1068 lines
32 KiB
C
1068 lines
32 KiB
C
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <complex.h>
|
|
#ifdef complex
|
|
#undef complex
|
|
#endif
|
|
#ifdef I
|
|
#undef I
|
|
#endif
|
|
|
|
#if defined(_WIN64)
|
|
typedef long long BLASLONG;
|
|
typedef unsigned long long BLASULONG;
|
|
#else
|
|
typedef long BLASLONG;
|
|
typedef unsigned long BLASULONG;
|
|
#endif
|
|
|
|
#ifdef LAPACK_ILP64
|
|
typedef BLASLONG blasint;
|
|
#if defined(_WIN64)
|
|
#define blasabs(x) llabs(x)
|
|
#else
|
|
#define blasabs(x) labs(x)
|
|
#endif
|
|
#else
|
|
typedef int blasint;
|
|
#define blasabs(x) abs(x)
|
|
#endif
|
|
|
|
typedef blasint integer;
|
|
|
|
typedef unsigned int uinteger;
|
|
typedef char *address;
|
|
typedef short int shortint;
|
|
typedef float real;
|
|
typedef double doublereal;
|
|
typedef struct { real r, i; } complex;
|
|
typedef struct { doublereal r, i; } doublecomplex;
|
|
#ifdef _MSC_VER
|
|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
|
|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
|
|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
|
|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
|
|
#else
|
|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
|
|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
|
|
#endif
|
|
#define pCf(z) (*_pCf(z))
|
|
#define pCd(z) (*_pCd(z))
|
|
typedef blasint logical;
|
|
|
|
typedef char logical1;
|
|
typedef char integer1;
|
|
|
|
#define TRUE_ (1)
|
|
#define FALSE_ (0)
|
|
|
|
/* Extern is for use with -E */
|
|
#ifndef Extern
|
|
#define Extern extern
|
|
#endif
|
|
|
|
/* I/O stuff */
|
|
|
|
typedef int flag;
|
|
typedef int ftnlen;
|
|
typedef int ftnint;
|
|
|
|
/*external read, write*/
|
|
typedef struct
|
|
{ flag cierr;
|
|
ftnint ciunit;
|
|
flag ciend;
|
|
char *cifmt;
|
|
ftnint cirec;
|
|
} cilist;
|
|
|
|
/*internal read, write*/
|
|
typedef struct
|
|
{ flag icierr;
|
|
char *iciunit;
|
|
flag iciend;
|
|
char *icifmt;
|
|
ftnint icirlen;
|
|
ftnint icirnum;
|
|
} icilist;
|
|
|
|
/*open*/
|
|
typedef struct
|
|
{ flag oerr;
|
|
ftnint ounit;
|
|
char *ofnm;
|
|
ftnlen ofnmlen;
|
|
char *osta;
|
|
char *oacc;
|
|
char *ofm;
|
|
ftnint orl;
|
|
char *oblnk;
|
|
} olist;
|
|
|
|
/*close*/
|
|
typedef struct
|
|
{ flag cerr;
|
|
ftnint cunit;
|
|
char *csta;
|
|
} cllist;
|
|
|
|
/*rewind, backspace, endfile*/
|
|
typedef struct
|
|
{ flag aerr;
|
|
ftnint aunit;
|
|
} alist;
|
|
|
|
/* inquire */
|
|
typedef struct
|
|
{ flag inerr;
|
|
ftnint inunit;
|
|
char *infile;
|
|
ftnlen infilen;
|
|
ftnint *inex; /*parameters in standard's order*/
|
|
ftnint *inopen;
|
|
ftnint *innum;
|
|
ftnint *innamed;
|
|
char *inname;
|
|
ftnlen innamlen;
|
|
char *inacc;
|
|
ftnlen inacclen;
|
|
char *inseq;
|
|
ftnlen inseqlen;
|
|
char *indir;
|
|
ftnlen indirlen;
|
|
char *infmt;
|
|
ftnlen infmtlen;
|
|
char *inform;
|
|
ftnint informlen;
|
|
char *inunf;
|
|
ftnlen inunflen;
|
|
ftnint *inrecl;
|
|
ftnint *innrec;
|
|
char *inblank;
|
|
ftnlen inblanklen;
|
|
} inlist;
|
|
|
|
#define VOID void
|
|
|
|
union Multitype { /* for multiple entry points */
|
|
integer1 g;
|
|
shortint h;
|
|
integer i;
|
|
/* longint j; */
|
|
real r;
|
|
doublereal d;
|
|
complex c;
|
|
doublecomplex z;
|
|
};
|
|
|
|
typedef union Multitype Multitype;
|
|
|
|
struct Vardesc { /* for Namelist */
|
|
char *name;
|
|
char *addr;
|
|
ftnlen *dims;
|
|
int type;
|
|
};
|
|
typedef struct Vardesc Vardesc;
|
|
|
|
struct Namelist {
|
|
char *name;
|
|
Vardesc **vars;
|
|
int nvars;
|
|
};
|
|
typedef struct Namelist Namelist;
|
|
|
|
#define abs(x) ((x) >= 0 ? (x) : -(x))
|
|
#define dabs(x) (fabs(x))
|
|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
|
