956 lines
28 KiB
C
956 lines
28 KiB
C
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <complex.h>
|
|
#ifdef complex
|
|
#undef complex
|
|
#endif
|
|
#ifdef I
|
|
#undef I
|
|
#endif
|
|
|
|
#if defined(_WIN64)
|
|
typedef long long BLASLONG;
|
|
typedef unsigned long long BLASULONG;
|
|
#else
|
|
typedef long BLASLONG;
|
|
typedef unsigned long BLASULONG;
|
|
#endif
|
|
|
|
#ifdef LAPACK_ILP64
|
|
typedef BLASLONG blasint;
|
|
#if defined(_WIN64)
|
|
#define blasabs(x) llabs(x)
|
|
#else
|
|
#define blasabs(x) labs(x)
|
|
#endif
|
|
#else
|
|
typedef int blasint;
|
|
#define blasabs(x) abs(x)
|
|
#endif
|
|
|
|
typedef blasint integer;
|
|
|
|
typedef unsigned int uinteger;
|
|
typedef char *address;
|
|
typedef short int shortint;
|
|
typedef float real;
|
|
typedef double doublereal;
|
|
typedef struct { real r, i; } complex;
|
|
typedef struct { doublereal r, i; } doublecomplex;
|
|
#ifdef _MSC_VER
|
|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
|
|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
|
|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
|
|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
|
|
#else
|
|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
|
|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
|
|
#endif
|
|
#define pCf(z) (*_pCf(z))
|
|
#define pCd(z) (*_pCd(z))
|
|
typedef blasint logical;
|
|
|
|
typedef char logical1;
|
|
typedef char integer1;
|
|
|
|
#define TRUE_ (1)
|
|
#define FALSE_ (0)
|
|
|
|
/* Extern is for use with -E */
|
|
#ifndef Extern
|
|
#define Extern extern
|
|
#endif
|
|
|
|
/* I/O stuff */
|
|
|
|
typedef int flag;
|
|
typedef int ftnlen;
|
|
typedef int ftnint;
|
|
|
|
/*external read, write*/
|
|
typedef struct
|
|
{ flag cierr;
|
|
ftnint ciunit;
|
|
flag ciend;
|
|
char *cifmt;
|
|
ftnint cirec;
|
|
} cilist;
|
|
|
|
/*internal read, write*/
|
|
typedef struct
|
|
{ flag icierr;
|
|
char *iciunit;
|
|
flag iciend;
|
|
char *icifmt;
|
|
ftnint icirlen;
|
|
ftnint icirnum;
|
|
} icilist;
|
|
|
|
/*open*/
|
|
typedef struct
|
|
{ flag oerr;
|
|
ftnint ounit;
|
|
char *ofnm;
|
|
ftnlen ofnmlen;
|
|
char *osta;
|
|
char *oacc;
|
|
char *ofm;
|
|
ftnint orl;
|
|
char *oblnk;
|
|
} olist;
|
|
|
|
/*close*/
|
|
typedef struct
|
|
{ flag cerr;
|
|
ftnint cunit;
|
|
char *csta;
|
|
} cllist;
|
|
|
|
/*rewind, backspace, endfile*/
|
|
typedef struct
|
|
{ flag aerr;
|
|
ftnint aunit;
|
|
} alist;
|
|
|
|
/* inquire */
|
|
typedef struct
|
|
{ flag inerr;
|
|
ftnint inunit;
|
|
char *infile;
|
|
ftnlen infilen;
|
|
ftnint *inex; /*parameters in standard's order*/
|
|
ftnint *inopen;
|
|
ftnint *innum;
|
|
ftnint *innamed;
|
|
char *inname;
|
|
ftnlen innamlen;
|
|
char *inacc;
|
|
ftnlen inacclen;
|
|
char *inseq;
|
|
ftnlen inseqlen;
|
|
char *indir;
|
|
ftnlen indirlen;
|
|
char *infmt;
|
|
ftnlen infmtlen;
|
|
char *inform;
|
|
ftnint informlen;
|
|
char *inunf;
|
|
ftnlen inunflen;
|
|
ftnint *inrecl;
|
|
ftnint *innrec;
|
|
char *inblank;
|
|
ftnlen inblanklen;
|
|
} inlist;
|
|
|
|
#define VOID void
|
|
|
|
union Multitype { /* for multiple entry points */
|
|
integer1 g;
|
|
shortint h;
|
|
integer i;
|
|
/* longint j; */
|
|
real r;
|
|
doublereal d;
|
|
complex c;
|
|
doublecomplex z;
|
|
};
|
|
|
|
typedef union Multitype Multitype;
|
|
|
|
struct Vardesc { /* for Namelist */
|
|
char *name;
|
|
char *addr;
|
|
ftnlen *dims;
|
|
int type;
|
|
};
|
|
typedef struct Vardesc Vardesc;
|
|
|
|
struct Namelist {
|
|
char *name;
|
|
Vardesc **vars;
|
|
int nvars;
|
|
};
|
|
typedef struct Namelist Namelist;
|
|
|
|
