1290 lines
40 KiB
C
1290 lines
40 KiB
C
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <complex.h>
|
|
#ifdef complex
|
|
#undef complex
|
|
#endif
|
|
#ifdef I
|
|
#undef I
|
|
#endif
|
|
|
|
#if defined(_WIN64)
|
|
typedef long long BLASLONG;
|
|
typedef unsigned long long BLASULONG;
|
|
#else
|
|
typedef long BLASLONG;
|
|
typedef unsigned long BLASULONG;
|
|
#endif
|
|
|
|
#ifdef LAPACK_ILP64
|
|
typedef BLASLONG blasint;
|
|
#if defined(_WIN64)
|
|
#define blasabs(x) llabs(x)
|
|
#else
|
|
#define blasabs(x) labs(x)
|
|
#endif
|
|
#else
|
|
typedef int blasint;
|
|
#define blasabs(x) abs(x)
|
|
#endif
|
|
|
|
typedef blasint integer;
|
|
|
|
typedef unsigned int uinteger;
|
|
typedef char *address;
|
|
typedef short int shortint;
|
|
typedef float real;
|
|
typedef double doublereal;
|
|
typedef struct { real r, i; } complex;
|
|
typedef struct { doublereal r, i; } doublecomplex;
|
|
#ifdef _MSC_VER
|
|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
|
|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
|
|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
|
|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
|
|
#else
|
|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
|
|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
|
|
#endif
|
|
#define pCf(z) (*_pCf(z))
|
|
#define pCd(z) (*_pCd(z))
|
|
typedef blasint logical;
|
|
|
|
typedef char logical1;
|
|
typedef char integer1;
|
|
|
|
#define TRUE_ (1)
|
|
#define FALSE_ (0)
|
|
|
|
/* Extern is for use with -E */
|
|
#ifndef Extern
|
|
#define Extern extern
|
|
#endif
|
|
|
|
/* I/O stuff */
|
|
|
|
typedef int flag;
|
|
typedef int ftnlen;
|
|
typedef int ftnint;
|
|
|
|
/*external read, write*/
|
|
typedef struct
|
|
{ flag cierr;
|
|
ftnint ciunit;
|
|
flag ciend;
|
|
char *cifmt;
|
|
ftnint cirec;
|
|
} cilist;
|
|
|
|
/*internal read, write*/
|
|
typedef struct
|
|
{ flag icierr;
|
|
char *iciunit;
|
|
flag iciend;
|
|
char *icifmt;
|
|
ftnint icirlen;
|
|
ftnint icirnum;
|
|
} icilist;
|
|
|
|
/*open*/
|
|
typedef struct
|
|
{ flag oerr;
|
|
ftnint ounit;
|
|
char *ofnm;
|
|
ftnlen ofnmlen;
|
|
char *osta;
|
|
char *oacc;
|
|
char *ofm;
|
|
ftnint orl;
|
|
char *oblnk;
|
|
} olist;
|
|
|
|
/*close*/
|
|
typedef struct
|
|
{ flag cerr;
|
|
ftnint cunit;
|
|
char *csta;
|
|
} cllist;
|
|
|
|
/*rewind, backspace, endfile*/
|
|
typedef struct
|
|
{ flag aerr;
|
|
ftnint aunit;
|
|
} alist;
|
|
|
|
/* inquire */
|
|
typedef struct
|
|
{ flag inerr;
|
|
ftnint inunit;
|
|
char *infile;
|
|
ftnlen infilen;
|
|
ftnint *inex; /*parameters in standard's order*/
|
|
ftnint *inopen;
|
|
ftnint *innum;
|
|
ftnint *innamed;
|
|
char *inname;
|
|
ftnlen innamlen;
|
|
char *inacc;
|
|
ftnlen inacclen;
|
|
char *inseq;
|
|
ftnlen inseqlen;
|
|
char *indir;
|
|
ftnlen indirlen;
|
|
char *infmt;
|
|
ftnlen infmtlen;
|
|
char *inform;
|
|
ftnint informlen;
|
|
char *inunf;
|
|
ftnlen inunflen;
|
|
ftnint *inrecl;
|
|
ftnint *innrec;
|
|
char *inblank;
|
|
ftnlen inblanklen;
|
|
} inlist;
|
|
|
|
#define VOID void
|
|
|
|
union Multitype { /* for multiple entry points */
|
|
integer1 g;
|
|
shortint h;
|
|
integer i;
|
|
/* longint j; */
|
|
real r;
|
|
doublereal d;
|
|
complex c;
|
|
doublecomplex z;
|
|
};
|
|
|
|
typedef union Multitype Multitype;
|
|
|
|
struct Vardesc { /* for Namelist */
|
|
char *name;
|
|
char *addr;
|
|
ftnlen *dims;
|
|
int type;
|
|
};
|
|
typedef struct Vardesc Vardesc;
|
|
|
|
struct Namelist {
|
|
char *name;
|
|
Vardesc **vars;
|
|
int nvars;
|
|
};
|
|
typedef struct Namelist Namelist;
|
|
|
|
#define abs(x) ((x) >= 0 ? (x) : -(x))
|
|
#define dabs(x) (fabs(x))
|
|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
|
|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
|
|
#define dmin(a,b) (f2cmin(a,b))
|
|
#define dmax(a,b) (f2cmax(a,b))
|
|
#define bit_test(a,b) ((a) >> (b) & 1)
|
|
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
|
|
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
|
|
|
|
#define abort_() { sig_die("Fortran abort routine called", 1); }
|
|
#define c_abs(z) (cabsf(Cf(z)))
|
|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
|
|
#ifdef _MSC_VER
|
|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
|
|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
|
|
#else
|
|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
|
|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
|
|
#endif
|
|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
|
|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
|
|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
|
|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
|
|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
|
|
#define d_abs(x) (fabs(*(x)))
|
|
#define d_acos(x) (acos(*(x)))
|
|
#define d_asin(x) (asin(*(x)))
|
|
#define d_atan(x) (atan(*(x)))
|
|
#define d_atn2(x, y) (atan2(*(x),*(y)))
|
|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
|
|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
|
|
