OpenBLAS/lapack-netlib/SRC/zgges.c

1202 lines
36 KiB
C

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif
#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif
#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif
typedef blasint integer;
typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
#ifdef _MSC_VER
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
#else
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#endif
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef blasint logical;
typedef char logical1;
typedef char integer1;
#define TRUE_ (1)
#define FALSE_ (0)
/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif
/* I/O stuff */
typedef int flag;
typedef int ftnlen;
typedef int ftnint;
/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;
/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;
/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;
/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;
/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;
/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;
#define VOID void
union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};
typedef union Multitype Multitype;
struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;
struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;
#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#ifdef _MSC_VER
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
#else
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#endif
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimagf(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
/* procedure parameter types for -A and -C++ */
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif
static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#ifdef _MSC_VER
static _Fcomplex cpow_ui(complex x, integer n) {
complex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
for(u = n; ; ) {
if(u & 01) pow.r *= x.r, pow.i *= x.i;
if(u >>= 1) x.r *= x.r, x.i *= x.i;
else break;
}
}
_Fcomplex p={pow.r, pow.i};
return p;
}
#else
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
#ifdef _MSC_VER
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
_Dcomplex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
for(u = n; ; ) {
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
else break;
}
}
_Dcomplex p = {pow._Val[0], pow._Val[1]};
return p;
}
#else
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
/* Table of constant values */
static doublecomplex c_b1 = {0.,0.};
static doublecomplex c_b2 = {1.,0.};
static integer c__1 = 1;
static integer c__0 = 0;
static integer c_n1 = -1;
/* > \brief <b> ZGGES computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors f
or GE matrices</b> */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download ZGGES + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgges.f
"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgges.f
"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgges.f
"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE ZGGES( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB, */
/* SDIM, ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK, */
/* LWORK, RWORK, BWORK, INFO ) */
/* CHARACTER JOBVSL, JOBVSR, SORT */
/* INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM */
/* LOGICAL BWORK( * ) */
/* DOUBLE PRECISION RWORK( * ) */
/* COMPLEX*16 A( LDA, * ), ALPHA( * ), B( LDB, * ), */
/* $ BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ), */
/* $ WORK( * ) */
/* LOGICAL SELCTG */
