1120 lines
32 KiB
C
1120 lines
32 KiB
C
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <complex.h>
|
|
#ifdef complex
|
|
#undef complex
|
|
#endif
|
|
#ifdef I
|
|
#undef I
|
|
#endif
|
|
|
|
#if defined(_WIN64)
|
|
typedef long long BLASLONG;
|
|
typedef unsigned long long BLASULONG;
|
|
#else
|
|
typedef long BLASLONG;
|
|
typedef unsigned long BLASULONG;
|
|
#endif
|
|
|
|
#ifdef LAPACK_ILP64
|
|
typedef BLASLONG blasint;
|
|
#if defined(_WIN64)
|
|
#define blasabs(x) llabs(x)
|
|
#else
|
|
#define blasabs(x) labs(x)
|
|
#endif
|
|
#else
|
|
typedef int blasint;
|
|
#define blasabs(x) abs(x)
|
|
#endif
|
|
|
|
typedef blasint integer;
|
|
|
|
typedef unsigned int uinteger;
|
|
typedef char *address;
|
|
typedef short int shortint;
|
|
typedef float real;
|
|
typedef double doublereal;
|
|
typedef struct { real r, i; } complex;
|
|
typedef struct { doublereal r, i; } doublecomplex;
|
|
#ifdef _MSC_VER
|
|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
|
|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
|
|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
|
|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
|
|
#else
|
|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
|
|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
|
|
#endif
|
|
#define pCf(z) (*_pCf(z))
|
|
#define pCd(z) (*_pCd(z))
|
|
typedef blasint logical;
|
|
|
|
typedef char logical1;
|
|
typedef char integer1;
|
|
|
|
#define TRUE_ (1)
|
|
#define FALSE_ (0)
|
|
|
|
/* Extern is for use with -E */
|
|
#ifndef Extern
|
|
#define Extern extern
|
|
#endif
|
|
|
|
/* I/O stuff */
|
|
|
|
typedef int flag;
|
|
typedef int ftnlen;
|
|
typedef int ftnint;
|
|
|
|
/*external read, write*/
|
|
typedef struct
|
|
{ flag cierr;
|
|
ftnint ciunit;
|
|
flag ciend;
|
|
char *cifmt;
|
|
ftnint cirec;
|
|
} cilist;
|
|
|
|
/*internal read, write*/
|
|
typedef struct
|
|
{ flag icierr;
|
|
char *iciunit;
|
|
flag iciend;
|
|
char *icifmt;
|
|
ftnint icirlen;
|
|
ftnint icirnum;
|
|
} icilist;
|
|
|
|
/*open*/
|
|
typedef struct
|
|
{ flag oerr;
|
|
ftnint ounit;
|
|
char *ofnm;
|
|
ftnlen ofnmlen;
|
|
char *osta;
|
|
char *oacc;
|
|
char *ofm;
|
|
ftnint orl;
|
|
char *oblnk;
|
|
} olist;
|
|
|
|
/*close*/
|
|
typedef struct
|
|
{ flag cerr;
|
|
ftnint cunit;
|
|
char *csta;
|
|
} cllist;
|
|
|
|
/*rewind, backspace, endfile*/
|
|
typedef struct
|
|
{ flag aerr;
|
|
ftnint aunit;
|
|
} alist;
|
|
|
|
/* inquire */
|
|
typedef struct
|
|
{ flag inerr;
|
|
ftnint inunit;
|
|
char *infile;
|
|
ftnlen infilen;
|
|
ftnint *inex; /*parameters in standard's order*/
|
|
ftnint *inopen;
|
|
ftnint *innum;
|
|
ftnint *innamed;
|
|
char *inname;
|
|
ftnlen innamlen;
|
|
char *inacc;
|
|
ftnlen inacclen;
|
|
char *inseq;
|
|
ftnlen inseqlen;
|
|
char *indir;
|
|
ftnlen indirlen;
|
|
char *infmt;
|
|
ftnlen infmtlen;
|
|
char *inform;
|
|
ftnint informlen;
|
|
char *inunf;
|
|
ftnlen inunflen;
|
|
ftnint *inrecl;
|
|
ftnint *innrec;
|
|
char *inblank;
|
|
ftnlen inblanklen;
|
|
} inlist;
|
|
|
|
#define VOID void
|
|
|
|
union Multitype { /* for multiple entry points */
|
|
integer1 g;
|
|
shortint h;
|
|
integer i;
|
|
/* longint j; */
|
|
real r;
|
|
doublereal d;
|
|
complex c;
|
|
doublecomplex z;
|
|
};
|
|
|
|
typedef union Multitype Multitype;
|
|
|
|
struct Vardesc { /* for Namelist */
|
|
char *name;
|
|
char *addr;
|
|
ftnlen *dims;
|
|
int type;
|
|
};
|
|
typedef struct Vardesc Vardesc;
|
|
|
|
struct Namelist {
|
|
char *name;
|
|
Vardesc **vars;
|
|
int nvars;
|
|
};
|
|
typedef struct Namelist Namelist;
|
|
|
|
#define abs(x) ((x) >= 0 ? (x) : -(x))
|
|
#define dabs(x) (fabs(x))
|
|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
|
|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
|
|
#define dmin(a,b) (f2cmin(a,b))
|
|
#define dmax(a,b) (f2cmax(a,b))
|
|
#define bit_test(a,b) ((a) >> (b) & 1)
|
|
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
|
|
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
|
|
|
|
#define abort_() { sig_die("Fortran abort routine called", 1); }
|
|
#define c_abs(z) (cabsf(Cf(z)))
|
|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
|
|
#ifdef _MSC_VER
|
|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
|
|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
|
|
#else
|
|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
|
|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
|
|
#endif
|
|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
|
|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
|
|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
|
|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
|
|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
|
|
#define d_abs(x) (fabs(*(x)))
|
|
#define d_acos(x) (acos(*(x)))
|
|
#define d_asin(x) (asin(*(x)))
|
|
#define d_atan(x) (atan(*(x)))
|
|
#define d_atn2(x, y) (atan2(*(x),*(y)))
|
|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
|
|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
|
|