#define abs(x) ((x) >= 0 ? (x) : -(x))
|
|
#define dabs(x) (fabs(x))
|
|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
|
|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
|
|
#define dmin(a,b) (f2cmin(a,b))
|
|
#define dmax(a,b) (f2cmax(a,b))
|
|
#define bit_test(a,b) ((a) >> (b) & 1)
|
|
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
|
|
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
|
|
|
|
#define abort_() { sig_die("Fortran abort routine called", 1); }
|
|
#define c_abs(z) (cabsf(Cf(z)))
|
|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
|
|
#ifdef _MSC_VER
|
|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
|
|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
|
|
#else
|
|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
|
|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
|
|
#endif
|
|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
|
|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
|
|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
|
|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
|
|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
|
|
#define d_abs(x) (fabs(*(x)))
|
|
#define d_acos(x) (acos(*(x)))
|
|
#define d_asin(x) (asin(*(x)))
|
|
#define d_atan(x) (atan(*(x)))
|
|
#define d_atn2(x, y) (atan2(*(x),*(y)))
|
|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
|
|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
|
|
#define d_cos(x) (cos(*(x)))
|
|
#define d_cosh(x) (cosh(*(x)))
|
|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
|
|
#define d_exp(x) (exp(*(x)))
|
|
#define d_imag(z) (cimag(Cd(z)))
|
|
#define r_imag(z) (cimagf(Cf(z)))
|
|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define d_log(x) (log(*(x)))
|
|
#define d_mod(x, y) (fmod(*(x), *(y)))
|
|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
|
|
#define d_nint(x) u_nint(*(x))
|
|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
|
|
#define d_sign(a,b) u_sign(*(a),*(b))
|
|
#define r_sign(a,b) u_sign(*(a),*(b))
|
|
#define d_sin(x) (sin(*(x)))
|
|
#define d_sinh(x) (sinh(*(x)))
|
|
#define d_sqrt(x) (sqrt(*(x)))
|
|
#define d_tan(x) (tan(*(x)))
|
|
#define d_tanh(x) (tanh(*(x)))
|
|
#define i_abs(x) abs(*(x))
|
|
#define i_dnnt(x) ((integer)u_nint(*(x)))
|
|
#define i_len(s, n) (n)
|
|
#define i_nint(x) ((integer)u_nint(*(x)))
|
|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
|
|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
|
|
#define pow_si(B,E) spow_ui(*(B),*(E))
|
|
#define pow_ri(B,E) spow_ui(*(B),*(E))
|
|
#define pow_di(B,E) dpow_ui(*(B),*(E))
|
|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
|
|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
|
|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
|
|
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
|
|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
|
|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
|
|
#define sig_die(s, kill) { exit(1); }
|
|
#define s_stop(s, n) {exit(0);}
|
|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
|
|
#define z_abs(z) (cabs(Cd(z)))
|
|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
|
|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
|
|
#define myexit_() break;
|
|
#define mycycle() continue;
|
|
#define myceiling(w) {ceil(w)}
|
|
#define myhuge(w) {HUGE_VAL}
|
|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
|
|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
|
|
|
|
/* procedure parameter types for -A and -C++ */
|
|
|
|
|
|
#ifdef __cplusplus
|
|
typedef logical (*L_fp)(...);
|
|
#else