|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
|
|
#define dmin(a,b) (f2cmin(a,b))
|
|
#define dmax(a,b) (f2cmax(a,b))
|
|
#define bit_test(a,b) ((a) >> (b) & 1)
|
|
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
|
|
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
|
|
|
|
#define abort_() { sig_die("Fortran abort routine called", 1); }
|
|
#define c_abs(z) (cabsf(Cf(z)))
|
|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
|
|
#ifdef _MSC_VER
|
|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
|
|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
|
|
#else
|
|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
|
|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
|
|
#endif
|
|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
|
|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
|
|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
|
|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
|
|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
|
|
#define d_abs(x) (fabs(*(x)))
|
|
#define d_acos(x) (acos(*(x)))
|
|
#define d_asin(x) (asin(*(x)))
|
|
#define d_atan(x) (atan(*(x)))
|
|
#define d_atn2(x, y) (atan2(*(x),*(y)))
|
|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
|
|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
|
|
#define d_cos(x) (cos(*(x)))
|
|
#define d_cosh(x) (cosh(*(x)))
|
|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
|
|
#define d_exp(x) (exp(*(x)))
|
|
#define d_imag(z) (cimag(Cd(z)))
|
|
#define r_imag(z) (cimagf(Cf(z)))
|
|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define d_log(x) (log(*(x)))
|
|
#define d_mod(x, y) (fmod(*(x), *(y)))
|
|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
|
|
#define d_nint(x) u_nint(*(x))
|
|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
|
|
#define d_sign(a,b) u_sign(*(a),*(b))
|
|
#define r_sign(a,b) u_sign(*(a),*(b))
|
|
#define d_sin(x) (sin(*(x)))
|
|
#define d_sinh(x) (sinh(*(x)))
|
|
#define d_sqrt(x) (sqrt(*(x)))
|
|
#define d_tan(x) (tan(*(x)))
|
|
#define d_tanh(x) (tanh(*(x)))
|
|
#define i_abs(x) abs(*(x))
|
|
#define i_dnnt(x) ((integer)u_nint(*(x)))
|
|
#define i_len(s, n) (n)
|
|
#define i_nint(x) ((integer)u_nint(*(x)))
|
|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
|
|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
|
|
#define pow_si(B,E) spow_ui(*(B),*(E))
|
|
#define pow_ri(B,E) spow_ui(*(B),*(E))
|
|
#define pow_di(B,E) dpow_ui(*(B),*(E))
|
|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
|
|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
|
|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
|
|
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
|
|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
|
|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
|
|
#define sig_die(s, kill) { exit(1); }
|
|
#define s_stop(s, n) {exit(0);}
|
|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
|
|
#define z_abs(z) (cabs(Cd(z)))
|
|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
|
|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
|
|
#define myexit_() break;
|
|
#define mycycle() continue;
|
|
#define myceiling(w) {ceil(w)}
|
|
#define myhuge(w) {HUGE_VAL}
|
|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
|
|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
|
|
|
|
/* procedure parameter types for -A and -C++ */
|
|
|
|
|
|
#ifdef __cplusplus
|
|
typedef logical (*L_fp)(...);
|
|
#else
|
|
typedef logical (*L_fp)();
|
|
#endif
|
|
|
|
static float spow_ui(float x, integer n) {
|
|
float pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
static double dpow_ui(double x, integer n) {
|
|
double pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#ifdef _MSC_VER