/* EXTERNAL SELCTG */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > ZGGES computes for a pair of N-by-N complex nonsymmetric matrices */
/* > (A,B), the generalized eigenvalues, the generalized complex Schur */
/* > form (S, T), and optionally left and/or right Schur vectors (VSL */
/* > and VSR). This gives the generalized Schur factorization */
/* > */
/* > (A,B) = ( (VSL)*S*(VSR)**H, (VSL)*T*(VSR)**H ) */
/* > */
/* > where (VSR)**H is the conjugate-transpose of VSR. */
/* > */
/* > Optionally, it also orders the eigenvalues so that a selected cluster */
/* > of eigenvalues appears in the leading diagonal blocks of the upper */
/* > triangular matrix S and the upper triangular matrix T. The leading */
/* > columns of VSL and VSR then form an unitary basis for the */
/* > corresponding left and right eigenspaces (deflating subspaces). */
/* > */
/* > (If only the generalized eigenvalues are needed, use the driver */
/* > ZGGEV instead, which is faster.) */
/* > */
/* > A generalized eigenvalue for a pair of matrices (A,B) is a scalar w */
/* > or a ratio alpha/beta = w, such that A - w*B is singular. It is */
/* > usually represented as the pair (alpha,beta), as there is a */
/* > reasonable interpretation for beta=0, and even for both being zero. */
/* > */
/* > A pair of matrices (S,T) is in generalized complex Schur form if S */
/* > and T are upper triangular and, in addition, the diagonal elements */
/* > of T are non-negative real numbers. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] JOBVSL */
/* > \verbatim */
/* > JOBVSL is CHARACTER*1 */
/* > = 'N': do not compute the left Schur vectors; */
/* > = 'V': compute the left Schur vectors. */
/* > \endverbatim */
/* > */
/* > \param[in] JOBVSR */
/* > \verbatim */
/* > JOBVSR is CHARACTER*1 */
/* > = 'N': do not compute the right Schur vectors; */
/* > = 'V': compute the right Schur vectors. */
/* > \endverbatim */
/* > */
/* > \param[in] SORT */
/* > \verbatim */
/* > SORT is CHARACTER*1 */
/* > Specifies whether or not to order the eigenvalues on the */
/* > diagonal of the generalized Schur form. */
/* > = 'N': Eigenvalues are not ordered; */
/* > = 'S': Eigenvalues are ordered (see SELCTG). */
/* > \endverbatim */
/* > */
/* > \param[in] SELCTG */
/* > \verbatim */
/* > SELCTG is a LOGICAL FUNCTION of two COMPLEX*16 arguments */
/* > SELCTG must be declared EXTERNAL in the calling subroutine. */
/* > If SORT = 'N', SELCTG is not referenced. */
/* > If SORT = 'S', SELCTG is used to select eigenvalues to sort */
/* > to the top left of the Schur form. */
/* > An eigenvalue ALPHA(j)/BETA(j) is selected if */
/* > SELCTG(ALPHA(j),BETA(j)) is true. */
/* > */
/* > Note that a selected complex eigenvalue may no longer satisfy */
/* > SELCTG(ALPHA(j),BETA(j)) = .TRUE. after ordering, since */
/* > ordering may change the value of complex eigenvalues */
/* > (especially if the eigenvalue is ill-conditioned), in this */
/* > case INFO is set to N+2 (See INFO below). */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrices A, B, VSL, and VSR. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is COMPLEX*16 array, dimension (LDA, N) */
/* > On entry, the first of the pair of matrices. */
/* > On exit, A has been overwritten by its generalized Schur */
/* > form S. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of A. LDA >= f2cmax(1,N). */
/* > \endverbatim */
/* > */
/* > \param[in,out] B */
/* > \verbatim */
/* > B is COMPLEX*16 array, dimension (LDB, N) */
/* > On entry, the second of the pair of matrices. */
