OpenBLAS/lapack-netlib/SRC/zhegvx.c

1021 lines
31 KiB
C

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif
#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif
#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif
typedef blasint integer;
typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
#ifdef _MSC_VER
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
#else
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#endif
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef blasint logical;
typedef char logical1;
typedef char integer1;
#define TRUE_ (1)
#define FALSE_ (0)
/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif
/* I/O stuff */
typedef int flag;
typedef int ftnlen;
typedef int ftnint;
/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;
/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;
/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;
/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;
/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;
/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;
#define VOID void
union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};
typedef union Multitype Multitype;
struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;
struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;
#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#ifdef _MSC_VER
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
#else
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#endif
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimagf(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
/* procedure parameter types for -A and -C++ */
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif
static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#ifdef _MSC_VER
static _Fcomplex cpow_ui(complex x, integer n) {
complex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
for(u = n; ; ) {
if(u & 01) pow.r *= x.r, pow.i *= x.i;
if(u >>= 1) x.r *= x.r, x.i *= x.i;
else break;
}
}
_Fcomplex p={pow.r, pow.i};
return p;
}
#else
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
#ifdef _MSC_VER
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
_Dcomplex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
for(u = n; ; ) {
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
else break;
}
}
_Dcomplex p = {pow._Val[0], pow._Val[1]};
return p;
}
#else
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
/* Table of constant values */
static doublecomplex c_b1 = {1.,0.};
static integer c__1 = 1;
static integer c_n1 = -1;
/* > \brief \b ZHEGVX */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download ZHEGVX + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhegvx.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhegvx.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhegvx.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE ZHEGVX( ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB, */
/* VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, */
/* LWORK, RWORK, IWORK, IFAIL, INFO ) */
/* CHARACTER JOBZ, RANGE, UPLO */
/* INTEGER IL, INFO, ITYPE, IU, LDA, LDB, LDZ, LWORK, M, N */
/* DOUBLE PRECISION ABSTOL, VL, VU */
/* INTEGER IFAIL( * ), IWORK( * ) */
/* DOUBLE PRECISION RWORK( * ), W( * ) */
/* COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * ), */
/* $ Z( LDZ, * ) */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > ZHEGVX computes selected eigenvalues, and optionally, eigenvectors */
/* > of a complex generalized Hermitian-definite eigenproblem, of the form */
/* > A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and */
/* > B are assumed to be Hermitian and B is also positive definite. */
/* > Eigenvalues and eigenvectors can be selected by specifying either a */
/* > range of values or a range of indices for the desired eigenvalues. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] ITYPE */
/* > \verbatim */
/* > ITYPE is INTEGER */
/* > Specifies the problem type to be solved: */
/* > = 1: A*x = (lambda)*B*x */
/* > = 2: A*B*x = (lambda)*x */
/* > = 3: B*A*x = (lambda)*x */
/* > \endverbatim */
/* > */
/* > \param[in] JOBZ */