|
|
static _Fcomplex cpow_ui(complex x, integer n) {
|
|
complex pow={1.0,0.0}; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow.r *= x.r, pow.i *= x.i;
|
|
if(u >>= 1) x.r *= x.r, x.i *= x.i;
|
|
else break;
|
|
}
|
|
}
|
|
_Fcomplex p={pow.r, pow.i};
|
|
return p;
|
|
}
|
|
#else
|
|
static _Complex float cpow_ui(_Complex float x, integer n) {
|
|
_Complex float pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#endif
|
|
#ifdef _MSC_VER
|
|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
|
|
_Dcomplex pow={1.0,0.0}; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
|
|
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
|
|
else break;
|
|
}
|
|
}
|
|
_Dcomplex p = {pow._Val[0], pow._Val[1]};
|
|
return p;
|
|
}
|
|
#else
|
|
static _Complex double zpow_ui(_Complex double x, integer n) {
|
|
_Complex double pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#endif
|
|
static integer pow_ii(integer x, integer n) {
|
|
integer pow; unsigned long int u;
|
|
if (n <= 0) {
|
|
if (n == 0 || x == 1) pow = 1;
|
|
else if (x != -1) pow = x == 0 ? 1/x : 0;
|
|
else n = -n;
|
|
}
|
|
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
|
|
u = n;
|
|
for(pow = 1; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
|
|
{
|
|
double m; integer i, mi;
|
|
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
|
if (w[i-1]>m) mi=i ,m=w[i-1];
|
|
return mi-s+1;
|
|
}
|
|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
|
|
{
|
|
float m; integer i, mi;
|
|
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
|
if (w[i-1]>m) mi=i ,m=w[i-1];
|
|
return mi-s+1;
|
|
}
|
|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Fcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
|
|
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex float zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Dcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
|
|
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex double zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Fcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
|
|
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex float zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cf(&x[i]) * Cf(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Dcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
|
|
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex double zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cd(&x[i]) * Cd(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#endif
|
|
/* -- translated by f2c (version 20000121).
|
|
You must link the resulting object file with the libraries:
|
|
-lf2c -lm (in that order)
|
|
*/
|
|
|
|
|
|
|
|
|
|
/* Table of constant values */
|
|
|
|
static integer c__1 = 1;
|
|
static integer c__0 = 0;
|
|
static integer c_n1 = -1;
|
|
|
|
/* > \brief <b> ZGEESX computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors
|
|
for GE matrices</b> */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* > \htmlonly */
|
|
/* > Download ZGEESX + dependencies */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgeesx.
|
|
f"> */
|
|
/* > [TGZ]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgeesx.
|
|
f"> */
|
|
/* > [ZIP]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgeesx.
|
|
f"> */
|
|
/* > [TXT]</a> */
|
|
/* > \endhtmlonly */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* SUBROUTINE ZGEESX( JOBVS, SORT, SELECT, SENSE, N, A, LDA, SDIM, W, */
|
|
/* VS, LDVS, RCONDE, RCONDV, WORK, LWORK, RWORK, */
|
|
/* BWORK, INFO ) */
|
|
|
|
/* CHARACTER JOBVS, SENSE, SORT */
|
|
/* INTEGER INFO, LDA, LDVS, LWORK, N, SDIM */
|
|
/* DOUBLE PRECISION RCONDE, RCONDV */
|
|
/* LOGICAL BWORK( * ) */
|
|