/* > On exit, B has been overwritten by its generalized Schur */
/* > form T. */
/* > \endverbatim */
/* > */
/* > \param[in] LDB */
/* > \verbatim */
/* > LDB is INTEGER */
/* > The leading dimension of B. LDB >= f2cmax(1,N). */
/* > \endverbatim */
/* > */
/* > \param[out] SDIM */
/* > \verbatim */
/* > SDIM is INTEGER */
/* > If SORT = 'N', SDIM = 0. */
/* > If SORT = 'S', SDIM = number of eigenvalues (after sorting) */
/* > for which SELCTG is true. */
/* > \endverbatim */
/* > */
/* > \param[out] ALPHA */
/* > \verbatim */
/* > ALPHA is COMPLEX*16 array, dimension (N) */
/* > \endverbatim */
/* > */
/* > \param[out] BETA */
/* > \verbatim */
/* > BETA is COMPLEX*16 array, dimension (N) */
/* > On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the */
/* > generalized eigenvalues. ALPHA(j), j=1,...,N and BETA(j), */
/* > j=1,...,N are the diagonals of the complex Schur form (A,B) */
/* > output by ZGGES. The BETA(j) will be non-negative real. */
/* > */
/* > Note: the quotients ALPHA(j)/BETA(j) may easily over- or */
/* > underflow, and BETA(j) may even be zero. Thus, the user */
/* > should avoid naively computing the ratio alpha/beta. */
/* > However, ALPHA will be always less than and usually */
/* > comparable with norm(A) in magnitude, and BETA always less */
/* > than and usually comparable with norm(B). */
/* > \endverbatim */
/* > */
/* > \param[out] VSL */
/* > \verbatim */
/* > VSL is COMPLEX*16 array, dimension (LDVSL,N) */
/* > If JOBVSL = 'V', VSL will contain the left Schur vectors. */
/* > Not referenced if JOBVSL = 'N'. */
/* > \endverbatim */
/* > */
/* > \param[in] LDVSL */
/* > \verbatim */
/* > LDVSL is INTEGER */
/* > The leading dimension of the matrix VSL. LDVSL >= 1, and */
/* > if JOBVSL = 'V', LDVSL >= N. */
/* > \endverbatim */
/* > */
/* > \param[out] VSR */
/* > \verbatim */
/* > VSR is COMPLEX*16 array, dimension (LDVSR,N) */
/* > If JOBVSR = 'V', VSR will contain the right Schur vectors. */
/* > Not referenced if JOBVSR = 'N'. */
/* > \endverbatim */
/* > */
/* > \param[in] LDVSR */
/* > \verbatim */
/* > LDVSR is INTEGER */
/* > The leading dimension of the matrix VSR. LDVSR >= 1, and */
/* > if JOBVSR = 'V', LDVSR >= N. */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) */
/* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* > \endverbatim */
/* > */
/* > \param[in] LWORK */
/* > \verbatim */
/* > LWORK is INTEGER */
/* > The dimension of the array WORK. LWORK >= f2cmax(1,2*N). */
/* > For good performance, LWORK must generally be larger. */
/* > */
/* > If LWORK = -1, then a workspace query is assumed; the routine */
/* > only calculates the optimal size of the WORK array, returns */
/* > this value as the first entry of the WORK array, and no error */
/* > message related to LWORK is issued by XERBLA. */
/* > \endverbatim */
/* > */
/* > \param[out] RWORK */
/* > \verbatim */
/* > RWORK is DOUBLE PRECISION array, dimension (8*N) */
/* > \endverbatim */
/* > */
/* > \param[out] BWORK */
/* > \verbatim */
/* > BWORK is LOGICAL array, dimension (N) */
/* > Not referenced if SORT = 'N'. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value. */
/* > =1,...,N: */
/* > The QZ iteration failed. (A,B) are not in Schur */
/* > form, but ALPHA(j) and BETA(j) should be correct for */
/* > j=INFO+1,...,N. */
/* > > N: =N+1: other than QZ iteration failed in ZHGEQZ */
/* > =N+2: after reordering, roundoff changed values of */
/* > some complex eigenvalues so that leading */
/* > eigenvalues in the Generalized Schur form no */
/* > longer satisfy SELCTG=.TRUE. This could also */
