OpenBLAS/lapack-netlib/SRC/zbdsqr.c

1494 lines
40 KiB
C

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif
#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif
#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif
typedef blasint integer;
typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
#ifdef _MSC_VER
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
#else
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#endif
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef blasint logical;
typedef char logical1;
typedef char integer1;
#define TRUE_ (1)
#define FALSE_ (0)
/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif
/* I/O stuff */
typedef int flag;
typedef int ftnlen;
typedef int ftnint;
/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;
/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;
/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;
/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;
/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;
/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;
#define VOID void
union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};
typedef union Multitype Multitype;
struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;
struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;
#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#ifdef _MSC_VER
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
#else
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#endif
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimagf(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
/* procedure parameter types for -A and -C++ */
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif
static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#ifdef _MSC_VER
static _Fcomplex cpow_ui(complex x, integer n) {
complex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
for(u = n; ; ) {
if(u & 01) pow.r *= x.r, pow.i *= x.i;
if(u >>= 1) x.r *= x.r, x.i *= x.i;
else break;
}
}
_Fcomplex p={pow.r, pow.i};
return p;
}
#else
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
#ifdef _MSC_VER
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
_Dcomplex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
for(u = n; ; ) {
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
else break;
}
}
_Dcomplex p = {pow._Val[0], pow._Val[1]};
return p;
}
#else
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
/* Table of constant values */
static doublereal c_b15 = -.125;
static integer c__1 = 1;
static doublereal c_b49 = 1.;
static doublereal c_b72 = -1.;
/* > \brief \b ZBDSQR */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download ZBDSQR + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zbdsqr.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zbdsqr.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zbdsqr.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE ZBDSQR( UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U, */
/* LDU, C, LDC, RWORK, INFO ) */
/* CHARACTER UPLO */
/* INTEGER INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU */
/* DOUBLE PRECISION D( * ), E( * ), RWORK( * ) */
