OpenBLAS/lapack-netlib/SRC/zgeqp3rk.c

1075 lines
30 KiB
C

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif
#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif
#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif
typedef blasint integer;
typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
#ifdef _MSC_VER
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
#else
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#endif
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef blasint logical;
typedef char logical1;
typedef char integer1;
#define TRUE_ (1)
#define FALSE_ (0)
/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif
/* I/O stuff */
typedef int flag;
typedef int ftnlen;
typedef int ftnint;
/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;
/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;
/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;
/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;
/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;
/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;
#define VOID void
union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};
typedef union Multitype Multitype;
struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;
struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;
#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#ifdef _MSC_VER
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
#else
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#endif
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimagf(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle_() continue;
#define myceiling_(w) {ceil(w)}
#define myhuge_(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc_(w,s,e,n) dmaxloc_(w,*(s),*(e),n)
/* procedure parameter types for -A and -C++ */
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif
static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#ifdef _MSC_VER
static _Fcomplex cpow_ui(complex x, integer n) {
complex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
for(u = n; ; ) {
if(u & 01) pow.r *= x.r, pow.i *= x.i;
if(u >>= 1) x.r *= x.r, x.i *= x.i;
else break;
}
}
_Fcomplex p={pow.r, pow.i};
return p;
}
#else
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
#ifdef _MSC_VER
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
_Dcomplex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
for(u = n; ; ) {
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
else break;
}
}
_Dcomplex p = {pow._Val[0], pow._Val[1]};
return p;
}
#else
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
/* Table of constant values */
static integer c__1 = 1;
static integer c_n1 = -1;
static integer c__3 = 3;
static integer c__2 = 2;
/* Subroutine */ int zgeqp3rk_(integer *m, integer *n, integer *nrhs, integer
*kmax, doublereal *abstol, doublereal *reltol, doublecomplex *a,
integer *lda, integer *k, doublereal *maxc2nrmk, doublereal *
relmaxc2nrmk, integer *jpiv, doublecomplex *tau, doublecomplex *work,
integer *lwork, doublereal *rwork, integer *iwork, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2;
doublereal d__1, d__2;
doublecomplex z__1;
/* Local variables */
doublereal maxc2nrm;
logical done;
extern /* Subroutine */ int zlaqp2rk_(integer *, integer *, integer *,
integer *, integer *, doublereal *, doublereal *, integer *,
doublereal *, doublecomplex *, integer *, integer *, doublereal *,
doublereal *, integer *, doublecomplex *, doublereal *,
doublereal *, doublecomplex *, integer *), zlaqp3rk_(integer *,
integer *, integer *, integer *, integer *, doublereal *,
doublereal *, integer *, doublereal *, doublecomplex *, integer *,
logical *, integer *, doublereal *, doublereal *, integer *,
doublecomplex *, doublereal *, doublereal *, doublecomplex *,
doublecomplex *, integer *, integer *, integer *);
integer jmax, j, jmaxc2nrm, jmaxb, nbmin, iinfo, n_sub__, minmn;
doublereal myhugeval;
integer jb;
extern doublereal dznrm2_(integer *, doublecomplex *, integer *);
integer nb, kf;
extern doublereal dlamch_(char *);
extern integer idamax_(integer *, doublereal *, integer *);
integer nx;
doublereal safmin;
extern /* Subroutine */ int xerbla_(char *, integer *);
extern logical disnan_(doublereal *);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *, ftnlen, ftnlen);