/* DOUBLE PRECISION RWORK( * ) */
|
|
/* COMPLEX*16 A( LDA, * ), VS( LDVS, * ), W( * ), WORK( * ) */
|
|
/* LOGICAL SELECT */
|
|
/* EXTERNAL SELECT */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > ZGEESX computes for an N-by-N complex nonsymmetric matrix A, the */
|
|
/* > eigenvalues, the Schur form T, and, optionally, the matrix of Schur */
|
|
/* > vectors Z. This gives the Schur factorization A = Z*T*(Z**H). */
|
|
/* > */
|
|
/* > Optionally, it also orders the eigenvalues on the diagonal of the */
|
|
/* > Schur form so that selected eigenvalues are at the top left; */
|
|
/* > computes a reciprocal condition number for the average of the */
|
|
/* > selected eigenvalues (RCONDE); and computes a reciprocal condition */
|
|
/* > number for the right invariant subspace corresponding to the */
|
|
/* > selected eigenvalues (RCONDV). The leading columns of Z form an */
|
|
/* > orthonormal basis for this invariant subspace. */
|
|
/* > */
|
|
/* > For further explanation of the reciprocal condition numbers RCONDE */
|
|
/* > and RCONDV, see Section 4.10 of the LAPACK Users' Guide (where */
|
|
/* > these quantities are called s and sep respectively). */
|
|
/* > */
|
|
/* > A complex matrix is in Schur form if it is upper triangular. */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] JOBVS */
|
|
/* > \verbatim */
|
|
/* > JOBVS is CHARACTER*1 */
|
|
/* > = 'N': Schur vectors are not computed; */
|
|
/* > = 'V': Schur vectors are computed. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] SORT */
|
|
/* > \verbatim */
|
|
/* > SORT is CHARACTER*1 */
|
|
/* > Specifies whether or not to order the eigenvalues on the */
|
|
/* > diagonal of the Schur form. */
|
|
/* > = 'N': Eigenvalues are not ordered; */
|
|
/* > = 'S': Eigenvalues are ordered (see SELECT). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] SELECT */
|
|
/* > \verbatim */
|
|
/* > SELECT is a LOGICAL FUNCTION of one COMPLEX*16 argument */
|
|
/* > SELECT must be declared EXTERNAL in the calling subroutine. */
|
|
/* > If SORT = 'S', SELECT is used to select eigenvalues to order */
|
|
/* > to the top left of the Schur form. */
|
|
/* > If SORT = 'N', SELECT is not referenced. */
|
|
/* > An eigenvalue W(j) is selected if SELECT(W(j)) is true. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] SENSE */
|
|
/* > \verbatim */
|
|
/* > SENSE is CHARACTER*1 */
|
|
/* > Determines which reciprocal condition numbers are computed. */
|
|
/* > = 'N': None are computed; */
|
|
/* > = 'E': Computed for average of selected eigenvalues only; */
|
|
/* > = 'V': Computed for selected right invariant subspace only; */
|
|
/* > = 'B': Computed for both. */
|
|
/* > If SENSE = 'E', 'V' or 'B', SORT must equal 'S'. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > The order of the matrix A. N >= 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] A */
|
|
/* > \verbatim */
|
|
/* > A is COMPLEX*16 array, dimension (LDA, N) */
|
|
/* > On entry, the N-by-N matrix A. */
|
|
/* > On exit, A is overwritten by its Schur form T. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDA */
|
|
/* > \verbatim */
|
|
/* > LDA is INTEGER */
|
|
/* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] SDIM */
|
|
/* > \verbatim */
|
|
/* > SDIM is INTEGER */
|
|
/* > If SORT = 'N', SDIM = 0. */
|
|
/* > If SORT = 'S', SDIM = number of eigenvalues for which */
|
|
/* > SELECT is true. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] W */
|
|
/* > \verbatim */
|
|
/* > W is COMPLEX*16 array, dimension (N) */
|
|
/* > W contains the computed eigenvalues, in the same order */
|
|
/* > that they appear on the diagonal of the output Schur form T. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] VS */