/* COMPLEX*16 C( LDC, * ), U( LDU, * ), VT( LDVT, * ) */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > ZBDSQR computes the singular values and, optionally, the right and/or */
/* > left singular vectors from the singular value decomposition (SVD) of */
/* > a real N-by-N (upper or lower) bidiagonal matrix B using the implicit */
/* > zero-shift QR algorithm. The SVD of B has the form */
/* > */
/* > B = Q * S * P**H */
/* > */
/* > where S is the diagonal matrix of singular values, Q is an orthogonal */
/* > matrix of left singular vectors, and P is an orthogonal matrix of */
/* > right singular vectors. If left singular vectors are requested, this */
/* > subroutine actually returns U*Q instead of Q, and, if right singular */
/* > vectors are requested, this subroutine returns P**H*VT instead of */
/* > P**H, for given complex input matrices U and VT. When U and VT are */
/* > the unitary matrices that reduce a general matrix A to bidiagonal */
/* > form: A = U*B*VT, as computed by ZGEBRD, then */
/* > */
/* > A = (U*Q) * S * (P**H*VT) */
/* > */
/* > is the SVD of A. Optionally, the subroutine may also compute Q**H*C */
/* > for a given complex input matrix C. */
/* > */
/* > See "Computing Small Singular Values of Bidiagonal Matrices With */
/* > Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan, */
/* > LAPACK Working Note #3 (or SIAM J. Sci. Statist. Comput. vol. 11, */
/* > no. 5, pp. 873-912, Sept 1990) and */
/* > "Accurate singular values and differential qd algorithms," by */
/* > B. Parlett and V. Fernando, Technical Report CPAM-554, Mathematics */
/* > Department, University of California at Berkeley, July 1992 */
/* > for a detailed description of the algorithm. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] UPLO */
/* > \verbatim */
/* > UPLO is CHARACTER*1 */
/* > = 'U': B is upper bidiagonal; */
/* > = 'L': B is lower bidiagonal. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrix B. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] NCVT */
/* > \verbatim */
/* > NCVT is INTEGER */
/* > The number of columns of the matrix VT. NCVT >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] NRU */
/* > \verbatim */
/* > NRU is INTEGER */
/* > The number of rows of the matrix U. NRU >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] NCC */
/* > \verbatim */
/* > NCC is INTEGER */
/* > The number of columns of the matrix C. NCC >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] D */
/* > \verbatim */
/* > D is DOUBLE PRECISION array, dimension (N) */
/* > On entry, the n diagonal elements of the bidiagonal matrix B. */
/* > On exit, if INFO=0, the singular values of B in decreasing */
/* > order. */
/* > \endverbatim */
/* > */
/* > \param[in,out] E */
/* > \verbatim */
/* > E is DOUBLE PRECISION array, dimension (N-1) */
/* > On entry, the N-1 offdiagonal elements of the bidiagonal */
/* > matrix B. */
/* > On exit, if INFO = 0, E is destroyed; if INFO > 0, D and E */
/* > will contain the diagonal and superdiagonal elements of a */
/* > bidiagonal matrix orthogonally equivalent to the one given */
/* > as input. */
/* > \endverbatim */
/* > */
/* > \param[in,out] VT */
/* > \verbatim */