integer kp1, lwkopt;
logical lquery;
integer jbf;
doublereal eps;
integer iws, ioffset;
/* -- LAPACK computational routine -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* ===================================================================== */
/* Test input arguments */
/* ==================== */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--jpiv;
--tau;
--work;
--rwork;
--iwork;
/* Function Body */
*info = 0;
lquery = *lwork == -1;
if (*m < 0) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*nrhs < 0) {
*info = -3;
} else if (*kmax < 0) {
*info = -4;
} else if (disnan_(abstol)) {
*info = -5;
} else if (disnan_(reltol)) {
*info = -6;
} else if (*lda < f2cmax(1,*m)) {
*info = -8;
}
/* If the input parameters M, N, NRHS, KMAX, LDA are valid: */
/* a) Test the input workspace size LWORK for the minimum */
/* size requirement IWS. */
/* b) Determine the optimal block size NB and optimal */
/* workspace size LWKOPT to be returned in WORK(1) */
/* in case of (1) LWORK < IWS, (2) LQUERY = .TRUE., */
/* (3) when routine exits. */
/* Here, IWS is the miminum workspace required for unblocked */
/* code. */
if (*info == 0) {
minmn = f2cmin(*m,*n);
if (minmn == 0) {
iws = 1;
lwkopt = 1;
} else {
/* Minimal workspace size in case of using only unblocked */
/* BLAS 2 code in ZLAQP2RK. */
/* 1) ZLAQP2RK: N+NRHS-1 to use in WORK array that is used */
/* in ZLARF subroutine inside ZLAQP2RK to apply an */
/* elementary reflector from the left. */
/* TOTAL_WORK_SIZE = 3*N + NRHS - 1 */
iws = *n + *nrhs - 1;
/* Assign to NB optimal block size. */
nb = ilaenv_(&c__1, "ZGEQP3RK", " ", m, n, &c_n1, &c_n1, (ftnlen)
8, (ftnlen)1);
/* A formula for the optimal workspace size in case of using */
/* both unblocked BLAS 2 in ZLAQP2RK and blocked BLAS 3 code */
/* in ZLAQP3RK. */
/* 1) ZGEQP3RK, ZLAQP2RK, ZLAQP3RK: 2*N to store full and */
/* partial column 2-norms. */
/* 2) ZLAQP2RK: N+NRHS-1 to use in WORK array that is used */
/* in ZLARF subroutine to apply an elementary reflector */
/* from the left. */
/* 3) ZLAQP3RK: NB*(N+NRHS) to use in the work array F that */
/* is used to apply a block reflector from */
/* the left. */
/* 4) ZLAQP3RK: NB to use in the auxilixary array AUX. */
/* Sizes (2) and ((3) + (4)) should intersect, therefore */
/* TOTAL_WORK_SIZE = 2*N + NB*( N+NRHS+1 ), given NBMIN=2. */
lwkopt = (*n << 1) + nb * (*n + *nrhs + 1);
}
z__1.r = (doublereal) lwkopt, z__1.i = 0.;
work[1].r = z__1.r, work[1].i = z__1.i;
if (*lwork < iws && ! lquery) {
*info = -15;
}
}
/* NOTE: The optimal workspace size is returned in WORK(1), if */
/* the input parameters M, N, NRHS, KMAX, LDA are valid. */
if (*info != 0) {
i__1 = -(*info);
xerbla_("ZGEQP3RK", &i__1);
return 0;
} else if (lquery) {
return 0;
}
/* Quick return if possible for M=0 or N=0. */
if (minmn == 0) {
*k = 0;
*maxc2nrmk = 0.;
*relmaxc2nrmk = 0.;
z__1.r = (doublereal) lwkopt, z__1.i = 0.;
work[1].r = z__1.r, work[1].i = z__1.i;
return 0;
}
/* ================================================================== */
/* Initialize column pivot array JPIV. */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
jpiv[j] = j;
}
/* ================================================================== */
/* Initialize storage for partial and exact column 2-norms. */
/* a) The elements WORK(1:N) are used to store partial column */
/* 2-norms of the matrix A, and may decrease in each computation */
/* step; initialize to the values of complete columns 2-norms. */
/* b) The elements WORK(N+1:2*N) are used to store complete column */
/* 2-norms of the matrix A, they are not changed during the */
/* computation; initialize the values of complete columns 2-norms. */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
rwork[j] = dznrm2_(m, &a[j * a_dim1 + 1], &c__1);
rwork[*n + j] = rwork[j];
}
/* ================================================================== */
/* Compute the pivot column index and the maximum column 2-norm */
/* for the whole original matrix stored in A(1:M,1:N). */
kp1 = idamax_(n, &rwork[1], &c__1);
/* ==================================================================. */
if (disnan_(&maxc2nrm)) {
/* Check if the matrix A contains NaN, set INFO parameter */