|
|
/* > \verbatim */
|
|
/* > VS is COMPLEX*16 array, dimension (LDVS,N) */
|
|
/* > If JOBVS = 'V', VS contains the unitary matrix Z of Schur */
|
|
/* > vectors. */
|
|
/* > If JOBVS = 'N', VS is not referenced. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDVS */
|
|
/* > \verbatim */
|
|
/* > LDVS is INTEGER */
|
|
/* > The leading dimension of the array VS. LDVS >= 1, and if */
|
|
/* > JOBVS = 'V', LDVS >= N. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] RCONDE */
|
|
/* > \verbatim */
|
|
/* > RCONDE is DOUBLE PRECISION */
|
|
/* > If SENSE = 'E' or 'B', RCONDE contains the reciprocal */
|
|
/* > condition number for the average of the selected eigenvalues. */
|
|
/* > Not referenced if SENSE = 'N' or 'V'. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] RCONDV */
|
|
/* > \verbatim */
|
|
/* > RCONDV is DOUBLE PRECISION */
|
|
/* > If SENSE = 'V' or 'B', RCONDV contains the reciprocal */
|
|
/* > condition number for the selected right invariant subspace. */
|
|
/* > Not referenced if SENSE = 'N' or 'E'. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] WORK */
|
|
/* > \verbatim */
|
|
/* > WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) */
|
|
/* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LWORK */
|
|
/* > \verbatim */
|
|
/* > LWORK is INTEGER */
|
|
/* > The dimension of the array WORK. LWORK >= f2cmax(1,2*N). */
|
|
/* > Also, if SENSE = 'E' or 'V' or 'B', LWORK >= 2*SDIM*(N-SDIM), */
|
|
/* > where SDIM is the number of selected eigenvalues computed by */
|
|
/* > this routine. Note that 2*SDIM*(N-SDIM) <= N*N/2. Note also */
|
|
/* > that an error is only returned if LWORK < f2cmax(1,2*N), but if */
|
|
/* > SENSE = 'E' or 'V' or 'B' this may not be large enough. */
|
|
/* > For good performance, LWORK must generally be larger. */
|
|
/* > */
|
|
/* > If LWORK = -1, then a workspace query is assumed; the routine */
|
|
/* > only calculates upper bound on the optimal size of the */
|
|
/* > array WORK, returns this value as the first entry of the WORK */
|
|
/* > array, and no error message related to LWORK is issued by */
|
|
/* > XERBLA. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] RWORK */
|
|
/* > \verbatim */
|
|
/* > RWORK is DOUBLE PRECISION array, dimension (N) */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] BWORK */
|
|
/* > \verbatim */
|
|
/* > BWORK is LOGICAL array, dimension (N) */
|
|
/* > Not referenced if SORT = 'N'. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] INFO */
|
|
/* > \verbatim */
|
|
/* > INFO is INTEGER */
|
|
/* > = 0: successful exit */
|
|
/* > < 0: if INFO = -i, the i-th argument had an illegal value. */
|
|
/* > > 0: if INFO = i, and i is */
|
|
/* > <= N: the QR algorithm failed to compute all the */
|
|
/* > eigenvalues; elements 1:ILO-1 and i+1:N of W */
|
|
/* > contain those eigenvalues which have converged; if */
|
|
/* > JOBVS = 'V', VS contains the transformation which */
|
|
/* > reduces A to its partially converged Schur form. */
|
|
/* > = N+1: the eigenvalues could not be reordered because some */
|
|
/* > eigenvalues were too close to separate (the problem */
|
|
/* > is very ill-conditioned); */
|
|
/* > = N+2: after reordering, roundoff changed values of some */
|
|
/* > complex eigenvalues so that leading eigenvalues in */
|
|
/* > the Schur form no longer satisfy SELECT=.TRUE. This */
|
|
/* > could also be caused by underflow due to scaling. */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \date June 2016 */
|
|
|
|
/* > \ingroup complex16GEeigen */
|
|
|
|
/* ===================================================================== */
|
|
/* Subroutine */ void zgeesx_(char *jobvs, char *sort, L_fp select, char *