/* > \verbatim */
/* > JOBZ is CHARACTER*1 */
/* > = 'N': Compute eigenvalues only; */
/* > = 'V': Compute eigenvalues and eigenvectors. */
/* > \endverbatim */
/* > */
/* > \param[in] RANGE */
/* > \verbatim */
/* > RANGE is CHARACTER*1 */
/* > = 'A': all eigenvalues will be found. */
/* > = 'V': all eigenvalues in the half-open interval (VL,VU] */
/* > will be found. */
/* > = 'I': the IL-th through IU-th eigenvalues will be found. */
/* > \endverbatim */
/* > */
/* > \param[in] UPLO */
/* > \verbatim */
/* > UPLO is CHARACTER*1 */
/* > = 'U': Upper triangles of A and B are stored; */
/* > = 'L': Lower triangles of A and B are stored. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrices A and B. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is COMPLEX*16 array, dimension (LDA, N) */
/* > On entry, the Hermitian matrix A. If UPLO = 'U', the */
/* > leading N-by-N upper triangular part of A contains the */
/* > upper triangular part of the matrix A. If UPLO = 'L', */
/* > the leading N-by-N lower triangular part of A contains */
/* > the lower triangular part of the matrix A. */
/* > */
/* > On exit, the lower triangle (if UPLO='L') or the upper */
/* > triangle (if UPLO='U') of A, including the diagonal, is */
/* > destroyed. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
/* > \endverbatim */
/* > */
/* > \param[in,out] B */
/* > \verbatim */
/* > B is COMPLEX*16 array, dimension (LDB, N) */
/* > On entry, the Hermitian matrix B. If UPLO = 'U', the */
/* > leading N-by-N upper triangular part of B contains the */
/* > upper triangular part of the matrix B. If UPLO = 'L', */
/* > the leading N-by-N lower triangular part of B contains */
/* > the lower triangular part of the matrix B. */
/* > */
/* > On exit, if INFO <= N, the part of B containing the matrix is */
/* > overwritten by the triangular factor U or L from the Cholesky */
/* > factorization B = U**H*U or B = L*L**H. */
/* > \endverbatim */
/* > */
/* > \param[in] LDB */
/* > \verbatim */
/* > LDB is INTEGER */
/* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
/* > \endverbatim */
/* > */
/* > \param[in] VL */
/* > \verbatim */
/* > VL is DOUBLE PRECISION */
/* > */
/* > If RANGE='V', the lower bound of the interval to */
/* > be searched for eigenvalues. VL < VU. */
/* > Not referenced if RANGE = 'A' or 'I'. */
/* > \endverbatim */
/* > */
/* > \param[in] VU */
/* > \verbatim */
/* > VU is DOUBLE PRECISION */
/* > */
/* > If RANGE='V', the upper bound of the interval to */
/* > be searched for eigenvalues. VL < VU. */
/* > Not referenced if RANGE = 'A' or 'I'. */
/* > \endverbatim */
/* > */
/* > \param[in] IL */
/* > \verbatim */
/* > IL is INTEGER */
/* > */
/* > If RANGE='I', the index of the */
/* > smallest eigenvalue to be returned. */
/* > 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
/* > Not referenced if RANGE = 'A' or 'V'. */
/* > \endverbatim */
/* > */
/* > \param[in] IU */
/* > \verbatim */
/* > IU is INTEGER */
/* > */
/* > If RANGE='I', the index of the */
/* > largest eigenvalue to be returned. */
/* > 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
/* > Not referenced if RANGE = 'A' or 'V'. */
/* > \endverbatim */
/* > */
/* > \param[in] ABSTOL */
/* > \verbatim */
/* > ABSTOL is DOUBLE PRECISION */
/* > The absolute error tolerance for the eigenvalues. */
/* > An approximate eigenvalue is accepted as converged */
/* > when it is determined to lie in an interval [a,b] */
/* > of width less than or equal to */
/* > */
/* > ABSTOL + EPS * f2cmax( |a|,|b| ) , */
/* > */
/* > where EPS is the machine precision. If ABSTOL is less than */
/* > or equal to zero, then EPS*|T| will be used in its place, */
/* > where |T| is the 1-norm of the tridiagonal matrix obtained */
/* > by reducing C to tridiagonal form, where C is the symmetric */
/* > matrix of the standard symmetric problem to which the */
/* > generalized problem is transformed. */
/* > */
/* > Eigenvalues will be computed most accurately when ABSTOL is */
/* > set to twice the underflow threshold 2*DLAMCH('S'), not zero. */
/* > If this routine returns with INFO>0, indicating that some */