/* > VT is COMPLEX*16 array, dimension (LDVT, NCVT) */
/* > On entry, an N-by-NCVT matrix VT. */
/* > On exit, VT is overwritten by P**H * VT. */
/* > Not referenced if NCVT = 0. */
/* > \endverbatim */
/* > */
/* > \param[in] LDVT */
/* > \verbatim */
/* > LDVT is INTEGER */
/* > The leading dimension of the array VT. */
/* > LDVT >= f2cmax(1,N) if NCVT > 0; LDVT >= 1 if NCVT = 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] U */
/* > \verbatim */
/* > U is COMPLEX*16 array, dimension (LDU, N) */
/* > On entry, an NRU-by-N matrix U. */
/* > On exit, U is overwritten by U * Q. */
/* > Not referenced if NRU = 0. */
/* > \endverbatim */
/* > */
/* > \param[in] LDU */
/* > \verbatim */
/* > LDU is INTEGER */
/* > The leading dimension of the array U. LDU >= f2cmax(1,NRU). */
/* > \endverbatim */
/* > */
/* > \param[in,out] C */
/* > \verbatim */
/* > C is COMPLEX*16 array, dimension (LDC, NCC) */
/* > On entry, an N-by-NCC matrix C. */
/* > On exit, C is overwritten by Q**H * C. */
/* > Not referenced if NCC = 0. */
/* > \endverbatim */
/* > */
/* > \param[in] LDC */
/* > \verbatim */
/* > LDC is INTEGER */
/* > The leading dimension of the array C. */
/* > LDC >= f2cmax(1,N) if NCC > 0; LDC >=1 if NCC = 0. */
/* > \endverbatim */
/* > */
/* > \param[out] RWORK */
/* > \verbatim */
/* > RWORK is DOUBLE PRECISION array, dimension (4*N) */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: If INFO = -i, the i-th argument had an illegal value */
/* > > 0: the algorithm did not converge; D and E contain the */
/* > elements of a bidiagonal matrix which is orthogonally */
/* > similar to the input matrix B; if INFO = i, i */
/* > elements of E have not converged to zero. */
/* > \endverbatim */
/* > \par Internal Parameters: */
/* ========================= */
/* > */
/* > \verbatim */
/* > TOLMUL DOUBLE PRECISION, default = f2cmax(10,f2cmin(100,EPS**(-1/8))) */
/* > TOLMUL controls the convergence criterion of the QR loop. */
/* > If it is positive, TOLMUL*EPS is the desired relative */
/* > precision in the computed singular values. */
/* > If it is negative, abs(TOLMUL*EPS*sigma_max) is the */
/* > desired absolute accuracy in the computed singular */
/* > values (corresponds to relative accuracy */
/* > abs(TOLMUL*EPS) in the largest singular value. */
/* > abs(TOLMUL) should be between 1 and 1/EPS, and preferably */
/* > between 10 (for fast convergence) and .1/EPS */
/* > (for there to be some accuracy in the results). */
/* > Default is to lose at either one eighth or 2 of the */
/* > available decimal digits in each computed singular value */
/* > (whichever is smaller). */
/* > */
/* > MAXITR INTEGER, default = 6 */
/* > MAXITR controls the maximum number of passes of the */
/* > algorithm through its inner loop. The algorithms stops */
/* > (and so fails to converge) if the number of passes */
/* > through the inner loop exceeds MAXITR*N**2. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date December 2016 */
/* > \ingroup complex16OTHERcomputational */
/* ===================================================================== */
/* Subroutine */ void zbdsqr_(char *uplo, integer *n, integer *ncvt, integer *
