1 + 1], &c__1);
zscal_(&j, &signbc, &h__[j * h_dim1 + 1], &c__1);
} else {
zscal_(&c__1, &signbc, &h__[j + j * h_dim1], &c__1);
}
if (ilz) {
zscal_(n, &signbc, &z__[j * z_dim1 + 1], &c__1);
}
} else {
i__2 = j + j * t_dim1;
t[i__2].r = 0., t[i__2].i = 0.;
}
i__2 = j;
i__3 = j + j * h_dim1;
alpha[i__2].r = h__[i__3].r, alpha[i__2].i = h__[i__3].i;
i__2 = j;
i__3 = j + j * t_dim1;
beta[i__2].r = t[i__3].r, beta[i__2].i = t[i__3].i;
/* L200: */
}
/* Normal Termination */
*info = 0;
/* Exit (other than argument error) -- return optimal workspace size */
L210:
z__1.r = (doublereal) (*n), z__1.i = 0.;
work[1].r = z__1.r, work[1].i = z__1.i;
return;
/* End of ZHGEQZ */
} /* zhgeqz_ */