|
|
typedef logical (*L_fp)();
|
|
#endif
|
|
|
|
static float spow_ui(float x, integer n) {
|
|
float pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
static double dpow_ui(double x, integer n) {
|
|
double pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#ifdef _MSC_VER
|
|
static _Fcomplex cpow_ui(complex x, integer n) {
|
|
complex pow={1.0,0.0}; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow.r *= x.r, pow.i *= x.i;
|
|
if(u >>= 1) x.r *= x.r, x.i *= x.i;
|
|
else break;
|
|
}
|
|
}
|
|
_Fcomplex p={pow.r, pow.i};
|
|
return p;
|
|
}
|
|
#else
|
|
static _Complex float cpow_ui(_Complex float x, integer n) {
|
|
_Complex float pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#endif
|
|
#ifdef _MSC_VER
|
|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
|
|
_Dcomplex pow={1.0,0.0}; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
|
|
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
|
|
else break;
|
|
}
|
|
}
|
|
_Dcomplex p = {pow._Val[0], pow._Val[1]};
|
|
return p;
|
|
}
|
|
#else
|
|
static _Complex double zpow_ui(_Complex double x, integer n) {
|
|
_Complex double pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#endif
|
|
static integer pow_ii(integer x, integer n) {
|
|
integer pow; unsigned long int u;
|
|
if (n <= 0) {
|
|
if (n == 0 || x == 1) pow = 1;
|
|
else if (x != -1) pow = x == 0 ? 1/x : 0;
|
|
else n = -n;
|
|
}
|
|
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
|
|
u = n;
|
|
for(pow = 1; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
|
|
{
|
|
double m; integer i, mi;
|
|
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
|
if (w[i-1]>m) mi=i ,m=w[i-1];
|
|
return mi-s+1;
|
|
}
|
|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
|
|
{
|
|
float m; integer i, mi;
|
|
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
|
if (w[i-1]>m) mi=i ,m=w[i-1];
|
|
return mi-s+1;
|
|
}
|
|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Fcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
|
|
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex float zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Dcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
|
|
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex double zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Fcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
|
|
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex float zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cf(&x[i]) * Cf(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Dcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
|
|
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex double zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cd(&x[i]) * Cd(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#endif
|
|
/* -- translated by f2c (version 20000121).
|
|
You must link the resulting object file with the libraries:
|
|
-lf2c -lm (in that order)
|
|
*/
|
|
|
|
|
|
|
|
|
|
/* Table of constant values */
|
|
|
|
static integer c__1 = 1;
|
|
static integer c_n1 = -1;
|
|
static integer c__0 = 0;
|
|
static doublereal c_b18 = 1.;
|
|
|
|
/* > \brief <b> ZHEEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE mat
|
|
rices</b> */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* > \htmlonly */
|
|
/* > Download ZHEEVD + dependencies */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zheevd.
|
|
f"> */
|
|
/* > [TGZ]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zheevd.
|
|
f"> */
|
|
/* > [ZIP]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zheevd.