nru, integer *ncc, doublereal *d__, doublereal *e, doublecomplex *vt,
integer *ldvt, doublecomplex *u, integer *ldu, doublecomplex *c__,
integer *ldc, doublereal *rwork, integer *info)
{
/* System generated locals */
integer c_dim1, c_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1,
i__2;
doublereal d__1, d__2, d__3, d__4;
/* Local variables */
doublereal abse;
integer idir;
doublereal abss;
integer oldm;
doublereal cosl;
integer isub, iter;
doublereal unfl, sinl, cosr, smin, smax, sinr;
extern /* Subroutine */ void dlas2_(doublereal *, doublereal *, doublereal
*, doublereal *, doublereal *);
doublereal f, g, h__;
integer i__, j, m;
doublereal r__;
extern logical lsame_(char *, char *);
doublereal oldcs;
integer oldll;
doublereal shift, sigmn, oldsn;
integer maxit;
doublereal sminl, sigmx;
logical lower;
extern /* Subroutine */ void zlasr_(char *, char *, char *, integer *,
integer *, doublereal *, doublereal *, doublecomplex *, integer *), zdrot_(integer *, doublecomplex *,
integer *, doublecomplex *, integer *, doublereal *, doublereal *)
, zswap_(integer *, doublecomplex *, integer *, doublecomplex *,
integer *), dlasq1_(integer *, doublereal *, doublereal *,
doublereal *, integer *), dlasv2_(doublereal *, doublereal *,
doublereal *, doublereal *, doublereal *, doublereal *,
doublereal *, doublereal *, doublereal *);
doublereal cs;
integer ll;
extern doublereal dlamch_(char *);
doublereal sn, mu;
extern /* Subroutine */ void dlartg_(doublereal *, doublereal *,
doublereal *, doublereal *, doublereal *);
extern int xerbla_(char *, integer *, ftnlen);
extern void zdscal_(integer *, doublereal *,
doublecomplex *, integer *);
doublereal sminoa, thresh;
logical rotate;
integer nm1;
doublereal tolmul;
integer nm12, nm13, lll;
doublereal eps, sll, tol;
/* -- LAPACK computational routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */
/* ===================================================================== */
/* Test the input parameters. */
/* Parameter adjustments */
--d__;
--e;
vt_dim1 = *ldvt;
vt_offset = 1 + vt_dim1 * 1;
vt -= vt_offset;
u_dim1 = *ldu;
u_offset = 1 + u_dim1 * 1;
u -= u_offset;
c_dim1 = *ldc;
c_offset = 1 + c_dim1 * 1;
c__ -= c_offset;
--rwork;
/* Function Body */
*info = 0;
lower = lsame_(uplo, "L");
if (! lsame_(uplo, "U") && ! lower) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*ncvt < 0) {
*info = -3;
} else if (*nru < 0) {
*info = -4;
} else if (*ncc < 0) {
*info = -5;
} else if (*ncvt == 0 && *ldvt < 1 || *ncvt > 0 && *ldvt < f2cmax(1,*n)) {
*info = -9;
} else if (*ldu < f2cmax(1,*nru)) {
*info = -11;
} else if (*ncc == 0 && *ldc < 1 || *ncc > 0 && *ldc < f2cmax(1,*n)) {
*info = -13;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("ZBDSQR", &i__1, (ftnlen)6);
return;
}
if (*n == 0) {
return;
}
if (*n == 1) {
goto L160;
}
/* ROTATE is true if any singular vectors desired, false otherwise */
rotate = *ncvt > 0 || *nru > 0 || *ncc > 0;
/* If no singular vectors desired, use qd algorithm */
if (! rotate) {
dlasq1_(n, &d__[1], &e[1], &rwork[1], info);
/* If INFO equals 2, dqds didn't finish, try to finish */
if (*info != 2) {
return;
}
*info = 0;
}
nm1 = *n - 1;
nm12 = nm1 + nm1;