#define d_cos(x) (cos(*(x)))
|
|
#define d_cosh(x) (cosh(*(x)))
|
|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
|
|
#define d_exp(x) (exp(*(x)))
|
|
#define d_imag(z) (cimag(Cd(z)))
|
|
#define r_imag(z) (cimagf(Cf(z)))
|
|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define d_log(x) (log(*(x)))
|
|
#define d_mod(x, y) (fmod(*(x), *(y)))
|
|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
|
|
#define d_nint(x) u_nint(*(x))
|
|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
|
|
#define d_sign(a,b) u_sign(*(a),*(b))
|
|
#define r_sign(a,b) u_sign(*(a),*(b))
|
|
#define d_sin(x) (sin(*(x)))
|
|
#define d_sinh(x) (sinh(*(x)))
|
|
#define d_sqrt(x) (sqrt(*(x)))
|
|
#define d_tan(x) (tan(*(x)))
|
|
#define d_tanh(x) (tanh(*(x)))
|
|
#define i_abs(x) abs(*(x))
|
|
#define i_dnnt(x) ((integer)u_nint(*(x)))
|
|
#define i_len(s, n) (n)
|
|
#define i_nint(x) ((integer)u_nint(*(x)))
|
|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
|
|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
|
|
#define pow_si(B,E) spow_ui(*(B),*(E))
|
|
#define pow_ri(B,E) spow_ui(*(B),*(E))
|
|
#define pow_di(B,E) dpow_ui(*(B),*(E))
|
|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
|
|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
|
|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
|
|
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
|
|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
|
|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
|
|
#define sig_die(s, kill) { exit(1); }
|
|
#define s_stop(s, n) {exit(0);}
|
|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
|
|
#define z_abs(z) (cabs(Cd(z)))
|
|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
|
|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
|
|
#define myexit_() break;
|
|
#define mycycle() continue;
|
|
#define myceiling(w) {ceil(w)}
|
|
#define myhuge(w) {HUGE_VAL}
|
|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
|
|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
|
|
|
|
/* procedure parameter types for -A and -C++ */
|
|
|
|
|
|
#ifdef __cplusplus
|
|
typedef logical (*L_fp)(...);
|
|
#else
|
|
typedef logical (*L_fp)();
|
|
#endif
|
|
|
|
static float spow_ui(float x, integer n) {
|
|
float pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
static double dpow_ui(double x, integer n) {
|
|
double pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#ifdef _MSC_VER
|
|
static _Fcomplex cpow_ui(complex x, integer n) {
|
|
complex pow={1.0,0.0}; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow.r *= x.r, pow.i *= x.i;
|
|
if(u >>= 1) x.r *= x.r, x.i *= x.i;
|
|
else break;
|
|
}
|
|
}
|
|
_Fcomplex p={pow.r, pow.i};
|
|
return p;
|
|
}
|
|
#else
|
|
static _Complex float cpow_ui(_Complex float x, integer n) {
|
|
_Complex float pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#endif
|
|
#ifdef _MSC_VER
|
|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
|
|
_Dcomplex pow={1.0,0.0}; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
|
|
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
|
|
else break;
|
|
}
|
|
}
|
|
_Dcomplex p = {pow._Val[0], pow._Val[1]};
|
|
return p;
|
|
}
|
|
#else
|
|
static _Complex double zpow_ui(_Complex double x, integer n) {
|
|
_Complex double pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#endif
|
|
static integer pow_ii(integer x, integer n) {
|
|
integer pow; unsigned long int u;
|
|
if (n <= 0) {
|
|
if (n == 0 || x == 1) pow = 1;
|
|
else if (x != -1) pow = x == 0 ? 1/x : 0;
|
|
else n = -n;
|
|
}
|
|
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
|
|
u = n;
|
|
for(pow = 1; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
|
|
{
|
|
double m; integer i, mi;
|
|
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
|
if (w[i-1]>m) mi=i ,m=w[i-1];
|
|
return mi-s+1;
|
|
}
|
|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
|
|
{
|
|
float m; integer i, mi;
|
|
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
|
if (w[i-1]>m) mi=i ,m=w[i-1];
|
|
return mi-s+1;
|
|
}
|
|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Fcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
|
|
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex float zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Dcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
|
|
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex double zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Fcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
|
|
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex float zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cf(&x[i]) * Cf(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Dcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
|
|
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex double zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cd(&x[i]) * Cd(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#endif
|
|
/* -- translated by f2c (version 20000121).