|
|
sense, integer *n, doublecomplex *a, integer *lda, integer *sdim,
|
|
doublecomplex *w, doublecomplex *vs, integer *ldvs, doublereal *
|
|
rconde, doublereal *rcondv, doublecomplex *work, integer *lwork,
|
|
doublereal *rwork, logical *bwork, integer *info)
|
|
{
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, vs_dim1, vs_offset, i__1, i__2;
|
|
|
|
/* Local variables */
|
|
integer ibal;
|
|
doublereal anrm;
|
|
integer ierr, itau, iwrk, lwrk, i__, icond, ieval;
|
|
extern logical lsame_(char *, char *);
|
|
extern /* Subroutine */ void zcopy_(integer *, doublecomplex *, integer *,
|
|
doublecomplex *, integer *), dlabad_(doublereal *, doublereal *);
|
|
logical scalea;
|
|
extern doublereal dlamch_(char *);
|
|
doublereal cscale;
|
|
extern /* Subroutine */ void dlascl_(char *, integer *, integer *,
|
|
doublereal *, doublereal *, integer *, integer *, doublereal *,
|
|
integer *, integer *), zgebak_(char *, char *, integer *,
|
|
integer *, integer *, doublereal *, integer *, doublecomplex *,
|
|
integer *, integer *), zgebal_(char *, integer *,
|
|
doublecomplex *, integer *, integer *, integer *, doublereal *,
|
|
integer *);
|
|
extern int xerbla_(char *, integer *, ftnlen);
|
|
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
|
|
integer *, integer *, ftnlen, ftnlen);
|
|
extern doublereal zlange_(char *, integer *, integer *, doublecomplex *,
|
|
integer *, doublereal *);
|
|
doublereal bignum;
|
|
extern /* Subroutine */ void zgehrd_(integer *, integer *, integer *,
|
|
doublecomplex *, integer *, doublecomplex *, doublecomplex *,
|
|
integer *, integer *), zlascl_(char *, integer *, integer *,
|
|
doublereal *, doublereal *, integer *, integer *, doublecomplex *,
|
|
integer *, integer *);
|
|
logical wantsb, wantse;
|
|
extern /* Subroutine */ void zlacpy_(char *, integer *, integer *,
|
|
doublecomplex *, integer *, doublecomplex *, integer *);
|
|
integer minwrk, maxwrk;
|
|
logical wantsn;
|
|
doublereal smlnum;
|
|
extern /* Subroutine */ void zhseqr_(char *, char *, integer *, integer *,
|
|
integer *, doublecomplex *, integer *, doublecomplex *,
|
|
doublecomplex *, integer *, doublecomplex *, integer *, integer *);
|
|
integer hswork;
|
|
extern /* Subroutine */ void zunghr_(integer *, integer *, integer *,
|
|
doublecomplex *, integer *, doublecomplex *, doublecomplex *,
|
|
integer *, integer *);
|
|
logical wantst, lquery, wantsv, wantvs;
|
|
extern /* Subroutine */ void ztrsen_(char *, char *, logical *, integer *,
|
|
doublecomplex *, integer *, doublecomplex *, integer *,
|
|
doublecomplex *, integer *, doublereal *, doublereal *,
|
|
doublecomplex *, integer *, integer *);
|
|
integer ihi, ilo;
|
|
doublereal dum[1], eps;
|
|
|
|
|
|
/* -- LAPACK driver routine (version 3.7.0) -- */
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
/* June 2016 */
|
|
|
|
|
|
/* ===================================================================== */
|
|
|
|
|
|
/* Test the input arguments */
|
|
|
|
/* Parameter adjustments */
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1 * 1;
|
|
a -= a_offset;
|
|
--w;
|
|
vs_dim1 = *ldvs;
|
|
vs_offset = 1 + vs_dim1 * 1;
|
|
vs -= vs_offset;
|
|
--work;
|
|
--rwork;
|
|
--bwork;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
wantvs = lsame_(jobvs, "V");
|
|
wantst = lsame_(sort, "S");
|
|
wantsn = lsame_(sense, "N");
|
|
wantse = lsame_(sense, "E");
|
|
wantsv = lsame_(sense, "V");
|
|
wantsb = lsame_(sense, "B");
|
|
lquery = *lwork == -1;
|
|
|
|
if (! wantvs && ! lsame_(jobvs, "N")) {
|
|
*info = -1;
|
|
} else if (! wantst && ! lsame_(sort, "N")) {
|
|
*info = -2;
|
|
} else if (! (wantsn || wantse || wantsv || wantsb) || ! wantst && !