#define d_cos(x) (cos(*(x)))
|
|
#define d_cosh(x) (cosh(*(x)))
|
|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
|
|
#define d_exp(x) (exp(*(x)))
|
|
#define d_imag(z) (cimag(Cd(z)))
|
|
#define r_imag(z) (cimagf(Cf(z)))
|
|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define d_log(x) (log(*(x)))
|
|
#define d_mod(x, y) (fmod(*(x), *(y)))
|
|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
|
|
#define d_nint(x) u_nint(*(x))
|
|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
|
|
#define d_sign(a,b) u_sign(*(a),*(b))
|
|
#define r_sign(a,b) u_sign(*(a),*(b))
|
|
#define d_sin(x) (sin(*(x)))
|
|
#define d_sinh(x) (sinh(*(x)))
|
|
#define d_sqrt(x) (sqrt(*(x)))
|
|
#define d_tan(x) (tan(*(x)))
|
|
#define d_tanh(x) (tanh(*(x)))
|
|
#define i_abs(x) abs(*(x))
|
|
#define i_dnnt(x) ((integer)u_nint(*(x)))
|
|
#define i_len(s, n) (n)
|
|
#define i_nint(x) ((integer)u_nint(*(x)))
|
|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
|
|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
|
|
#define pow_si(B,E) spow_ui(*(B),*(E))
|
|
#define pow_ri(B,E) spow_ui(*(B),*(E))
|
|
#define pow_di(B,E) dpow_ui(*(B),*(E))
|
|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
|
|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
|
|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
|
|
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
|
|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
|
|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
|
|
#define sig_die(s, kill) { exit(1); }
|
|
#define s_stop(s, n) {exit(0);}
|
|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
|
|
#define z_abs(z) (cabs(Cd(z)))
|
|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
|
|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
|
|
#define myexit_() break;
|
|
#define mycycle() continue;
|
|
#define myceiling(w) {ceil(w)}
|
|
#define myhuge(w) {HUGE_VAL}
|
|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
|
|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
|
|
|
|
/* procedure parameter types for -A and -C++ */
|
|
|
|
|
|
#ifdef __cplusplus
|
|
typedef logical (*L_fp)(...);
|
|
#else
|
|
typedef logical (*L_fp)();
|
|
#endif
|
|
|
|
static float spow_ui(float x, integer n) {
|
|
float pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
static double dpow_ui(double x, integer n) {
|
|
double pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#ifdef _MSC_VER
|
|
static _Fcomplex cpow_ui(complex x, integer n) {
|
|
complex pow={1.0,0.0}; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow.r *= x.r, pow.i *= x.i;
|
|
if(u >>= 1) x.r *= x.r, x.i *= x.i;
|
|
else break;
|
|
}
|
|
}
|
|
_Fcomplex p={pow.r, pow.i};
|
|
return p;
|
|
}
|
|
#else
|
|
static _Complex float cpow_ui(_Complex float x, integer n) {
|
|
_Complex float pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#endif
|
|
#ifdef _MSC_VER
|
|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
|
|
_Dcomplex pow={1.0,0.0}; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
|
|
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
|
|
else break;
|
|
}
|
|
}
|
|
_Dcomplex p = {pow._Val[0], pow._Val[1]};
|
|
return p;
|
|
}
|
|
#else
|
|
static _Complex double zpow_ui(_Complex double x, integer n) {
|
|
_Complex double pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#endif
|
|
static integer pow_ii(integer x, integer n) {
|
|
integer pow; unsigned long int u;
|
|
if (n <= 0) {
|
|
if (n == 0 || x == 1) pow = 1;
|
|
else if (x != -1) pow = x == 0 ? 1/x : 0;
|
|
else n = -n;
|
|
}
|
|
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
|
|
u = n;
|
|
for(pow = 1; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
|
|
{
|
|
double m; integer i, mi;
|
|
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
|
if (w[i-1]>m) mi=i ,m=w[i-1];
|
|
return mi-s+1;
|
|
}
|
|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
|
|
{
|
|
float m; integer i, mi;
|
|
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
|
if (w[i-1]>m) mi=i ,m=w[i-1];
|
|
return mi-s+1;
|
|
}
|
|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Fcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
|
|
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex float zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Dcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
|
|
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex double zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Fcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
|
|
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex float zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cf(&x[i]) * Cf(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Dcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
|
|
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex double zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cd(&x[i]) * Cd(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#endif
|
|
/* -- translated by f2c (version 20000121).