|
|
f"> */
|
|
/* > [TXT]</a> */
|
|
/* > \endhtmlonly */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* SUBROUTINE ZHEEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK, */
|
|
/* LRWORK, IWORK, LIWORK, INFO ) */
|
|
|
|
/* CHARACTER JOBZ, UPLO */
|
|
/* INTEGER INFO, LDA, LIWORK, LRWORK, LWORK, N */
|
|
/* INTEGER IWORK( * ) */
|
|
/* DOUBLE PRECISION RWORK( * ), W( * ) */
|
|
/* COMPLEX*16 A( LDA, * ), WORK( * ) */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > ZHEEVD computes all eigenvalues and, optionally, eigenvectors of a */
|
|
/* > complex Hermitian matrix A. If eigenvectors are desired, it uses a */
|
|
/* > divide and conquer algorithm. */
|
|
/* > */
|
|
/* > The divide and conquer algorithm makes very mild assumptions about */
|
|
/* > floating point arithmetic. It will work on machines with a guard */
|
|
/* > digit in add/subtract, or on those binary machines without guard */
|
|
/* > digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */
|
|
/* > Cray-2. It could conceivably fail on hexadecimal or decimal machines */
|
|
/* > without guard digits, but we know of none. */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] JOBZ */
|
|
/* > \verbatim */
|
|
/* > JOBZ is CHARACTER*1 */
|
|
/* > = 'N': Compute eigenvalues only; */
|
|
/* > = 'V': Compute eigenvalues and eigenvectors. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] UPLO */
|
|
/* > \verbatim */
|
|
/* > UPLO is CHARACTER*1 */
|
|
/* > = 'U': Upper triangle of A is stored; */
|
|
/* > = 'L': Lower triangle of A is stored. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > The order of the matrix A. N >= 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] A */
|
|
/* > \verbatim */
|
|
/* > A is COMPLEX*16 array, dimension (LDA, N) */
|
|
/* > On entry, the Hermitian matrix A. If UPLO = 'U', the */
|
|
/* > leading N-by-N upper triangular part of A contains the */
|
|
/* > upper triangular part of the matrix A. If UPLO = 'L', */
|
|
/* > the leading N-by-N lower triangular part of A contains */
|
|
/* > the lower triangular part of the matrix A. */
|
|
/* > On exit, if JOBZ = 'V', then if INFO = 0, A contains the */
|
|
/* > orthonormal eigenvectors of the matrix A. */
|
|
/* > If JOBZ = 'N', then on exit the lower triangle (if UPLO='L') */
|
|
/* > or the upper triangle (if UPLO='U') of A, including the */
|
|
/* > diagonal, is destroyed. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDA */
|
|
/* > \verbatim */
|
|
/* > LDA is INTEGER */
|
|
/* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] W */
|
|
/* > \verbatim */
|
|
/* > W is DOUBLE PRECISION array, dimension (N) */
|
|
/* > If INFO = 0, the eigenvalues in ascending order. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] WORK */
|
|
/* > \verbatim */
|
|
/* > WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) */
|
|
/* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LWORK */
|
|
/* > \verbatim */
|
|
/* > LWORK is INTEGER */
|
|
/* > The length of the array WORK. */
|
|
/* > If N <= 1, LWORK must be at least 1. */
|
|
/* > If JOBZ = 'N' and N > 1, LWORK must be at least N + 1. */
|
|
/* > If JOBZ = 'V' and N > 1, LWORK must be at least 2*N + N**2. */
|
|
/* > */
|
|