|
|
wantsn) {
|
|
*info = -4;
|
|
} else if (*n < 0) {
|
|
*info = -5;
|
|
} else if (*lda < f2cmax(1,*n)) {
|
|
*info = -7;
|
|
} else if (*ldvs < 1 || wantvs && *ldvs < *n) {
|
|
*info = -11;
|
|
}
|
|
|
|
/* Compute workspace */
|
|
/* (Note: Comments in the code beginning "Workspace:" describe the */
|
|
/* minimal amount of real workspace needed at that point in the */
|
|
/* code, as well as the preferred amount for good performance. */
|
|
/* CWorkspace refers to complex workspace, and RWorkspace to real */
|
|
/* workspace. NB refers to the optimal block size for the */
|
|
/* immediately following subroutine, as returned by ILAENV. */
|
|
/* HSWORK refers to the workspace preferred by ZHSEQR, as */
|
|
/* calculated below. HSWORK is computed assuming ILO=1 and IHI=N, */
|
|
/* the worst case. */
|
|
/* If SENSE = 'E', 'V' or 'B', then the amount of workspace needed */
|
|
/* depends on SDIM, which is computed by the routine ZTRSEN later */
|
|
/* in the code.) */
|
|
|
|
if (*info == 0) {
|
|
if (*n == 0) {
|
|
minwrk = 1;
|
|
lwrk = 1;
|
|
} else {
|
|
maxwrk = *n + *n * ilaenv_(&c__1, "ZGEHRD", " ", n, &c__1, n, &
|
|
c__0, (ftnlen)6, (ftnlen)1);
|
|
minwrk = *n << 1;
|
|
|
|
zhseqr_("S", jobvs, n, &c__1, n, &a[a_offset], lda, &w[1], &vs[
|
|
vs_offset], ldvs, &work[1], &c_n1, &ieval);
|
|
hswork = (integer) work[1].r;
|
|
|
|
if (! wantvs) {
|
|
maxwrk = f2cmax(maxwrk,hswork);
|
|
} else {
|
|
/* Computing MAX */
|
|
i__1 = maxwrk, i__2 = *n + (*n - 1) * ilaenv_(&c__1, "ZUNGHR",
|
|
" ", n, &c__1, n, &c_n1, (ftnlen)6, (ftnlen)1);
|
|
maxwrk = f2cmax(i__1,i__2);
|
|
maxwrk = f2cmax(maxwrk,hswork);
|
|
}
|
|
lwrk = maxwrk;
|
|
if (! wantsn) {
|
|
/* Computing MAX */
|
|
i__1 = lwrk, i__2 = *n * *n / 2;
|
|
lwrk = f2cmax(i__1,i__2);
|
|
}
|
|
}
|
|
work[1].r = (doublereal) lwrk, work[1].i = 0.;
|
|
|
|
if (*lwork < minwrk && ! lquery) {
|
|
*info = -15;
|
|
}
|
|
}
|
|
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_("ZGEESX", &i__1, (ftnlen)6);
|
|
return;
|
|
} else if (lquery) {
|
|
return;
|
|
}
|
|
|
|
/* Quick return if possible */
|
|
|
|
if (*n == 0) {
|
|
*sdim = 0;
|
|
return;
|
|
}
|
|
|
|
/* Get machine constants */
|
|
|
|
eps = dlamch_("P");
|
|
smlnum = dlamch_("S");
|
|
bignum = 1. / smlnum;
|
|
dlabad_(&smlnum, &bignum);
|
|
smlnum = sqrt(smlnum) / eps;
|
|
bignum = 1. / smlnum;
|
|
|
|
/* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
|
|
|
|
anrm = zlange_("M", n, n, &a[a_offset], lda, dum);
|
|
scalea = FALSE_;
|
|
if (anrm > 0. && anrm < smlnum) {
|
|
scalea = TRUE_;
|
|
cscale = smlnum;
|
|
} else if (anrm > bignum) {
|
|
scalea = TRUE_;
|
|
cscale = bignum;
|
|
}
|
|
if (scalea) {
|
|
zlascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, &
|
|
ierr);
|
|
}
|
|
|
|
|
|
/* Permute the matrix to make it more nearly triangular */
|
|
/* (CWorkspace: none) */
|
|
/* (RWorkspace: need N) */
|
|
|
|