|
|
You must link the resulting object file with the libraries:
|
|
-lf2c -lm (in that order)
|
|
*/
|
|
|
|
|
|
|
|
|
|
/* Table of constant values */
|
|
|
|
static integer c__1 = 1;
|
|
|
|
/* > \brief <b> ZGBSVX computes the solution to system of linear equations A * X = B for GB matrices</b> */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* > \htmlonly */
|
|
/* > Download ZGBSVX + dependencies */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgbsvx.
|
|
f"> */
|
|
/* > [TGZ]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgbsvx.
|
|
f"> */
|
|
/* > [ZIP]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgbsvx.
|
|
f"> */
|
|
/* > [TXT]</a> */
|
|
/* > \endhtmlonly */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* SUBROUTINE ZGBSVX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, */
|
|
/* LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX, */
|
|
/* RCOND, FERR, BERR, WORK, RWORK, INFO ) */
|
|
|
|
/* CHARACTER EQUED, FACT, TRANS */
|
|
/* INTEGER INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS */
|
|
/* DOUBLE PRECISION RCOND */
|
|
/* INTEGER IPIV( * ) */
|
|
/* DOUBLE PRECISION BERR( * ), C( * ), FERR( * ), R( * ), */
|
|
/* $ RWORK( * ) */
|
|
/* COMPLEX*16 AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ), */
|
|
/* $ WORK( * ), X( LDX, * ) */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > ZGBSVX uses the LU factorization to compute the solution to a complex */
|
|
/* > system of linear equations A * X = B, A**T * X = B, or A**H * X = B, */
|
|
/* > where A is a band matrix of order N with KL subdiagonals and KU */
|
|
/* > superdiagonals, and X and B are N-by-NRHS matrices. */
|
|
/* > */
|
|
/* > Error bounds on the solution and a condition estimate are also */
|
|
/* > provided. */
|
|
/* > \endverbatim */
|
|
|
|
/* > \par Description: */
|
|
/* ================= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > The following steps are performed by this subroutine: */
|
|
/* > */
|
|
/* > 1. If FACT = 'E', real scaling factors are computed to equilibrate */
|
|
/* > the system: */
|
|
/* > TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B */
|
|
/* > TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B */
|
|
/* > TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B */
|
|
/* > Whether or not the system will be equilibrated depends on the */
|
|
/* > scaling of the matrix A, but if equilibration is used, A is */
|
|
/* > overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N') */
|
|
/* > or diag(C)*B (if TRANS = 'T' or 'C'). */
|
|
/* > */
|
|
/* > 2. If FACT = 'N' or 'E', the LU decomposition is used to factor the */
|
|
/* > matrix A (after equilibration if FACT = 'E') as */
|
|
/* > A = L * U, */
|
|
/* > where L is a product of permutation and unit lower triangular */
|
|
/* > matrices with KL subdiagonals, and U is upper triangular with */
|
|
/* > KL+KU superdiagonals. */
|
|
/* > */
|
|
/* > 3. If some U(i,i)=0, so that U is exactly singular, then the routine */
|
|
/* > returns with INFO = i. Otherwise, the factored form of A is used */
|
|
/* > to estimate the condition number of the matrix A. If the */
|
|
/* > reciprocal of the condition number is less than machine precision, */
|
|
/* > INFO = N+1 is returned as a warning, but the routine still goes on */
|
|
/* > to solve for X and compute error bounds as described below. */
|
|
/* > */
|
|
/* > 4. The system of equations is solved for X using the factored form */
|
|
/* > of A. */
|
|
/* > */
|
|
/* > 5. Iterative refinement is applied to improve the computed solution */
|
|
/* > matrix and calculate error bounds and backward error estimates */
|
|
/* > for it. */
|
|
/* > */
|
|
/* > 6. If equilibration was used, the matrix X is premultiplied by */
|
|
/* > diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so */
|
|
/* > that it solves the original system before equilibration. */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] FACT */
|
|
/* > \verbatim */
|
|
/* > FACT is CHARACTER*1 */
|
|
/* > Specifies whether or not the factored form of the matrix A is */
|
|
/* > supplied on entry, and if not, whether the matrix A should be */
|
|
/* > equilibrated before it is factored. */
|
|
/* > = 'F': On entry, AFB and IPIV contain the factored form of */
|
|
/* > A. If EQUED is not 'N', the matrix A has been */
|
|
/* > equilibrated with scaling factors given by R and C. */
|
|
/* > AB, AFB, and IPIV are not modified. */
|
|
/* > = 'N': The matrix A will be copied to AFB and factored. */
|
|
/* > = 'E': The matrix A will be equilibrated if necessary, then */
|
|
/* > copied to AFB and factored. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] TRANS */
|
|
/* > \verbatim */
|
|
/* > TRANS is CHARACTER*1 */
|
|