/* > If LWORK = -1, then a workspace query is assumed; the routine */
|
|
/* > only calculates the optimal sizes of the WORK, RWORK and */
|
|
/* > IWORK arrays, returns these values as the first entries of */
|
|
/* > the WORK, RWORK and IWORK arrays, and no error message */
|
|
/* > related to LWORK or LRWORK or LIWORK is issued by XERBLA. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] RWORK */
|
|
/* > \verbatim */
|
|
/* > RWORK is DOUBLE PRECISION array, */
|
|
/* > dimension (LRWORK) */
|
|
/* > On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LRWORK */
|
|
/* > \verbatim */
|
|
/* > LRWORK is INTEGER */
|
|
/* > The dimension of the array RWORK. */
|
|
/* > If N <= 1, LRWORK must be at least 1. */
|
|
/* > If JOBZ = 'N' and N > 1, LRWORK must be at least N. */
|
|
/* > If JOBZ = 'V' and N > 1, LRWORK must be at least */
|
|
/* > 1 + 5*N + 2*N**2. */
|
|
/* > */
|
|
/* > If LRWORK = -1, then a workspace query is assumed; the */
|
|
/* > routine only calculates the optimal sizes of the WORK, RWORK */
|
|
/* > and IWORK arrays, returns these values as the first entries */
|
|
/* > of the WORK, RWORK and IWORK arrays, and no error message */
|
|
/* > related to LWORK or LRWORK or LIWORK is issued by XERBLA. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] IWORK */
|
|
/* > \verbatim */
|
|
/* > IWORK is INTEGER array, dimension (MAX(1,LIWORK)) */
|
|
/* > On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LIWORK */
|
|
/* > \verbatim */
|
|
/* > LIWORK is INTEGER */
|
|
/* > The dimension of the array IWORK. */
|
|
/* > If N <= 1, LIWORK must be at least 1. */
|
|
/* > If JOBZ = 'N' and N > 1, LIWORK must be at least 1. */
|
|
/* > If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N. */
|
|
/* > */
|
|
/* > If LIWORK = -1, then a workspace query is assumed; the */
|
|
/* > routine only calculates the optimal sizes of the WORK, RWORK */
|
|
/* > and IWORK arrays, returns these values as the first entries */
|
|
/* > of the WORK, RWORK and IWORK arrays, and no error message */
|
|
/* > related to LWORK or LRWORK or LIWORK is issued by XERBLA. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] INFO */
|
|
/* > \verbatim */
|
|
/* > INFO is INTEGER */
|
|
/* > = 0: successful exit */
|
|
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
|
|
/* > > 0: if INFO = i and JOBZ = 'N', then the algorithm failed */
|
|
/* > to converge; i off-diagonal elements of an intermediate */
|
|
/* > tridiagonal form did not converge to zero; */
|
|
/* > if INFO = i and JOBZ = 'V', then the algorithm failed */
|
|
/* > to compute an eigenvalue while working on the submatrix */
|
|
/* > lying in rows and columns INFO/(N+1) through */
|
|
/* > mod(INFO,N+1). */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \date December 2016 */
|
|
|
|
/* > \ingroup complex16HEeigen */
|
|
|
|
/* > \par Further Details: */
|
|
/* ===================== */
|
|
/* > */
|
|
/* > Modified description of INFO. Sven, 16 Feb 05. */
|
|
|
|
/* > \par Contributors: */
|
|
/* ================== */
|
|
/* > */
|
|
/* > Jeff Rutter, Computer Science Division, University of California */
|
|
/* > at Berkeley, USA */
|
|
/* > */
|
|
/* ===================================================================== */
|
|