/* > eigenvectors did not converge, try setting ABSTOL to */
/* > 2*DLAMCH('S'). */
/* > \endverbatim */
/* > */
/* > \param[out] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The total number of eigenvalues found. 0 <= M <= N. */
/* > If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
/* > \endverbatim */
/* > */
/* > \param[out] W */
/* > \verbatim */
/* > W is DOUBLE PRECISION array, dimension (N) */
/* > The first M elements contain the selected */
/* > eigenvalues in ascending order. */
/* > \endverbatim */
/* > */
/* > \param[out] Z */
/* > \verbatim */
/* > Z is COMPLEX*16 array, dimension (LDZ, f2cmax(1,M)) */
/* > If JOBZ = 'N', then Z is not referenced. */
/* > If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
/* > contain the orthonormal eigenvectors of the matrix A */
/* > corresponding to the selected eigenvalues, with the i-th */
/* > column of Z holding the eigenvector associated with W(i). */
/* > The eigenvectors are normalized as follows: */
/* > if ITYPE = 1 or 2, Z**T*B*Z = I; */
/* > if ITYPE = 3, Z**T*inv(B)*Z = I. */
/* > */
/* > If an eigenvector fails to converge, then that column of Z */
/* > contains the latest approximation to the eigenvector, and the */
/* > index of the eigenvector is returned in IFAIL. */
/* > Note: the user must ensure that at least f2cmax(1,M) columns are */
/* > supplied in the array Z; if RANGE = 'V', the exact value of M */
/* > is not known in advance and an upper bound must be used. */
/* > \endverbatim */
/* > */
/* > \param[in] LDZ */
/* > \verbatim */
/* > LDZ is INTEGER */
/* > The leading dimension of the array Z. LDZ >= 1, and if */
/* > JOBZ = 'V', LDZ >= f2cmax(1,N). */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) */
/* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* > \endverbatim */
/* > */
/* > \param[in] LWORK */
/* > \verbatim */
/* > LWORK is INTEGER */
/* > The length of the array WORK. LWORK >= f2cmax(1,2*N). */
/* > For optimal efficiency, LWORK >= (NB+1)*N, */
/* > where NB is the blocksize for ZHETRD returned by ILAENV. */
/* > */
/* > If LWORK = -1, then a workspace query is assumed; the routine */
/* > only calculates the optimal size of the WORK array, returns */
/* > this value as the first entry of the WORK array, and no error */
/* > message related to LWORK is issued by XERBLA. */
/* > \endverbatim */
/* > */
/* > \param[out] RWORK */
/* > \verbatim */
/* > RWORK is DOUBLE PRECISION array, dimension (7*N) */
/* > \endverbatim */
/* > */
/* > \param[out] IWORK */
/* > \verbatim */
/* > IWORK is INTEGER array, dimension (5*N) */
/* > \endverbatim */
/* > */
/* > \param[out] IFAIL */
/* > \verbatim */
/* > IFAIL is INTEGER array, dimension (N) */
/* > If JOBZ = 'V', then if INFO = 0, the first M elements of */
/* > IFAIL are zero. If INFO > 0, then IFAIL contains the */
/* > indices of the eigenvectors that failed to converge. */
/* > If JOBZ = 'N', then IFAIL is not referenced. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > > 0: ZPOTRF or ZHEEVX returned an error code: */
/* > <= N: if INFO = i, ZHEEVX failed to converge; */
/* > i eigenvectors failed to converge. Their indices */
/* > are stored in array IFAIL. */
/* > > N: if INFO = N + i, for 1 <= i <= N, then the leading */
/* > minor of order i of B is not positive definite. */
/* > The factorization of B could not be completed and */
/* > no eigenvalues or eigenvectors were computed. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date June 2016 */
/* > \ingroup complex16HEeigen */
/* > \par Contributors: */
/* ================== */
/* > */
/* > Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA */
/* ===================================================================== */
/* Subroutine */ void zhegvx_(integer *itype, char *jobz, char *range, char *
uplo, integer *n, doublecomplex *a, integer *lda, doublecomplex *b,
integer *ldb, doublereal *vl, doublereal *vu, integer *il, integer *
iu, doublereal *abstol, integer *m, doublereal *w, doublecomplex *z__,
integer *ldz, doublecomplex *work, integer *lwork, doublereal *rwork,