/* > Specifies the form of the system of equations. */
|
|
/* > = 'N': A * X = B (No transpose) */
|
|
/* > = 'T': A**T * X = B (Transpose) */
|
|
/* > = 'C': A**H * X = B (Conjugate transpose) */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > The number of linear equations, i.e., the order of the */
|
|
/* > matrix A. N >= 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] KL */
|
|
/* > \verbatim */
|
|
/* > KL is INTEGER */
|
|
/* > The number of subdiagonals within the band of A. KL >= 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] KU */
|
|
/* > \verbatim */
|
|
/* > KU is INTEGER */
|
|
/* > The number of superdiagonals within the band of A. KU >= 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] NRHS */
|
|
/* > \verbatim */
|
|
/* > NRHS is INTEGER */
|
|
/* > The number of right hand sides, i.e., the number of columns */
|
|
/* > of the matrices B and X. NRHS >= 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] AB */
|
|
/* > \verbatim */
|
|
/* > AB is COMPLEX*16 array, dimension (LDAB,N) */
|
|
/* > On entry, the matrix A in band storage, in rows 1 to KL+KU+1. */
|
|
/* > The j-th column of A is stored in the j-th column of the */
|
|
/* > array AB as follows: */
|
|
/* > AB(KU+1+i-j,j) = A(i,j) for f2cmax(1,j-KU)<=i<=f2cmin(N,j+kl) */
|
|
/* > */
|
|
/* > If FACT = 'F' and EQUED is not 'N', then A must have been */
|
|
/* > equilibrated by the scaling factors in R and/or C. AB is not */
|
|
/* > modified if FACT = 'F' or 'N', or if FACT = 'E' and */
|
|
/* > EQUED = 'N' on exit. */
|
|
/* > */
|
|
/* > On exit, if EQUED .ne. 'N', A is scaled as follows: */
|
|
/* > EQUED = 'R': A := diag(R) * A */
|
|
/* > EQUED = 'C': A := A * diag(C) */
|
|
/* > EQUED = 'B': A := diag(R) * A * diag(C). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDAB */
|
|
/* > \verbatim */
|
|
/* > LDAB is INTEGER */
|
|
/* > The leading dimension of the array AB. LDAB >= KL+KU+1. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] AFB */
|
|
/* > \verbatim */
|
|
/* > AFB is COMPLEX*16 array, dimension (LDAFB,N) */
|
|
/* > If FACT = 'F', then AFB is an input argument and on entry */
|
|
/* > contains details of the LU factorization of the band matrix */
|
|
/* > A, as computed by ZGBTRF. U is stored as an upper triangular */
|
|
/* > band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, */
|
|
/* > and the multipliers used during the factorization are stored */
|
|
/* > in rows KL+KU+2 to 2*KL+KU+1. If EQUED .ne. 'N', then AFB is */
|
|
/* > the factored form of the equilibrated matrix A. */
|
|
/* > */
|
|
/* > If FACT = 'N', then AFB is an output argument and on exit */
|
|
/* > returns details of the LU factorization of A. */
|
|
/* > */
|
|
/* > If FACT = 'E', then AFB is an output argument and on exit */
|
|
/* > returns details of the LU factorization of the equilibrated */
|
|
/* > matrix A (see the description of AB for the form of the */
|
|
/* > equilibrated matrix). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDAFB */
|
|
/* > \verbatim */
|
|
/* > LDAFB is INTEGER */
|
|
/* > The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] IPIV */
|
|
/* > \verbatim */
|
|
/* > IPIV is INTEGER array, dimension (N) */
|
|
/* > If FACT = 'F', then IPIV is an input argument and on entry */
|
|
/* > contains the pivot indices from the factorization A = L*U */
|
|
/* > as computed by ZGBTRF; row i of the matrix was interchanged */
|
|
/* > with row IPIV(i). */
|
|
/* > */
|
|
/* > If FACT = 'N', then IPIV is an output argument and on exit */
|
|
/* > contains the pivot indices from the factorization A = L*U */
|
|
/* > of the original matrix A. */
|
|
/* > */
|
|
/* > If FACT = 'E', then IPIV is an output argument and on exit */
|
|
/* > contains the pivot indices from the factorization A = L*U */
|
|
/* > of the equilibrated matrix A. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] EQUED */
|
|
/* > \verbatim */
|
|
/* > EQUED is CHARACTER*1 */
|
|
/* > Specifies the form of equilibration that was done. */
|
|
/* > = 'N': No equilibration (always true if FACT = 'N'). */
|
|
/* > = 'R': Row equilibration, i.e., A has been premultiplied by */
|
|
/* > diag(R). */
|
|
/* > = 'C': Column equilibration, i.e., A has been postmultiplied */
|
|
/* > by diag(C). */
|
|
/* > = 'B': Both row and column equilibration, i.e., A has been */
|
|
/* > replaced by diag(R) * A * diag(C). */
|
|
/* > EQUED is an input argument if FACT = 'F'; otherwise, it is an */
|
|
/* > output argument. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] R */
|
|
/* > \verbatim */
|
|
/* > R is DOUBLE PRECISION array, dimension (N) */
|
|
/* > The row scale factors for A. If EQUED = 'R' or 'B', A is */
|
|
/* > multiplied on the left by diag(R); if EQUED = 'N' or 'C', R */
|
|
/* > is not accessed. R is an input argument if FACT = 'F'; */