/* Subroutine */ void zheevd_(char *jobz, char *uplo, integer *n,
|
|
doublecomplex *a, integer *lda, doublereal *w, doublecomplex *work,
|
|
integer *lwork, doublereal *rwork, integer *lrwork, integer *iwork,
|
|
integer *liwork, integer *info)
|
|
{
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, i__1, i__2;
|
|
doublereal d__1;
|
|
|
|
/* Local variables */
|
|
integer inde;
|
|
doublereal anrm;
|
|
integer imax;
|
|
doublereal rmin, rmax;
|
|
integer lopt;
|
|
extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *,
|
|
integer *);
|
|
doublereal sigma;
|
|
extern logical lsame_(char *, char *);
|
|
integer iinfo, lwmin, liopt;
|
|
logical lower;
|
|
integer llrwk, lropt;
|
|
logical wantz;
|
|
integer indwk2, llwrk2;
|
|
extern doublereal dlamch_(char *);
|
|
integer iscale;
|
|
doublereal safmin;
|
|
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
|
|
integer *, integer *, ftnlen, ftnlen);
|
|
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
|
|
doublereal bignum;
|
|
extern doublereal zlanhe_(char *, char *, integer *, doublecomplex *,
|
|
integer *, doublereal *);
|
|
integer indtau;
|
|
extern /* Subroutine */ void dsterf_(integer *, doublereal *, doublereal *,
|
|
integer *), zlascl_(char *, integer *, integer *, doublereal *,
|
|
doublereal *, integer *, integer *, doublecomplex *, integer *,
|
|
integer *), zstedc_(char *, integer *, doublereal *,
|
|
doublereal *, doublecomplex *, integer *, doublecomplex *,
|
|
integer *, doublereal *, integer *, integer *, integer *, integer
|
|
*);
|
|
integer indrwk, indwrk, liwmin;
|
|
extern /* Subroutine */ void zhetrd_(char *, integer *, doublecomplex *,
|
|
integer *, doublereal *, doublereal *, doublecomplex *,
|
|
doublecomplex *, integer *, integer *), zlacpy_(char *,
|
|
integer *, integer *, doublecomplex *, integer *, doublecomplex *,
|
|
integer *);
|
|
integer lrwmin, llwork;
|
|
doublereal smlnum;
|
|
logical lquery;
|
|
extern /* Subroutine */ void zunmtr_(char *, char *, char *, integer *,
|
|
integer *, doublecomplex *, integer *, doublecomplex *,
|
|
doublecomplex *, integer *, doublecomplex *, integer *, integer *);
|
|
doublereal eps;
|
|
|
|
|
|
/* -- LAPACK driver routine (version 3.7.0) -- */
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
/* December 2016 */
|
|
|
|
|
|
/* ===================================================================== */
|
|
|
|
|
|
/* Test the input parameters. */
|
|
|
|
/* Parameter adjustments */
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1 * 1;
|
|
a -= a_offset;
|
|
--w;
|
|
--work;
|
|
--rwork;
|
|
--iwork;
|
|
|
|
/* Function Body */
|
|
wantz = lsame_(jobz, "V");
|
|
lower = lsame_(uplo, "L");
|
|
lquery = *lwork == -1 || *lrwork == -1 || *liwork == -1;
|
|
|
|
*info = 0;
|
|
if (! (wantz || lsame_(jobz, "N"))) {
|
|
*info = -1;
|
|
} else if (! (lower || lsame_(uplo, "U"))) {
|
|
*info = -2;
|
|
} else if (*n < 0) {
|
|
*info = -3;
|
|
} else if (*lda < f2cmax(1,*n)) {
|
|
*info = -5;
|
|
}
|
|
|
|
if (*info == 0) {
|
|
if (*n <= 1) {
|
|
lwmin = 1;
|
|
lrwmin = 1;
|
|
liwmin = 1;
|
|
lopt = lwmin;
|
|
lropt = lrwmin;
|
|
liopt = liwmin;
|
|
} else {
|
|
if (wantz) {
|
|
lwmin = (*n << 1) + *n * *n;
|
|
/* Computing 2nd power */
|
|
i__1 = *n;
|
|