nm13 = nm12 + nm1;
idir = 0;
/* Get machine constants */
eps = dlamch_("Epsilon");
unfl = dlamch_("Safe minimum");
/* If matrix lower bidiagonal, rotate to be upper bidiagonal */
/* by applying Givens rotations on the left */
if (lower) {
i__1 = *n - 1;
for (i__ = 1; i__ <= i__1; ++i__) {
dlartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
d__[i__] = r__;
e[i__] = sn * d__[i__ + 1];
d__[i__ + 1] = cs * d__[i__ + 1];
rwork[i__] = cs;
rwork[nm1 + i__] = sn;
/* L10: */
}
/* Update singular vectors if desired */
if (*nru > 0) {
zlasr_("R", "V", "F", nru, n, &rwork[1], &rwork[*n], &u[u_offset],
ldu);
}
if (*ncc > 0) {
zlasr_("L", "V", "F", n, ncc, &rwork[1], &rwork[*n], &c__[
c_offset], ldc);
}
}
/* Compute singular values to relative accuracy TOL */
/* (By setting TOL to be negative, algorithm will compute */
/* singular values to absolute accuracy ABS(TOL)*norm(input matrix)) */
/* Computing MAX */
/* Computing MIN */
d__3 = 100., d__4 = pow_dd(&eps, &c_b15);
d__1 = 10., d__2 = f2cmin(d__3,d__4);
tolmul = f2cmax(d__1,d__2);
tol = tolmul * eps;
/* Compute approximate maximum, minimum singular values */
smax = 0.;
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MAX */
d__2 = smax, d__3 = (d__1 = d__[i__], abs(d__1));
smax = f2cmax(d__2,d__3);
/* L20: */
}
i__1 = *n - 1;
for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MAX */
d__2 = smax, d__3 = (d__1 = e[i__], abs(d__1));
smax = f2cmax(d__2,d__3);
/* L30: */
}
sminl = 0.;
if (tol >= 0.) {
/* Relative accuracy desired */
sminoa = abs(d__[1]);
if (sminoa == 0.) {
goto L50;
}
mu = sminoa;
i__1 = *n;
for (i__ = 2; i__ <= i__1; ++i__) {
mu = (d__2 = d__[i__], abs(d__2)) * (mu / (mu + (d__1 = e[i__ - 1]
, abs(d__1))));
sminoa = f2cmin(sminoa,mu);
if (sminoa == 0.) {
goto L50;
}
/* L40: */
}
L50:
sminoa /= sqrt((doublereal) (*n));
/* Computing MAX */
d__1 = tol * sminoa, d__2 = *n * 6 * *n * unfl;
thresh = f2cmax(d__1,d__2);
} else {
/* Absolute accuracy desired */
/* Computing MAX */
d__1 = abs(tol) * smax, d__2 = *n * 6 * *n * unfl;
thresh = f2cmax(d__1,d__2);
}
/* Prepare for main iteration loop for the singular values */
/* (MAXIT is the maximum number of passes through the inner */
/* loop permitted before nonconvergence signalled.) */
maxit = *n * 6 * *n;
iter = 0;
oldll = -1;
oldm = -1;
/* M points to last element of unconverged part of matrix */
m = *n;
/* Begin main iteration loop */
L60:
/* Check for convergence or exceeding iteration count */
if (m <= 1) {
goto L160;
}
if (iter > maxit) {
goto L200;
}
/* Find diagonal block of matrix to work on */
if (tol < 0. && (d__1 = d__[m], abs(d__1)) <= thresh) {
d__[m] = 0.;
}
smax = (d__1 = d__[m], abs(d__1));
smin = smax;
i__1 = m - 1;
for (lll = 1; lll <= i__1; ++lll) {
ll = m - lll;
abss = (d__1 = d__[ll], abs(d__1));
abse = (d__1 = e[ll], abs(d__1));
if (tol < 0. && abss <= thresh) {
d__[ll] = 0.;
}
if (abse <= thresh) {
goto L80;
}
smin = f2cmin(smin,abss);
/* Computing MAX */
d__1 = f2cmax(smax,abss);
smax = f2cmax(d__1,abse);
/* L70: */
}
ll = 0;
goto L90;
L80:
e[ll] = 0.;
/* Matrix splits since E(LL) = 0 */
if (ll == m - 1) {
/* Convergence of bottom singular value, return to top of loop */
--m;
goto L60;
}