|
|
/* > otherwise, R is an output argument. If FACT = 'F' and */
|
|
/* > EQUED = 'R' or 'B', each element of R must be positive. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] C */
|
|
/* > \verbatim */
|
|
/* > C is DOUBLE PRECISION array, dimension (N) */
|
|
/* > The column scale factors for A. If EQUED = 'C' or 'B', A is */
|
|
/* > multiplied on the right by diag(C); if EQUED = 'N' or 'R', C */
|
|
/* > is not accessed. C is an input argument if FACT = 'F'; */
|
|
/* > otherwise, C is an output argument. If FACT = 'F' and */
|
|
/* > EQUED = 'C' or 'B', each element of C must be positive. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] B */
|
|
/* > \verbatim */
|
|
/* > B is COMPLEX*16 array, dimension (LDB,NRHS) */
|
|
/* > On entry, the right hand side matrix B. */
|
|
/* > On exit, */
|
|
/* > if EQUED = 'N', B is not modified; */
|
|
/* > if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by */
|
|
/* > diag(R)*B; */
|
|
/* > if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is */
|
|
/* > overwritten by diag(C)*B. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDB */
|
|
/* > \verbatim */
|
|
/* > LDB is INTEGER */
|
|
/* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] X */
|
|
/* > \verbatim */
|
|
/* > X is COMPLEX*16 array, dimension (LDX,NRHS) */
|
|
/* > If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X */
|
|
/* > to the original system of equations. Note that A and B are */
|
|
/* > modified on exit if EQUED .ne. 'N', and the solution to the */
|
|
/* > equilibrated system is inv(diag(C))*X if TRANS = 'N' and */
|
|
/* > EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C' */
|
|
/* > and EQUED = 'R' or 'B'. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDX */
|
|
/* > \verbatim */
|
|
/* > LDX is INTEGER */
|
|
/* > The leading dimension of the array X. LDX >= f2cmax(1,N). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] RCOND */
|
|
/* > \verbatim */
|
|
/* > RCOND is DOUBLE PRECISION */
|
|
/* > The estimate of the reciprocal condition number of the matrix */
|
|
/* > A after equilibration (if done). If RCOND is less than the */
|
|
/* > machine precision (in particular, if RCOND = 0), the matrix */
|
|
/* > is singular to working precision. This condition is */
|
|
/* > indicated by a return code of INFO > 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] FERR */
|
|
/* > \verbatim */
|
|
/* > FERR is DOUBLE PRECISION array, dimension (NRHS) */
|
|
/* > The estimated forward error bound for each solution vector */
|
|
/* > X(j) (the j-th column of the solution matrix X). */
|
|
/* > If XTRUE is the true solution corresponding to X(j), FERR(j) */
|
|
/* > is an estimated upper bound for the magnitude of the largest */
|
|
/* > element in (X(j) - XTRUE) divided by the magnitude of the */
|
|
/* > largest element in X(j). The estimate is as reliable as */
|
|
/* > the estimate for RCOND, and is almost always a slight */
|
|
/* > overestimate of the true error. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] BERR */
|
|
/* > \verbatim */
|
|
/* > BERR is DOUBLE PRECISION array, dimension (NRHS) */
|
|
/* > The componentwise relative backward error of each solution */
|
|
/* > vector X(j) (i.e., the smallest relative change in */
|
|
/* > any element of A or B that makes X(j) an exact solution). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] WORK */
|
|
/* > \verbatim */
|
|
/* > WORK is COMPLEX*16 array, dimension (2*N) */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] RWORK */
|
|
/* > \verbatim */
|
|
/* > RWORK is DOUBLE PRECISION array, dimension (N) */
|
|
/* > On exit, RWORK(1) contains the reciprocal pivot growth */
|
|
/* > factor norm(A)/norm(U). The "f2cmax absolute element" norm is */
|
|
/* > used. If RWORK(1) is much less than 1, then the stability */
|
|
/* > of the LU factorization of the (equilibrated) matrix A */
|
|
/* > could be poor. This also means that the solution X, condition */
|
|
/* > estimator RCOND, and forward error bound FERR could be */
|
|
/* > unreliable. If factorization fails with 0<INFO<=N, then */
|
|
/* > RWORK(1) contains the reciprocal pivot growth factor for the */
|
|
/* > leading INFO columns of A. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] INFO */
|
|
/* > \verbatim */
|
|
/* > INFO is INTEGER */
|
|
/* > = 0: successful exit */
|
|
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
|
|
/* > > 0: if INFO = i, and i is */
|
|
/* > <= N: U(i,i) is exactly zero. The factorization */
|
|
/* > has been completed, but the factor U is exactly */
|
|
/* > singular, so the solution and error bounds */
|
|
/* > could not be computed. RCOND = 0 is returned. */
|
|
/* > = N+1: U is nonsingular, but RCOND is less than machine */