/* > be caused due to scaling. */
/* > =N+3: reordering failed in ZTGSEN. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date December 2016 */
/* > \ingroup complex16GEeigen */
/* ===================================================================== */
/* Subroutine */ void zgges_(char *jobvsl, char *jobvsr, char *sort, L_fp
selctg, integer *n, doublecomplex *a, integer *lda, doublecomplex *b,
integer *ldb, integer *sdim, doublecomplex *alpha, doublecomplex *
beta, doublecomplex *vsl, integer *ldvsl, doublecomplex *vsr, integer
*ldvsr, doublecomplex *work, integer *lwork, doublereal *rwork,
logical *bwork, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, vsl_dim1, vsl_offset,
vsr_dim1, vsr_offset, i__1, i__2;
/* Local variables */
doublereal anrm, bnrm;
integer idum[1], ierr, itau, iwrk;
doublereal pvsl, pvsr;
integer i__;
extern logical lsame_(char *, char *);
integer ileft, icols;
logical cursl, ilvsl, ilvsr;
integer irwrk, irows;
extern /* Subroutine */ void dlabad_(doublereal *, doublereal *);
extern doublereal dlamch_(char *);
extern /* Subroutine */ void zggbak_(char *, char *, integer *, integer *,
integer *, doublereal *, doublereal *, integer *, doublecomplex *,
integer *, integer *), zggbal_(char *, integer *,
doublecomplex *, integer *, doublecomplex *, integer *, integer *
, integer *, doublereal *, doublereal *, doublereal *, integer *);
logical ilascl, ilbscl;
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *, ftnlen, ftnlen);
extern doublereal zlange_(char *, integer *, integer *, doublecomplex *,
integer *, doublereal *);
doublereal bignum;
integer ijobvl, iright;
extern /* Subroutine */ void zgghrd_(char *, char *, integer *, integer *,
integer *, doublecomplex *, integer *, doublecomplex *, integer *,
doublecomplex *, integer *, doublecomplex *, integer *, integer *
), zlascl_(char *, integer *, integer *,
doublereal *, doublereal *, integer *, integer *, doublecomplex *,
integer *, integer *);
integer ijobvr;
extern /* Subroutine */ void zgeqrf_(integer *, integer *, doublecomplex *,
integer *, doublecomplex *, doublecomplex *, integer *, integer *
);
doublereal anrmto;
integer lwkmin;
logical lastsl;
doublereal bnrmto;
extern /* Subroutine */ void zlacpy_(char *, integer *, integer *,
doublecomplex *, integer *, doublecomplex *, integer *),
zlaset_(char *, integer *, integer *, doublecomplex *,
doublecomplex *, doublecomplex *, integer *), zhgeqz_(
char *, char *, char *, integer *, integer *, integer *,
doublecomplex *, integer *, doublecomplex *, integer *,
doublecomplex *, doublecomplex *, doublecomplex *, integer *,
doublecomplex *, integer *, doublecomplex *, integer *,
doublereal *, integer *), ztgsen_(integer
*, logical *, logical *, logical *, integer *, doublecomplex *,
integer *, doublecomplex *, integer *, doublecomplex *,
doublecomplex *, doublecomplex *, integer *, doublecomplex *,
integer *, integer *, doublereal *, doublereal *, doublereal *,
doublecomplex *, integer *, integer *, integer *, integer *);
doublereal smlnum;
logical wantst, lquery;
integer lwkopt;
extern /* Subroutine */ void zungqr_(integer *, integer *, integer *,
doublecomplex *, integer *, doublecomplex *, doublecomplex *,
integer *, integer *), zunmqr_(char *, char *, integer *, integer
*, integer *, doublecomplex *, integer *, doublecomplex *,
doublecomplex *, integer *, doublecomplex *, integer *, integer *);
doublereal dif[2];
integer ihi, ilo;
doublereal eps;
/* -- LAPACK driver routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */
/* ===================================================================== */
/* Decode the input arguments */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1 * 1;
b -= b_offset;
--alpha;
--beta;
vsl_dim1 = *ldvsl;
vsl_offset = 1 + vsl_dim1 * 1;
vsl -= vsl_offset;
vsr_dim1 = *ldvsr;
vsr_offset = 1 + vsr_dim1 * 1;
vsr -= vsr_offset;
--work;
--rwork;
--bwork;
/* Function Body */
if (lsame_(jobvsl, "N")) {
ijobvl = 1;
ilvsl = FALSE_;
} else if (lsame_(jobvsl, "V")) {
ijobvl = 2;
ilvsl = TRUE_;
} else {
ijobvl = -1;
ilvsl = FALSE_;
}
if (lsame_(jobvsr, "N")) {
ijobvr = 1;
ilvsr = FALSE_;
} else if (lsame_(jobvsr, "V")) {
ijobvr = 2;
ilvsr = TRUE_;
} else {
ijobvr = -1;
ilvsr = FALSE_;
}
wantst = lsame_(sort, "S");
/* Test the input arguments */
*info = 0;
lquery = *lwork == -1;
if (ijobvl <= 0) {
*info = -1;
} else if (ijobvr <= 0) {
*info = -2;
} else if (! wantst && ! lsame_(sort, "N")) {
*info = -3;
} else if (*n < 0) {
*info = -5;
} else if (*lda < f2cmax(1,*n)) {
*info = -7;
} else if (*ldb < f2cmax(1,*n)) {
*info = -9;
} else if (*ldvsl < 1 || ilvsl && *ldvsl < *n) {
*info = -14;
} else if (*ldvsr < 1 || ilvsr && *ldvsr < *n) {
*info = -16;
}
/* Compute workspace */
/* (Note: Comments in the code beginning "Workspace:" describe the */
/* minimal amount of workspace needed at that point in the code, */
/* as well as the preferred amount for good performance. */
/* NB refers to the optimal block size for the immediately */
/* following subroutine, as returned by ILAENV.) */
if (*info == 0) {
/* Computing MAX */
i__1 = 1, i__2 = *n << 1;
lwkmin = f2cmax(i__1,i__2);
/* Computing MAX */
i__1 = 1, i__2 = *n + *n * ilaenv_(&c__1, "ZGEQRF", " ", n, &c__1, n,
&c__0, (ftnlen)6, (ftnlen)1);
lwkopt = f2cmax(i__1,i__2);
/* Computing MAX */
i__1 = lwkopt, i__2 = *n + *n * ilaenv_(&c__1, "ZUNMQR", " ", n, &
c__1, n, &c_n1, (ftnlen)6, (ftnlen)1);
lwkopt = f2cmax(i__1,i__2);
if (ilvsl) {
/* Computing MAX */
i__1 = lwkopt, i__2 = *n + *n * ilaenv_(&c__1, "ZUNGQR", " ", n, &
c__1, n, &c_n1, (ftnlen)6, (ftnlen)1);
lwkopt = f2cmax(i__1,i__2);
}
work[1].r = (doublereal) lwkopt, work[1].i = 0.;
if (*lwork < lwkmin && ! lquery) {
*info = -18;
}
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("ZGGES ", &i__1, (ftnlen)6);
return;
} else if (lquery) {
return;
}
/* Quick return if possible */
if (*n == 0) {
*sdim = 0;
return;
}
/* Get machine constants */
eps = dlamch_("P");
smlnum = dlamch_("S");
bignum = 1. / smlnum;
dlabad_(&smlnum, &bignum);
smlnum = sqrt(smlnum) / eps;
bignum = 1. / smlnum;
/* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
anrm = zlange_("M", n, n, &a[a_offset], lda, &rwork[1]);
ilascl = FALSE_;
if (anrm > 0. && anrm < smlnum) {
anrmto = smlnum;
ilascl = TRUE_;
} else if (anrm > bignum) {
anrmto = bignum;
ilascl = TRUE_;
}
if (ilascl) {
zlascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, &
ierr);
}
/* Scale B if f2cmax element outside range [SMLNUM,BIGNUM] */
bnrm = zlange_("M", n, n, &b[b_offset], ldb, &rwork[1]);
ilbscl = FALSE_;
if (bnrm > 0. && bnrm < smlnum) {
bnrmto = smlnum;
ilbscl = TRUE_;
} else if (bnrm > bignum) {
bnrmto = bignum;
ilbscl = TRUE_;
}
if (ilbscl) {
zlascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &
ierr);
}
/* Permute the matrix to make it more nearly triangular */
/* (Real Workspace: need 6*N) */
ileft = 1;
iright = *n + 1;
irwrk = iright + *n;
zggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &rwork[
ileft], &rwork[iright], &rwork[irwrk], &ierr);
/* Reduce B to triangular form (QR decomposition of B) */
/* (Complex Workspace: need N, prefer N*NB) */