L90:
++ll;
/* E(LL) through E(M-1) are nonzero, E(LL-1) is zero */
if (ll == m - 1) {
/* 2 by 2 block, handle separately */
dlasv2_(&d__[m - 1], &e[m - 1], &d__[m], &sigmn, &sigmx, &sinr, &cosr,
&sinl, &cosl);
d__[m - 1] = sigmx;
e[m - 1] = 0.;
d__[m] = sigmn;
/* Compute singular vectors, if desired */
if (*ncvt > 0) {
zdrot_(ncvt, &vt[m - 1 + vt_dim1], ldvt, &vt[m + vt_dim1], ldvt, &
cosr, &sinr);
}
if (*nru > 0) {
zdrot_(nru, &u[(m - 1) * u_dim1 + 1], &c__1, &u[m * u_dim1 + 1], &
c__1, &cosl, &sinl);
}
if (*ncc > 0) {
zdrot_(ncc, &c__[m - 1 + c_dim1], ldc, &c__[m + c_dim1], ldc, &
cosl, &sinl);
}
m += -2;
goto L60;
}
/* If working on new submatrix, choose shift direction */
/* (from larger end diagonal element towards smaller) */
if (ll > oldm || m < oldll) {
if ((d__1 = d__[ll], abs(d__1)) >= (d__2 = d__[m], abs(d__2))) {
/* Chase bulge from top (big end) to bottom (small end) */
idir = 1;
} else {
/* Chase bulge from bottom (big end) to top (small end) */
idir = 2;
}
}
/* Apply convergence tests */
if (idir == 1) {
/* Run convergence test in forward direction */
/* First apply standard test to bottom of matrix */
if ((d__2 = e[m - 1], abs(d__2)) <= abs(tol) * (d__1 = d__[m], abs(
d__1)) || tol < 0. && (d__3 = e[m - 1], abs(d__3)) <= thresh)
{
e[m - 1] = 0.;
goto L60;
}
if (tol >= 0.) {
/* If relative accuracy desired, */
/* apply convergence criterion forward */
mu = (d__1 = d__[ll], abs(d__1));
sminl = mu;
i__1 = m - 1;
for (lll = ll; lll <= i__1; ++lll) {
if ((d__1 = e[lll], abs(d__1)) <= tol * mu) {
e[lll] = 0.;
goto L60;
}
mu = (d__2 = d__[lll + 1], abs(d__2)) * (mu / (mu + (d__1 = e[
lll], abs(d__1))));
sminl = f2cmin(sminl,mu);
/* L100: */
}
}
} else {
/* Run convergence test in backward direction */
/* First apply standard test to top of matrix */
if ((d__2 = e[ll], abs(d__2)) <= abs(tol) * (d__1 = d__[ll], abs(d__1)
) || tol < 0. && (d__3 = e[ll], abs(d__3)) <= thresh) {
e[ll] = 0.;
goto L60;
}
if (tol >= 0.) {
/* If relative accuracy desired, */
/* apply convergence criterion backward */
mu = (d__1 = d__[m], abs(d__1));
sminl = mu;
i__1 = ll;
for (lll = m - 1; lll >= i__1; --lll) {
if ((d__1 = e[lll], abs(d__1)) <= tol * mu) {
e[lll] = 0.;
goto L60;
}
mu = (d__2 = d__[lll], abs(d__2)) * (mu / (mu + (d__1 = e[lll]
, abs(d__1))));
sminl = f2cmin(sminl,mu);
/* L110: */
}
}
}
oldll = ll;
oldm = m;
/* Compute shift. First, test if shifting would ruin relative */
/* accuracy, and if so set the shift to zero. */
/* Computing MAX */
d__1 = eps, d__2 = tol * .01;
if (tol >= 0. && *n * tol * (sminl / smax) <= f2cmax(d__1,d__2)) {
/* Use a zero shift to avoid loss of relative accuracy */
shift = 0.;
} else {
/* Compute the shift from 2-by-2 block at end of matrix */
if (idir == 1) {
sll = (d__1 = d__[ll], abs(d__1));
dlas2_(&d__[m - 1], &e[m - 1], &d__[m], &shift, &r__);
} else {
sll = (d__1 = d__[m], abs(d__1));
dlas2_(&d__[ll], &e[ll], &d__[ll + 1], &shift, &r__);
}
/* Test if shift negligible, and if so set to zero */
if (sll > 0.) {
/* Computing 2nd power */
d__1 = shift / sll;
if (d__1 * d__1 < eps) {
shift = 0.;
}
}
}
/* Increment iteration count */
iter = iter + m - ll;
/* If SHIFT = 0, do simplified QR iteration */