|
|
/* > precision, meaning that the matrix is singular */
|
|
/* > to working precision. Nevertheless, the */
|
|
/* > solution and error bounds are computed because */
|
|
/* > there are a number of situations where the */
|
|
/* > computed solution can be more accurate than the */
|
|
/* > value of RCOND would suggest. */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \date April 2012 */
|
|
|
|
/* > \ingroup complex16GBsolve */
|
|
|
|
/* ===================================================================== */
|
|
/* Subroutine */ void zgbsvx_(char *fact, char *trans, integer *n, integer *kl,
|
|
integer *ku, integer *nrhs, doublecomplex *ab, integer *ldab,
|
|
doublecomplex *afb, integer *ldafb, integer *ipiv, char *equed,
|
|
doublereal *r__, doublereal *c__, doublecomplex *b, integer *ldb,
|
|
doublecomplex *x, integer *ldx, doublereal *rcond, doublereal *ferr,
|
|
doublereal *berr, doublecomplex *work, doublereal *rwork, integer *
|
|
info)
|
|
{
|
|
/* System generated locals */
|
|
integer ab_dim1, ab_offset, afb_dim1, afb_offset, b_dim1, b_offset,
|
|
x_dim1, x_offset, i__1, i__2, i__3, i__4, i__5;
|
|
doublereal d__1, d__2;
|
|
doublecomplex z__1;
|
|
|
|
/* Local variables */
|
|
doublereal amax;
|
|
char norm[1];
|
|
integer i__, j;
|
|
extern logical lsame_(char *, char *);
|
|
doublereal rcmin, rcmax, anorm;
|
|
logical equil;
|
|
integer j1, j2;
|
|
extern /* Subroutine */ void zcopy_(integer *, doublecomplex *, integer *,
|
|
doublecomplex *, integer *);
|
|
extern doublereal dlamch_(char *);
|
|
doublereal colcnd;
|
|
logical nofact;
|
|
extern doublereal zlangb_(char *, integer *, integer *, integer *,
|
|
doublecomplex *, integer *, doublereal *);
|
|
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
|
|
extern void zlaqgb_(
|
|
integer *, integer *, integer *, integer *, doublecomplex *,
|
|
integer *, doublereal *, doublereal *, doublereal *, doublereal *,
|
|
doublereal *, char *);
|
|
doublereal bignum;
|
|
extern /* Subroutine */ void zgbcon_(char *, integer *, integer *, integer
|
|
*, doublecomplex *, integer *, integer *, doublereal *,
|
|
doublereal *, doublecomplex *, doublereal *, integer *);
|
|
integer infequ;
|
|
logical colequ;
|
|
extern doublereal zlantb_(char *, char *, char *, integer *, integer *,
|
|
doublecomplex *, integer *, doublereal *);
|
|
doublereal rowcnd;
|
|
extern /* Subroutine */ void zgbequ_(integer *, integer *, integer *,
|
|
integer *, doublecomplex *, integer *, doublereal *, doublereal *,
|
|
doublereal *, doublereal *, doublereal *, integer *), zgbrfs_(
|
|
char *, integer *, integer *, integer *, integer *, doublecomplex
|
|
*, integer *, doublecomplex *, integer *, integer *,
|
|
doublecomplex *, integer *, doublecomplex *, integer *,
|
|
doublereal *, doublereal *, doublecomplex *, doublereal *,
|
|
integer *), zgbtrf_(integer *, integer *, integer *,
|
|
integer *, doublecomplex *, integer *, integer *, integer *);
|
|
logical notran;
|
|
extern /* Subroutine */ void zlacpy_(char *, integer *, integer *,
|
|
doublecomplex *, integer *, doublecomplex *, integer *);
|
|
doublereal smlnum;
|
|
extern /* Subroutine */ void zgbtrs_(char *, integer *, integer *, integer
|
|
*, integer *, doublecomplex *, integer *, integer *,
|
|
doublecomplex *, integer *, integer *);
|
|
logical rowequ;
|
|
doublereal rpvgrw;
|
|
|
|
|
|
/* -- LAPACK driver routine (version 3.7.0) -- */
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
/* April 2012 */
|
|
|
|
|
|
/* ===================================================================== */
|
|
/* Moved setting of INFO = N+1 so INFO does not subsequently get */
|
|
/* overwritten. Sven, 17 Mar 05. */
|
|
/* ===================================================================== */
|
|
|
|
|
|
/* Parameter adjustments */
|
|
ab_dim1 = *ldab;
|
|
ab_offset = 1 + ab_dim1 * 1;
|
|
ab -= ab_offset;
|
|
afb_dim1 = *ldafb;
|
|
afb_offset = 1 + afb_dim1 * 1;
|
|
afb -= afb_offset;
|
|
--ipiv;
|
|
--r__;
|
|
--c__;
|
|
b_dim1 = *ldb;
|
|
b_offset = 1 + b_dim1 * 1;
|
|
b -= b_offset;
|
|
x_dim1 = *ldx;
|
|
x_offset = 1 + x_dim1 * 1;
|
|
x -= x_offset;
|
|
--ferr;
|
|
--berr;
|
|
--work;
|
|
--rwork;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
nofact = lsame_(fact, "N");
|
|
equil = lsame_(fact, "E");
|
|
notran = lsame_(trans, "N");
|
|
if (nofact || equil) {
|
|
*(unsigned char *)equed = 'N';
|
|
rowequ = FALSE_;
|
|
colequ = FALSE_;
|
|
} else {
|
|
rowequ = lsame_(equed, "R") || lsame_(equed,
|
|
"B");
|
|
colequ = lsame_(equed, "C") || lsame_(equed,
|
|
"B");
|
|
smlnum = dlamch_("Safe minimum");
|
|
bignum = 1. / smlnum;
|
|
}
|
|
|
|
/* Test the input parameters. */
|
|
|
|
if (! nofact && ! equil && ! lsame_(fact, "F")) {
|
|
*info = -1;
|
|
} else if (! notran && ! lsame_(trans, "T") && !