/* to the column number where the first NaN is found and return */
/* from the routine. */
*k = 0;
*info = kp1;
/* Set MAXC2NRMK and RELMAXC2NRMK to NaN. */
*maxc2nrmk = maxc2nrm;
*relmaxc2nrmk = maxc2nrm;
/* Array TAU is not set and contains undefined elements. */
z__1.r = (doublereal) lwkopt, z__1.i = 0.;
work[1].r = z__1.r, work[1].i = z__1.i;
return 0;
}
/* =================================================================== */
if (maxc2nrm == 0.) {
/* Check is the matrix A is a zero matrix, set array TAU and */
/* return from the routine. */
*k = 0;
*maxc2nrmk = 0.;
*relmaxc2nrmk = 0.;
i__1 = minmn;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
tau[i__2].r = 0., tau[i__2].i = 0.;
}
z__1.r = (doublereal) lwkopt, z__1.i = 0.;
work[1].r = z__1.r, work[1].i = z__1.i;
return 0;
}
/* =================================================================== */
myhugeval = dlamch_("Overflow");
if (maxc2nrm > myhugeval) {
/* Check if the matrix A contains +Inf or -Inf, set INFO parameter */
/* to the column number, where the first +/-Inf is found plus N, */
/* and continue the computation. */
*info = *n + kp1;
}
/* ================================================================== */
/* Quick return if possible for the case when the first */
/* stopping criterion is satisfied, i.e. KMAX = 0. */
if (*kmax == 0) {
*k = 0;
*maxc2nrmk = maxc2nrm;
*relmaxc2nrmk = 1.;
i__1 = minmn;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
tau[i__2].r = 0., tau[i__2].i = 0.;
}
z__1.r = (doublereal) lwkopt, z__1.i = 0.;
work[1].r = z__1.r, work[1].i = z__1.i;
return 0;
}
/* ================================================================== */
eps = dlamch_("Epsilon");
/* Adjust ABSTOL */
if (*abstol >= 0.) {
safmin = dlamch_("Safe minimum");
/* Computing MAX */
d__1 = *abstol, d__2 = safmin * 2.;
*abstol = f2cmax(d__1,d__2);
}
/* Adjust RELTOL */
if (*reltol >= 0.) {
*reltol = f2cmax(*reltol,eps);
}
/* =================================================================== */
/* JMAX is the maximum index of the column to be factorized, */
/* which is also limited by the first stopping criterion KMAX. */
jmax = f2cmin(*kmax,minmn);
/* =================================================================== */
/* Quick return if possible for the case when the second or third */
/* stopping criterion for the whole original matrix is satified, */
/* i.e. MAXC2NRM <= ABSTOL or RELMAXC2NRM <= RELTOL */
/* (which is ONE <= RELTOL). */
if (maxc2nrm <= *abstol || 1. <= *reltol) {
*k = 0;
*maxc2nrmk = maxc2nrm;
*relmaxc2nrmk = 1.;
i__1 = minmn;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
tau[i__2].r = 0., tau[i__2].i = 0.;
}
z__1.r = (doublereal) lwkopt, z__1.i = 0.;
work[1].r = z__1.r, work[1].i = z__1.i;
return 0;
}
/* ================================================================== */
/* Factorize columns */
/* ================================================================== */
/* Determine the block size. */
nbmin = 2;
nx = 0;
if (nb > 1 && nb < minmn) {
/* Determine when to cross over from blocked to unblocked code. */
/* (for N less than NX, unblocked code should be used). */
/* Computing MAX */
i__1 = 0, i__2 = ilaenv_(&c__3, "ZGEQP3RK", " ", m, n, &c_n1, &c_n1, (
ftnlen)8, (ftnlen)1);
nx = f2cmax(i__1,i__2);
if (nx < minmn) {
/* Determine if workspace is large enough for blocked code. */
if (*lwork < lwkopt) {
/* Not enough workspace to use optimal block size that */
/* is currently stored in NB. */
/* Reduce NB and determine the minimum value of NB. */
nb = (*lwork - (*n << 1)) / (*n + 1);
/* Computing MAX */
i__1 = 2, i__2 = ilaenv_(&c__2, "ZGEQP3RK", " ", m, n, &c_n1,
&c_n1, (ftnlen)8, (ftnlen)1);
nbmin = f2cmax(i__1,i__2);
}
}
}
/* ================================================================== */
/* DONE is the boolean flag to rerpresent the case when the */
/* factorization completed in the block factorization routine, */
/* before the end of the block. */
done = FALSE_;
/* J is the column index. */
j = 1;
/* (1) Use blocked code initially. */
/* JMAXB is the maximum column index of the block, when the */
/* blocked code is used, is also limited by the first stopping */
/* criterion KMAX. */
/* Computing MIN */
i__1 = *kmax, i__2 = minmn - nx;
jmaxb = f2cmin(i__1,i__2);