if (shift == 0.) {
if (idir == 1) {
/* Chase bulge from top to bottom */
/* Save cosines and sines for later singular vector updates */
cs = 1.;
oldcs = 1.;
i__1 = m - 1;
for (i__ = ll; i__ <= i__1; ++i__) {
d__1 = d__[i__] * cs;
dlartg_(&d__1, &e[i__], &cs, &sn, &r__);
if (i__ > ll) {
e[i__ - 1] = oldsn * r__;
}
d__1 = oldcs * r__;
d__2 = d__[i__ + 1] * sn;
dlartg_(&d__1, &d__2, &oldcs, &oldsn, &d__[i__]);
rwork[i__ - ll + 1] = cs;
rwork[i__ - ll + 1 + nm1] = sn;
rwork[i__ - ll + 1 + nm12] = oldcs;
rwork[i__ - ll + 1 + nm13] = oldsn;
/* L120: */
}
h__ = d__[m] * cs;
d__[m] = h__ * oldcs;
e[m - 1] = h__ * oldsn;
/* Update singular vectors */
if (*ncvt > 0) {
i__1 = m - ll + 1;
zlasr_("L", "V", "F", &i__1, ncvt, &rwork[1], &rwork[*n], &vt[
ll + vt_dim1], ldvt);
}
if (*nru > 0) {
i__1 = m - ll + 1;
zlasr_("R", "V", "F", nru, &i__1, &rwork[nm12 + 1], &rwork[
nm13 + 1], &u[ll * u_dim1 + 1], ldu);
}
if (*ncc > 0) {
i__1 = m - ll + 1;
zlasr_("L", "V", "F", &i__1, ncc, &rwork[nm12 + 1], &rwork[
nm13 + 1], &c__[ll + c_dim1], ldc);
}
/* Test convergence */
if ((d__1 = e[m - 1], abs(d__1)) <= thresh) {
e[m - 1] = 0.;
}
} else {
/* Chase bulge from bottom to top */
/* Save cosines and sines for later singular vector updates */
cs = 1.;
oldcs = 1.;
i__1 = ll + 1;
for (i__ = m; i__ >= i__1; --i__) {
d__1 = d__[i__] * cs;
dlartg_(&d__1, &e[i__ - 1], &cs, &sn, &r__);
if (i__ < m) {
e[i__] = oldsn * r__;
}
d__1 = oldcs * r__;
d__2 = d__[i__ - 1] * sn;
dlartg_(&d__1, &d__2, &oldcs, &oldsn, &d__[i__]);
rwork[i__ - ll] = cs;
rwork[i__ - ll + nm1] = -sn;
rwork[i__ - ll + nm12] = oldcs;
rwork[i__ - ll + nm13] = -oldsn;
/* L130: */
}
h__ = d__[ll] * cs;
d__[ll] = h__ * oldcs;
e[ll] = h__ * oldsn;
/* Update singular vectors */
if (*ncvt > 0) {
i__1 = m - ll + 1;
zlasr_("L", "V", "B", &i__1, ncvt, &rwork[nm12 + 1], &rwork[
nm13 + 1], &vt[ll + vt_dim1], ldvt);
}
if (*nru > 0) {
i__1 = m - ll + 1;
zlasr_("R", "V", "B", nru, &i__1, &rwork[1], &rwork[*n], &u[
ll * u_dim1 + 1], ldu);
}
if (*ncc > 0) {
i__1 = m - ll + 1;
zlasr_("L", "V", "B", &i__1, ncc, &rwork[1], &rwork[*n], &c__[
ll + c_dim1], ldc);
}
/* Test convergence */
if ((d__1 = e[ll], abs(d__1)) <= thresh) {
e[ll] = 0.;
}
}
} else {
/* Use nonzero shift */
if (idir == 1) {
/* Chase bulge from top to bottom */
/* Save cosines and sines for later singular vector updates */
f = ((d__1 = d__[ll], abs(d__1)) - shift) * (d_sign(&c_b49, &d__[
ll]) + shift / d__[ll]);
g = e[ll];
i__1 = m - 1;
for (i__ = ll; i__ <= i__1; ++i__) {
dlartg_(&f, &g, &cosr, &sinr, &r__);
if (i__ > ll) {
e[i__ - 1] = r__;
}
f = cosr * d__[i__] + sinr * e[i__];
e[i__] = cosr * e[i__] - sinr * d__[i__];
g = sinr * d__[i__ + 1];
d__[i__ + 1] = cosr * d__[i__ + 1];
dlartg_(&f, &g, &cosl, &sinl, &r__);
d__[i__] = r__;
f = cosl * e[i__] + sinl * d__[i__ + 1];
d__[i__ + 1] = cosl * d__[i__ + 1] - sinl * e[i__];
if (i__ < m - 1) {
g = sinl * e[i__ + 1];
e[i__ + 1] = cosl * e[i__ + 1];
}
rwork[i__ - ll + 1] = cosr;
rwork[i__ - ll + 1 + nm1] = sinr;
rwork[i__ - ll + 1 + nm12] = cosl;
rwork[i__ - ll + 1 + nm13] = sinl;
/* L140: */
}
e[m - 1] = f;
/* Update singular vectors */
if (*ncvt > 0) {
i__1 = m - ll + 1;