integer *iwork, integer *ifail, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, z_dim1, z_offset, i__1, i__2;
/* Local variables */
extern logical lsame_(char *, char *);
char trans[1];
logical upper, wantz;
extern /* Subroutine */ void ztrmm_(char *, char *, char *, char *,
integer *, integer *, doublecomplex *, doublecomplex *, integer *,
doublecomplex *, integer *),
ztrsm_(char *, char *, char *, char *, integer *, integer *,
doublecomplex *, doublecomplex *, integer *, doublecomplex *,
integer *);
integer nb;
logical alleig, indeig, valeig;
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *, ftnlen, ftnlen);
extern /* Subroutine */ void zhegst_(integer *, char *, integer *,
doublecomplex *, integer *, doublecomplex *, integer *, integer *), zheevx_(char *, char *, char *, integer *,
doublecomplex *, integer *, doublereal *, doublereal *, integer *,
integer *, doublereal *, integer *, doublereal *, doublecomplex *
, integer *, doublecomplex *, integer *, doublereal *, integer *,
integer *, integer *);
integer lwkopt;
logical lquery;
extern /* Subroutine */ int zpotrf_(char *, integer *, doublecomplex *,
integer *, integer *);
/* -- LAPACK driver routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* June 2016 */
/* ===================================================================== */
/* Test the input parameters. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1 * 1;
b -= b_offset;
--w;
z_dim1 = *ldz;
z_offset = 1 + z_dim1 * 1;
z__ -= z_offset;
--work;
--rwork;
--iwork;
--ifail;
/* Function Body */
wantz = lsame_(jobz, "V");
upper = lsame_(uplo, "U");
alleig = lsame_(range, "A");
valeig = lsame_(range, "V");
indeig = lsame_(range, "I");
lquery = *lwork == -1;
*info = 0;
if (*itype < 1 || *itype > 3) {
*info = -1;
} else if (! (wantz || lsame_(jobz, "N"))) {
*info = -2;
} else if (! (alleig || valeig || indeig)) {
*info = -3;
} else if (! (upper || lsame_(uplo, "L"))) {
*info = -4;
} else if (*n < 0) {
*info = -5;
} else if (*lda < f2cmax(1,*n)) {
*info = -7;
} else if (*ldb < f2cmax(1,*n)) {
*info = -9;
} else {
if (valeig) {
if (*n > 0 && *vu <= *vl) {
*info = -11;
}
} else if (indeig) {
if (*il < 1 || *il > f2cmax(1,*n)) {
*info = -12;
} else if (*iu < f2cmin(*n,*il) || *iu > *n) {
*info = -13;
}
}
}
if (*info == 0) {
if (*ldz < 1 || wantz && *ldz < *n) {
*info = -18;
}
}
if (*info == 0) {
nb = ilaenv_(&c__1, "ZHETRD", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)6,
(ftnlen)1);
/* Computing MAX */
i__1 = 1, i__2 = (nb + 1) * *n;
lwkopt = f2cmax(i__1,i__2);
work[1].r = (doublereal) lwkopt, work[1].i = 0.;
/* Computing MAX */
i__1 = 1, i__2 = *n << 1;
if (*lwork < f2cmax(i__1,i__2) && ! lquery) {
*info = -20;
}
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("ZHEGVX", &i__1, (ftnlen)6);
return;
} else if (lquery) {
return;
}
/* Quick return if possible */
*m = 0;
if (*n == 0) {
return;
}
/* Form a Cholesky factorization of B. */
zpotrf_(uplo, n, &b[b_offset], ldb, info);
if (*info != 0) {
*info = *n + *info;
return;
}
/* Transform problem to standard eigenvalue problem and solve. */
zhegst_(itype, uplo, n, &a[a_offset], lda, &b[b_offset], ldb, info);
zheevx_(jobz, range, uplo, n, &a[a_offset], lda, vl, vu, il, iu, abstol,
m, &w[1], &z__[z_offset], ldz, &work[1], lwork, &rwork[1], &iwork[
1], &ifail[1], info);
if (wantz) {
/* Backtransform eigenvectors to the original problem. */
if (*info > 0) {
*m = *info - 1;
}
if (*itype == 1 || *itype == 2) {
/* For A*x=(lambda)*B*x and A*B*x=(lambda)*x; */
/* backtransform eigenvectors: x = inv(L)**H *y or inv(U)*y */
if (upper) {
*(unsigned char *)trans = 'N';
} else {
*(unsigned char *)trans = 'C';
}
ztrsm_("Left", uplo, trans, "Non-unit", n, m, &c_b1, &b[b_offset],
ldb, &z__[z_offset], ldz);
} else if (*itype == 3) {
/* For B*A*x=(lambda)*x; */
/* backtransform eigenvectors: x = L*y or U**H *y */
if (upper) {
*(unsigned char *)trans = 'C';
} else {
*(unsigned char *)trans = 'N';
}
ztrmm_("Left", uplo, trans, "Non-unit", n, m, &c_b1, &b[b_offset],
ldb, &z__[z_offset], ldz);
}
}
/* Set WORK(1) to optimal complex workspace size. */
work[1].r = (doublereal) lwkopt, work[1].i = 0.;
return;
/* End of ZHEGVX */
} /* zhegvx_ */