ibal = 1;
|
|
zgebal_("P", n, &a[a_offset], lda, &ilo, &ihi, &rwork[ibal], &ierr);
|
|
|
|
/* Reduce to upper Hessenberg form */
|
|
/* (CWorkspace: need 2*N, prefer N+N*NB) */
|
|
/* (RWorkspace: none) */
|
|
|
|
itau = 1;
|
|
iwrk = *n + itau;
|
|
i__1 = *lwork - iwrk + 1;
|
|
zgehrd_(n, &ilo, &ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1,
|
|
&ierr);
|
|
|
|
if (wantvs) {
|
|
|
|
/* Copy Householder vectors to VS */
|
|
|
|
zlacpy_("L", n, n, &a[a_offset], lda, &vs[vs_offset], ldvs)
|
|
;
|
|
|
|
/* Generate unitary matrix in VS */
|
|
/* (CWorkspace: need 2*N-1, prefer N+(N-1)*NB) */
|
|
/* (RWorkspace: none) */
|
|
|
|
i__1 = *lwork - iwrk + 1;
|
|
zunghr_(n, &ilo, &ihi, &vs[vs_offset], ldvs, &work[itau], &work[iwrk],
|
|
&i__1, &ierr);
|
|
}
|
|
|
|
*sdim = 0;
|
|
|
|
/* Perform QR iteration, accumulating Schur vectors in VS if desired */
|
|
/* (CWorkspace: need 1, prefer HSWORK (see comments) ) */
|
|
/* (RWorkspace: none) */
|
|
|
|
iwrk = itau;
|
|
i__1 = *lwork - iwrk + 1;
|
|
zhseqr_("S", jobvs, n, &ilo, &ihi, &a[a_offset], lda, &w[1], &vs[
|
|
vs_offset], ldvs, &work[iwrk], &i__1, &ieval);
|
|
if (ieval > 0) {
|
|
*info = ieval;
|
|
}
|
|
|
|
/* Sort eigenvalues if desired */
|
|
|
|
if (wantst && *info == 0) {
|
|
if (scalea) {
|
|
zlascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &w[1], n, &
|
|
ierr);
|
|
}
|
|
i__1 = *n;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
bwork[i__] = (*select)(&w[i__]);
|
|
/* L10: */
|
|
}
|
|
|
|
/* Reorder eigenvalues, transform Schur vectors, and compute */
|
|
/* reciprocal condition numbers */
|
|
/* (CWorkspace: if SENSE is not 'N', need 2*SDIM*(N-SDIM) */
|
|
/* otherwise, need none ) */
|
|
/* (RWorkspace: none) */
|
|
|
|
i__1 = *lwork - iwrk + 1;
|
|
ztrsen_(sense, jobvs, &bwork[1], n, &a[a_offset], lda, &vs[vs_offset],
|
|
ldvs, &w[1], sdim, rconde, rcondv, &work[iwrk], &i__1, &
|
|
icond);
|
|
if (! wantsn) {
|
|
/* Computing MAX */
|
|
i__1 = maxwrk, i__2 = (*sdim << 1) * (*n - *sdim);
|
|
maxwrk = f2cmax(i__1,i__2);
|
|
}
|
|
if (icond == -14) {
|
|
|
|
/* Not enough complex workspace */
|
|
|
|
*info = -15;
|
|
}
|
|
}
|
|
|
|
if (wantvs) {
|
|
|
|
/* Undo balancing */
|
|
/* (CWorkspace: none) */
|
|
/* (RWorkspace: need N) */
|
|
|
|
zgebak_("P", "R", n, &ilo, &ihi, &rwork[ibal], n, &vs[vs_offset],
|
|
ldvs, &ierr);
|
|
}
|
|
|
|
if (scalea) {
|
|
|
|
/* Undo scaling for the Schur form of A */
|
|
|
|
zlascl_("U", &c__0, &c__0, &cscale, &anrm, n, n, &a[a_offset], lda, &
|
|
ierr);
|
|
i__1 = *lda + 1;
|
|
zcopy_(n, &a[a_offset], &i__1, &w[1], &c__1);
|
|
if ((wantsv || wantsb) && *info == 0) {
|
|
dum[0] = *rcondv;
|
|
dlascl_("G", &c__0, &c__0, &cscale, &anrm, &c__1, &c__1, dum, &
|
|
c__1, &ierr);
|
|
*rcondv = dum[0];
|
|
}
|
|
}
|
|
|
|
work[1].r = (doublereal) maxwrk, work[1].i = 0.;
|
|
return;
|
|
|
|
/* End of ZGEESX */
|
|
|
|
} /* zgeesx_ */
|
|
|