irows = ihi + 1 - ilo;
icols = *n + 1 - ilo;
itau = 1;
iwrk = itau + irows;
i__1 = *lwork + 1 - iwrk;
zgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[
iwrk], &i__1, &ierr);
/* Apply the orthogonal transformation to matrix A */
/* (Complex Workspace: need N, prefer N*NB) */
i__1 = *lwork + 1 - iwrk;
zunmqr_("L", "C", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, &
work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwrk], &i__1, &
ierr);
/* Initialize VSL */
/* (Complex Workspace: need N, prefer N*NB) */
if (ilvsl) {
zlaset_("Full", n, n, &c_b1, &c_b2, &vsl[vsl_offset], ldvsl);
if (irows > 1) {
i__1 = irows - 1;
i__2 = irows - 1;
zlacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vsl[
ilo + 1 + ilo * vsl_dim1], ldvsl);
}
i__1 = *lwork + 1 - iwrk;
zungqr_(&irows, &irows, &irows, &vsl[ilo + ilo * vsl_dim1], ldvsl, &
work[itau], &work[iwrk], &i__1, &ierr);
}
/* Initialize VSR */
if (ilvsr) {
zlaset_("Full", n, n, &c_b1, &c_b2, &vsr[vsr_offset], ldvsr);
}
/* Reduce to generalized Hessenberg form */
/* (Workspace: none needed) */
zgghrd_(jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset],
ldb, &vsl[vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, &ierr);
*sdim = 0;
/* Perform QZ algorithm, computing Schur vectors if desired */
/* (Complex Workspace: need N) */
/* (Real Workspace: need N) */
iwrk = itau;
i__1 = *lwork + 1 - iwrk;
zhgeqz_("S", jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[
b_offset], ldb, &alpha[1], &beta[1], &vsl[vsl_offset], ldvsl, &
vsr[vsr_offset], ldvsr, &work[iwrk], &i__1, &rwork[irwrk], &ierr);
if (ierr != 0) {
if (ierr > 0 && ierr <= *n) {
*info = ierr;
} else if (ierr > *n && ierr <= *n << 1) {
*info = ierr - *n;
} else {
*info = *n + 1;
}
goto L30;
}
/* Sort eigenvalues ALPHA/BETA if desired */
/* (Workspace: none needed) */
if (wantst) {
/* Undo scaling on eigenvalues before selecting */
if (ilascl) {
zlascl_("G", &c__0, &c__0, &anrm, &anrmto, n, &c__1, &alpha[1], n,
&ierr);
}
if (ilbscl) {
zlascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, &c__1, &beta[1], n,
&ierr);
}
/* Select eigenvalues */
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
bwork[i__] = (*selctg)(&alpha[i__], &beta[i__]);
/* L10: */
}
i__1 = *lwork - iwrk + 1;
ztgsen_(&c__0, &ilvsl, &ilvsr, &bwork[1], n, &a[a_offset], lda, &b[
b_offset], ldb, &alpha[1], &beta[1], &vsl[vsl_offset], ldvsl,
&vsr[vsr_offset], ldvsr, sdim, &pvsl, &pvsr, dif, &work[iwrk],
&i__1, idum, &c__1, &ierr);
if (ierr == 1) {
*info = *n + 3;
}
}
/* Apply back-permutation to VSL and VSR */
/* (Workspace: none needed) */
if (ilvsl) {
zggbak_("P", "L", n, &ilo, &ihi, &rwork[ileft], &rwork[iright], n, &
vsl[vsl_offset], ldvsl, &ierr);
}
if (ilvsr) {
zggbak_("P", "R", n, &ilo, &ihi, &rwork[ileft], &rwork[iright], n, &
vsr[vsr_offset], ldvsr, &ierr);
}
/* Undo scaling */
if (ilascl) {
zlascl_("U", &c__0, &c__0, &anrmto, &anrm, n, n, &a[a_offset], lda, &
ierr);
zlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alpha[1], n, &
ierr);
}
if (ilbscl) {
zlascl_("U", &c__0, &c__0, &bnrmto, &bnrm, n, n, &b[b_offset], ldb, &
ierr);
zlascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &
ierr);
}
if (wantst) {
/* Check if reordering is correct */
lastsl = TRUE_;
*sdim = 0;
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
cursl = (*selctg)(&alpha[i__], &beta[i__]);
if (cursl) {
++(*sdim);
}
if (cursl && ! lastsl) {
*info = *n + 2;
}
lastsl = cursl;
/* L20: */
}
}
L30:
work[1].r = (doublereal) lwkopt, work[1].i = 0.;
return;
/* End of ZGGES */
} /* zgges_ */