if (nb >= nbmin && nb < jmax && jmaxb > 0) {
/* Loop over the column blocks of the matrix A(1:M,1:JMAXB). Here: */
/* J is the column index of a column block; */
/* JB is the column block size to pass to block factorization */
/* routine in a loop step; */
/* JBF is the number of columns that were actually factorized */
/* that was returned by the block factorization routine */
/* in a loop step, JBF <= JB; */
/* N_SUB is the number of columns in the submatrix; */
/* IOFFSET is the number of rows that should not be factorized. */
while(j <= jmaxb) {
/* Computing MIN */
i__1 = nb, i__2 = jmaxb - j + 1;
jb = f2cmin(i__1,i__2);
n_sub__ = *n - j + 1;
ioffset = j - 1;
/* Factorize JB columns among the columns A(J:N). */
i__1 = *n + *nrhs - j + 1;
zlaqp3rk_(m, &n_sub__, nrhs, &ioffset, &jb, abstol, reltol, &kp1,
&maxc2nrm, &a[j * a_dim1 + 1], lda, &done, &jbf,
maxc2nrmk, relmaxc2nrmk, &jpiv[j], &tau[j], &rwork[j], &
rwork[*n + j], &work[1], &work[jb + 1], &i__1, &iwork[1],
&iinfo);
/* Set INFO on the first occurence of Inf. */
if (iinfo > n_sub__ && *info == 0) {
*info = (ioffset << 1) + iinfo;
}
if (done) {
/* Either the submatrix is zero before the end of the */
/* column block, or ABSTOL or RELTOL criterion is */
/* satisfied before the end of the column block, we can */
/* return from the routine. Perform the following before */
/* returning: */
/* a) Set the number of factorized columns K, */
/* K = IOFFSET + JBF from the last call of blocked */
/* routine. */
/* NOTE: 1) MAXC2NRMK and RELMAXC2NRMK are returned */
/* by the block factorization routine; */
/* 2) The remaining TAUs are set to ZERO by the */
/* block factorization routine. */
*k = ioffset + jbf;
/* Set INFO on the first occurrence of NaN, NaN takes */
/* prcedence over Inf. */
if (iinfo <= n_sub__ && iinfo > 0) {
*info = ioffset + iinfo;
}
/* Return from the routine. */
z__1.r = (doublereal) lwkopt, z__1.i = 0.;
work[1].r = z__1.r, work[1].i = z__1.i;
return 0;
}
j += jbf;
}
}
/* Use unblocked code to factor the last or only block. */
/* J = JMAX+1 means we factorized the maximum possible number of */
/* columns, that is in ELSE clause we need to compute */
/* the MAXC2NORM and RELMAXC2NORM to return after we processed */
/* the blocks. */
if (j <= jmax) {
/* N_SUB is the number of columns in the submatrix; */
/* IOFFSET is the number of rows that should not be factorized. */
n_sub__ = *n - j + 1;
ioffset = j - 1;
i__1 = jmax - j + 1;
zlaqp2rk_(m, &n_sub__, nrhs, &ioffset, &i__1, abstol, reltol, &kp1, &
maxc2nrm, &a[j * a_dim1 + 1], lda, &kf, maxc2nrmk,
relmaxc2nrmk, &jpiv[j], &tau[j], &rwork[j], &rwork[*n + j], &
work[1], &iinfo);
/* ABSTOL or RELTOL criterion is satisfied when the number of */
/* the factorized columns KF is smaller then the number */
/* of columns JMAX-J+1 supplied to be factorized by the */
/* unblocked routine, we can return from */
/* the routine. Perform the following before returning: */
/* a) Set the number of factorized columns K, */
/* b) MAXC2NRMK and RELMAXC2NRMK are returned by the */
/* unblocked factorization routine above. */
*k = j - 1 + kf;
/* Set INFO on the first exception occurence. */
/* Set INFO on the first exception occurence of Inf or NaN, */
/* (NaN takes precedence over Inf). */
if (iinfo > n_sub__ && *info == 0) {
*info = (ioffset << 1) + iinfo;
} else if (iinfo <= n_sub__ && iinfo > 0) {
*info = ioffset + iinfo;
}
} else {
/* Compute the return values for blocked code. */
/* Set the number of factorized columns if the unblocked routine */
/* was not called. */
*k = jmax;
/* If there exits a residual matrix after the blocked code: */
/* 1) compute the values of MAXC2NRMK, RELMAXC2NRMK of the */
/* residual matrix, otherwise set them to ZERO; */
/* 2) Set TAU(K+1:MINMN) to ZERO. */
if (*k < minmn) {
i__1 = *n - *k;
jmaxc2nrm = *k + idamax_(&i__1, &rwork[*k + 1], &c__1);
*maxc2nrmk = rwork[jmaxc2nrm];
if (*k == 0) {
*relmaxc2nrmk = 1.;
} else {
*relmaxc2nrmk = *maxc2nrmk / maxc2nrm;
}
i__1 = minmn;
for (j = *k + 1; j <= i__1; ++j) {
i__2 = j;
tau[i__2].r = 0., tau[i__2].i = 0.;
}
} else {
*maxc2nrmk = 0.;
*relmaxc2nrmk = 0.;
}
/* END IF( J.LE.JMAX ) THEN */
}
z__1.r = (doublereal) lwkopt, z__1.i = 0.;
work[1].r = z__1.r, work[1].i = z__1.i;
return 0;
/* End of ZGEQP3RK */
} /* zgeqp3rk_ */