|
|
lsame_(trans, "C")) {
|
|
*info = -2;
|
|
} else if (*n < 0) {
|
|
*info = -3;
|
|
} else if (*kl < 0) {
|
|
*info = -4;
|
|
} else if (*ku < 0) {
|
|
*info = -5;
|
|
} else if (*nrhs < 0) {
|
|
*info = -6;
|
|
} else if (*ldab < *kl + *ku + 1) {
|
|
*info = -8;
|
|
} else if (*ldafb < (*kl << 1) + *ku + 1) {
|
|
*info = -10;
|
|
} else if (lsame_(fact, "F") && ! (rowequ || colequ
|
|
|| lsame_(equed, "N"))) {
|
|
*info = -12;
|
|
} else {
|
|
if (rowequ) {
|
|
rcmin = bignum;
|
|
rcmax = 0.;
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
/* Computing MIN */
|
|
d__1 = rcmin, d__2 = r__[j];
|
|
rcmin = f2cmin(d__1,d__2);
|
|
/* Computing MAX */
|
|
d__1 = rcmax, d__2 = r__[j];
|
|
rcmax = f2cmax(d__1,d__2);
|
|
/* L10: */
|
|
}
|
|
if (rcmin <= 0.) {
|
|
*info = -13;
|
|
} else if (*n > 0) {
|
|
rowcnd = f2cmax(rcmin,smlnum) / f2cmin(rcmax,bignum);
|
|
} else {
|
|
rowcnd = 1.;
|
|
}
|
|
}
|
|
if (colequ && *info == 0) {
|
|
rcmin = bignum;
|
|
rcmax = 0.;
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
/* Computing MIN */
|
|
d__1 = rcmin, d__2 = c__[j];
|
|
rcmin = f2cmin(d__1,d__2);
|
|
/* Computing MAX */
|
|
d__1 = rcmax, d__2 = c__[j];
|
|
rcmax = f2cmax(d__1,d__2);
|
|
/* L20: */
|
|
}
|
|
if (rcmin <= 0.) {
|
|
*info = -14;
|
|
} else if (*n > 0) {
|
|
colcnd = f2cmax(rcmin,smlnum) / f2cmin(rcmax,bignum);
|
|
} else {
|
|
colcnd = 1.;
|
|
}
|
|
}
|
|
if (*info == 0) {
|
|
if (*ldb < f2cmax(1,*n)) {
|
|
*info = -16;
|
|
} else if (*ldx < f2cmax(1,*n)) {
|
|
*info = -18;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_("ZGBSVX", &i__1, (ftnlen)6);
|
|
return;
|
|
}
|
|
|
|
if (equil) {
|
|
|
|
/* Compute row and column scalings to equilibrate the matrix A. */
|
|
|
|
zgbequ_(n, n, kl, ku, &ab[ab_offset], ldab, &r__[1], &c__[1], &rowcnd,
|
|
&colcnd, &amax, &infequ);
|
|
if (infequ == 0) {
|
|
|
|
/* Equilibrate the matrix. */
|
|
|
|
zlaqgb_(n, n, kl, ku, &ab[ab_offset], ldab, &r__[1], &c__[1], &
|
|
rowcnd, &colcnd, &amax, equed);
|
|
rowequ = lsame_(equed, "R") || lsame_(equed,
|
|
"B");
|
|
colequ = lsame_(equed, "C") || lsame_(equed,
|
|
"B");
|
|
}
|
|
}
|
|
|
|
/* Scale the right hand side. */
|
|
|
|
if (notran) {
|
|
if (rowequ) {
|
|
i__1 = *nrhs;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__2 = *n;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
i__3 = i__ + j * b_dim1;
|
|
i__4 = i__;
|
|
i__5 = i__ + j * b_dim1;
|
|
z__1.r = r__[i__4] * b[i__5].r, z__1.i = r__[i__4] * b[
|
|
i__5].i;
|
|
b[i__3].r = z__1.r, b[i__3].i = z__1.i;
|
|
/* L30: */
|
|
}
|
|
/* L40: */
|
|
}
|
|
}
|
|
} else if (colequ) {
|
|
i__1 = *nrhs;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__2 = *n;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
i__3 = i__ + j * b_dim1;
|
|
i__4 = i__;
|
|
i__5 = i__ + j * b_dim1;
|
|
z__1.r = c__[i__4] * b[i__5].r, z__1.i = c__[i__4] * b[i__5]
|
|
.i;
|
|
b[i__3].r = z__1.r, b[i__3].i = z__1.i;
|
|
/* L50: */
|
|
}
|
|
/* L60: */
|
|
}
|
|
}
|
|
|
|
if (nofact || equil) {
|
|
|
|
/* Compute the LU factorization of the band matrix A. */
|
|
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
/* Computing MAX */
|
|
i__2 = j - *ku;
|
|
j1 = f2cmax(i__2,1);
|
|
/* Computing MIN */
|
|
i__2 = j + *kl;
|
|
j2 = f2cmin(i__2,*n);
|
|
i__2 = j2 - j1 + 1;
|
|
zcopy_(&i__2, &ab[*ku + 1 - j + j1 + j * ab_dim1], &c__1, &afb[*
|
|
kl + *ku + 1 - j + j1 + j * afb_dim1], &c__1);
|
|
/* L70: */
|
|
}
|
|
|
|
zgbtrf_(n, n, kl, ku, &afb[afb_offset], ldafb, &ipiv[1], info);
|
|
|
|
/* Return if INFO is non-zero. */
|
|
|
|
if (*info > 0) {
|
|
|
|