lrwmin = *n * 5 + 1 + (i__1 * i__1 << 1);
|
|
liwmin = *n * 5 + 3;
|
|
} else {
|
|
lwmin = *n + 1;
|
|
lrwmin = *n;
|
|
liwmin = 1;
|
|
}
|
|
/* Computing MAX */
|
|
i__1 = lwmin, i__2 = *n + ilaenv_(&c__1, "ZHETRD", uplo, n, &c_n1,
|
|
&c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
|
|
lopt = f2cmax(i__1,i__2);
|
|
lropt = lrwmin;
|
|
liopt = liwmin;
|
|
}
|
|
work[1].r = (doublereal) lopt, work[1].i = 0.;
|
|
rwork[1] = (doublereal) lropt;
|
|
iwork[1] = liopt;
|
|
|
|
if (*lwork < lwmin && ! lquery) {
|
|
*info = -8;
|
|
} else if (*lrwork < lrwmin && ! lquery) {
|
|
*info = -10;
|
|
} else if (*liwork < liwmin && ! lquery) {
|
|
*info = -12;
|
|
}
|
|
}
|
|
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_("ZHEEVD", &i__1, (ftnlen)6);
|
|
return;
|
|
} else if (lquery) {
|
|
return;
|
|
}
|
|
|
|
/* Quick return if possible */
|
|
|
|
if (*n == 0) {
|
|
return;
|
|
}
|
|
|
|
if (*n == 1) {
|
|
i__1 = a_dim1 + 1;
|
|
w[1] = a[i__1].r;
|
|
if (wantz) {
|
|
i__1 = a_dim1 + 1;
|
|
a[i__1].r = 1., a[i__1].i = 0.;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Get machine constants. */
|
|
|
|
safmin = dlamch_("Safe minimum");
|
|
eps = dlamch_("Precision");
|
|
smlnum = safmin / eps;
|
|
bignum = 1. / smlnum;
|
|
rmin = sqrt(smlnum);
|
|
rmax = sqrt(bignum);
|
|
|
|
/* Scale matrix to allowable range, if necessary. */
|
|
|
|
anrm = zlanhe_("M", uplo, n, &a[a_offset], lda, &rwork[1]);
|
|
iscale = 0;
|
|
if (anrm > 0. && anrm < rmin) {
|
|
iscale = 1;
|
|
sigma = rmin / anrm;
|
|
} else if (anrm > rmax) {
|
|
iscale = 1;
|
|
sigma = rmax / anrm;
|
|
}
|
|
if (iscale == 1) {
|
|
zlascl_(uplo, &c__0, &c__0, &c_b18, &sigma, n, n, &a[a_offset], lda,
|
|
info);
|
|
}
|
|
|
|
/* Call ZHETRD to reduce Hermitian matrix to tridiagonal form. */
|
|
|
|
inde = 1;
|
|
indtau = 1;
|
|
indwrk = indtau + *n;
|
|
indrwk = inde + *n;
|
|
indwk2 = indwrk + *n * *n;
|
|
llwork = *lwork - indwrk + 1;
|
|
llwrk2 = *lwork - indwk2 + 1;
|
|
llrwk = *lrwork - indrwk + 1;
|
|
zhetrd_(uplo, n, &a[a_offset], lda, &w[1], &rwork[inde], &work[indtau], &
|
|
work[indwrk], &llwork, &iinfo);
|
|
|
|
/* For eigenvalues only, call DSTERF. For eigenvectors, first call */
|
|
/* ZSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the */
|
|
/* tridiagonal matrix, then call ZUNMTR to multiply it to the */
|
|
/* Householder transformations represented as Householder vectors in */
|
|
/* A. */
|
|
|
|
if (! wantz) {
|
|
dsterf_(n, &w[1], &rwork[inde], info);
|
|
} else {
|
|
zstedc_("I", n, &w[1], &rwork[inde], &work[indwrk], n, &work[indwk2],
|
|
&llwrk2, &rwork[indrwk], &llrwk, &iwork[1], liwork, info);
|
|
zunmtr_("L", uplo, "N", n, n, &a[a_offset], lda, &work[indtau], &work[
|
|
indwrk], n, &work[indwk2], &llwrk2, &iinfo);
|
|
zlacpy_("A", n, n, &work[indwrk], n, &a[a_offset], lda);
|
|
}
|
|
|
|
/* If matrix was scaled, then rescale eigenvalues appropriately. */
|
|
|
|
if (iscale == 1) {
|
|
if (*info == 0) {
|
|
imax = *n;
|
|
} else {
|
|
imax = *info - 1;
|
|
}
|
|
d__1 = 1. / sigma;
|
|
dscal_(&imax, &d__1, &w[1], &c__1);
|
|
}
|
|
|
|
work[1].r = (doublereal) lopt, work[1].i = 0.;
|
|
rwork[1] = (doublereal) lropt;
|
|
iwork[1] = liopt;
|
|
|
|
return;
|
|
|
|
/* End of ZHEEVD */
|
|
|
|
} /* zheevd_ */
|
|
|