zlasr_("L", "V", "F", &i__1, ncvt, &rwork[1], &rwork[*n], &vt[
ll + vt_dim1], ldvt);
}
if (*nru > 0) {
i__1 = m - ll + 1;
zlasr_("R", "V", "F", nru, &i__1, &rwork[nm12 + 1], &rwork[
nm13 + 1], &u[ll * u_dim1 + 1], ldu);
}
if (*ncc > 0) {
i__1 = m - ll + 1;
zlasr_("L", "V", "F", &i__1, ncc, &rwork[nm12 + 1], &rwork[
nm13 + 1], &c__[ll + c_dim1], ldc);
}
/* Test convergence */
if ((d__1 = e[m - 1], abs(d__1)) <= thresh) {
e[m - 1] = 0.;
}
} else {
/* Chase bulge from bottom to top */
/* Save cosines and sines for later singular vector updates */
f = ((d__1 = d__[m], abs(d__1)) - shift) * (d_sign(&c_b49, &d__[m]
) + shift / d__[m]);
g = e[m - 1];
i__1 = ll + 1;
for (i__ = m; i__ >= i__1; --i__) {
dlartg_(&f, &g, &cosr, &sinr, &r__);
if (i__ < m) {
e[i__] = r__;
}
f = cosr * d__[i__] + sinr * e[i__ - 1];
e[i__ - 1] = cosr * e[i__ - 1] - sinr * d__[i__];
g = sinr * d__[i__ - 1];
d__[i__ - 1] = cosr * d__[i__ - 1];
dlartg_(&f, &g, &cosl, &sinl, &r__);
d__[i__] = r__;
f = cosl * e[i__ - 1] + sinl * d__[i__ - 1];
d__[i__ - 1] = cosl * d__[i__ - 1] - sinl * e[i__ - 1];
if (i__ > ll + 1) {
g = sinl * e[i__ - 2];
e[i__ - 2] = cosl * e[i__ - 2];
}
rwork[i__ - ll] = cosr;
rwork[i__ - ll + nm1] = -sinr;
rwork[i__ - ll + nm12] = cosl;
rwork[i__ - ll + nm13] = -sinl;
/* L150: */
}
e[ll] = f;
/* Test convergence */
if ((d__1 = e[ll], abs(d__1)) <= thresh) {
e[ll] = 0.;
}
/* Update singular vectors if desired */
if (*ncvt > 0) {
i__1 = m - ll + 1;
zlasr_("L", "V", "B", &i__1, ncvt, &rwork[nm12 + 1], &rwork[
nm13 + 1], &vt[ll + vt_dim1], ldvt);
}
if (*nru > 0) {
i__1 = m - ll + 1;
zlasr_("R", "V", "B", nru, &i__1, &rwork[1], &rwork[*n], &u[
ll * u_dim1 + 1], ldu);
}
if (*ncc > 0) {
i__1 = m - ll + 1;
zlasr_("L", "V", "B", &i__1, ncc, &rwork[1], &rwork[*n], &c__[
ll + c_dim1], ldc);
}
}
}
/* QR iteration finished, go back and check convergence */
goto L60;
/* All singular values converged, so make them positive */
L160:
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
if (d__[i__] < 0.) {
d__[i__] = -d__[i__];
/* Change sign of singular vectors, if desired */
if (*ncvt > 0) {
zdscal_(ncvt, &c_b72, &vt[i__ + vt_dim1], ldvt);
}
}
/* L170: */
}
/* Sort the singular values into decreasing order (insertion sort on */
/* singular values, but only one transposition per singular vector) */
i__1 = *n - 1;
for (i__ = 1; i__ <= i__1; ++i__) {
/* Scan for smallest D(I) */
isub = 1;
smin = d__[1];
i__2 = *n + 1 - i__;
for (j = 2; j <= i__2; ++j) {
if (d__[j] <= smin) {
isub = j;
smin = d__[j];
}
/* L180: */
}
if (isub != *n + 1 - i__) {
/* Swap singular values and vectors */
d__[isub] = d__[*n + 1 - i__];
d__[*n + 1 - i__] = smin;
if (*ncvt > 0) {
zswap_(ncvt, &vt[isub + vt_dim1], ldvt, &vt[*n + 1 - i__ +
vt_dim1], ldvt);
}
if (*nru > 0) {
zswap_(nru, &u[isub * u_dim1 + 1], &c__1, &u[(*n + 1 - i__) *
u_dim1 + 1], &c__1);
}
if (*ncc > 0) {
zswap_(ncc, &c__[isub + c_dim1], ldc, &c__[*n + 1 - i__ +
c_dim1], ldc);
}
}
/* L190: */
}
goto L220;
/* Maximum number of iterations exceeded, failure to converge */
L200:
*info = 0;
i__1 = *n - 1;
for (i__ = 1; i__ <= i__1; ++i__) {
if (e[i__] != 0.) {
++(*info);
}
/* L210: */
}
L220:
return;
/* End of ZBDSQR */
} /* zbdsqr_ */