/* Compute the reciprocal pivot growth factor of the */
|
|
/* leading rank-deficient INFO columns of A. */
|
|
|
|
anorm = 0.;
|
|
i__1 = *info;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
/* Computing MAX */
|
|
i__2 = *ku + 2 - j;
|
|
/* Computing MIN */
|
|
i__4 = *n + *ku + 1 - j, i__5 = *kl + *ku + 1;
|
|
i__3 = f2cmin(i__4,i__5);
|
|
for (i__ = f2cmax(i__2,1); i__ <= i__3; ++i__) {
|
|
/* Computing MAX */
|
|
d__1 = anorm, d__2 = z_abs(&ab[i__ + j * ab_dim1]);
|
|
anorm = f2cmax(d__1,d__2);
|
|
/* L80: */
|
|
}
|
|
/* L90: */
|
|
}
|
|
/* Computing MIN */
|
|
i__3 = *info - 1, i__2 = *kl + *ku;
|
|
i__1 = f2cmin(i__3,i__2);
|
|
/* Computing MAX */
|
|
i__4 = 1, i__5 = *kl + *ku + 2 - *info;
|
|
rpvgrw = zlantb_("M", "U", "N", info, &i__1, &afb[f2cmax(i__4,i__5)
|
|
+ afb_dim1], ldafb, &rwork[1]);
|
|
if (rpvgrw == 0.) {
|
|
rpvgrw = 1.;
|
|
} else {
|
|
rpvgrw = anorm / rpvgrw;
|
|
}
|
|
rwork[1] = rpvgrw;
|
|
*rcond = 0.;
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Compute the norm of the matrix A and the */
|
|
/* reciprocal pivot growth factor RPVGRW. */
|
|
|
|
if (notran) {
|
|
*(unsigned char *)norm = '1';
|
|
} else {
|
|
*(unsigned char *)norm = 'I';
|
|
}
|
|
anorm = zlangb_(norm, n, kl, ku, &ab[ab_offset], ldab, &rwork[1]);
|
|
i__1 = *kl + *ku;
|
|
rpvgrw = zlantb_("M", "U", "N", n, &i__1, &afb[afb_offset], ldafb, &rwork[
|
|
1]);
|
|
if (rpvgrw == 0.) {
|
|
rpvgrw = 1.;
|
|
} else {
|
|
rpvgrw = zlangb_("M", n, kl, ku, &ab[ab_offset], ldab, &rwork[1]) / rpvgrw;
|
|
}
|
|
|
|
/* Compute the reciprocal of the condition number of A. */
|
|
|
|
zgbcon_(norm, n, kl, ku, &afb[afb_offset], ldafb, &ipiv[1], &anorm, rcond,
|
|
&work[1], &rwork[1], info);
|
|
|
|
/* Compute the solution matrix X. */
|
|
|
|
zlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
|
|
zgbtrs_(trans, n, kl, ku, nrhs, &afb[afb_offset], ldafb, &ipiv[1], &x[
|
|
x_offset], ldx, info);
|
|
|
|
/* Use iterative refinement to improve the computed solution and */
|
|
/* compute error bounds and backward error estimates for it. */
|
|
|
|
zgbrfs_(trans, n, kl, ku, nrhs, &ab[ab_offset], ldab, &afb[afb_offset],
|
|
ldafb, &ipiv[1], &b[b_offset], ldb, &x[x_offset], ldx, &ferr[1], &
|
|
berr[1], &work[1], &rwork[1], info);
|
|
|
|
/* Transform the solution matrix X to a solution of the original */
|
|
/* system. */
|
|
|
|
if (notran) {
|
|
if (colequ) {
|
|
i__1 = *nrhs;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__3 = *n;
|
|
for (i__ = 1; i__ <= i__3; ++i__) {
|
|
i__2 = i__ + j * x_dim1;
|
|
i__4 = i__;
|
|
i__5 = i__ + j * x_dim1;
|
|
z__1.r = c__[i__4] * x[i__5].r, z__1.i = c__[i__4] * x[
|
|
i__5].i;
|
|
x[i__2].r = z__1.r, x[i__2].i = z__1.i;
|
|
/* L100: */
|
|
}
|
|
/* L110: */
|
|
}
|
|
i__1 = *nrhs;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
ferr[j] /= colcnd;
|
|
/* L120: */
|
|
}
|
|
}
|
|
} else if (rowequ) {
|
|
i__1 = *nrhs;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__3 = *n;
|
|
for (i__ = 1; i__ <= i__3; ++i__) {
|
|
i__2 = i__ + j * x_dim1;
|
|
i__4 = i__;
|
|
i__5 = i__ + j * x_dim1;
|
|
z__1.r = r__[i__4] * x[i__5].r, z__1.i = r__[i__4] * x[i__5]
|
|
.i;
|
|
x[i__2].r = z__1.r, x[i__2].i = z__1.i;
|
|
/* L130: */
|
|
}
|
|
/* L140: */
|
|
}
|
|
i__1 = *nrhs;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
ferr[j] /= rowcnd;
|
|
/* L150: */
|
|
}
|
|
}
|
|
|
|
/* Set INFO = N+1 if the matrix is singular to working precision. */
|
|
|
|
if (*rcond < dlamch_("Epsilon")) {
|
|
*info = *n + 1;
|
|
}
|
|
|
|
rwork[1] = rpvgrw;
|
|
return;
|
|
|
|
/* End of ZGBSVX */
|
|
|
|
} /* zgbsvx_ */
|
|
|