|
|
You must link the resulting object file with the libraries:
|
|
-lf2c -lm (in that order)
|
|
*/
|
|
|
|
|
|
|
|
|
|
/* Table of constant values */
|
|
|
|
static integer c_n1 = -1;
|
|
|
|
/* > \brief \b STRSEN */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* > \htmlonly */
|
|
/* > Download STRSEN + dependencies */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/strsen.
|
|
f"> */
|
|
/* > [TGZ]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/strsen.
|
|
f"> */
|
|
/* > [ZIP]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/strsen.
|
|
f"> */
|
|
/* > [TXT]</a> */
|
|
/* > \endhtmlonly */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* SUBROUTINE STRSEN( JOB, COMPQ, SELECT, N, T, LDT, Q, LDQ, WR, WI, */
|
|
/* M, S, SEP, WORK, LWORK, IWORK, LIWORK, INFO ) */
|
|
|
|
/* CHARACTER COMPQ, JOB */
|
|
/* INTEGER INFO, LDQ, LDT, LIWORK, LWORK, M, N */
|
|
/* REAL S, SEP */
|
|
/* LOGICAL SELECT( * ) */
|
|
/* INTEGER IWORK( * ) */
|
|
/* REAL Q( LDQ, * ), T( LDT, * ), WI( * ), WORK( * ), */
|
|
/* $ WR( * ) */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > STRSEN reorders the real Schur factorization of a real matrix */
|
|
/* > A = Q*T*Q**T, so that a selected cluster of eigenvalues appears in */
|
|
/* > the leading diagonal blocks of the upper quasi-triangular matrix T, */
|
|
/* > and the leading columns of Q form an orthonormal basis of the */
|
|
/* > corresponding right invariant subspace. */
|
|
/* > */
|
|
/* > Optionally the routine computes the reciprocal condition numbers of */
|
|
/* > the cluster of eigenvalues and/or the invariant subspace. */
|
|
/* > */
|
|
/* > T must be in Schur canonical form (as returned by SHSEQR), that is, */
|
|
/* > block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each */
|
|
/* > 2-by-2 diagonal block has its diagonal elements equal and its */
|
|
/* > off-diagonal elements of opposite sign. */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] JOB */
|
|
/* > \verbatim */
|
|
/* > JOB is CHARACTER*1 */
|
|
/* > Specifies whether condition numbers are required for the */
|
|
/* > cluster of eigenvalues (S) or the invariant subspace (SEP): */
|
|
/* > = 'N': none; */
|
|
/* > = 'E': for eigenvalues only (S); */
|
|
/* > = 'V': for invariant subspace only (SEP); */
|
|
/* > = 'B': for both eigenvalues and invariant subspace (S and */
|
|
/* > SEP). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] COMPQ */
|
|
/* > \verbatim */
|
|
/* > COMPQ is CHARACTER*1 */
|
|
/* > = 'V': update the matrix Q of Schur vectors; */
|
|
/* > = 'N': do not update Q. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] SELECT */
|
|
/* > \verbatim */
|
|
/* > SELECT is LOGICAL array, dimension (N) */
|
|
/* > SELECT specifies the eigenvalues in the selected cluster. To */
|
|
/* > select a real eigenvalue w(j), SELECT(j) must be set to */
|
|
/* > .TRUE.. To select a complex conjugate pair of eigenvalues */
|
|
/* > w(j) and w(j+1), corresponding to a 2-by-2 diagonal block, */
|
|
/* > either SELECT(j) or SELECT(j+1) or both must be set to */
|
|
/* > .TRUE.; a complex conjugate pair of eigenvalues must be */
|
|
/* > either both included in the cluster or both excluded. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > The order of the matrix T. N >= 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] T */
|
|
/* > \verbatim */
|
|
/* > T is REAL array, dimension (LDT,N) */
|
|
/* > On entry, the upper quasi-triangular matrix T, in Schur */
|
|
/* > canonical form. */
|
|
/* > On exit, T is overwritten by the reordered matrix T, again in */
|
|
/* > Schur canonical form, with the selected eigenvalues in the */
|
|
/* > leading diagonal blocks. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDT */
|
|
/* > \verbatim */
|
|
/* > LDT is INTEGER */
|
|
/* > The leading dimension of the array T. LDT >= f2cmax(1,N). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] Q */
|
|
/* > \verbatim */
|
|
/* > Q is REAL array, dimension (LDQ,N) */
|
|
/* > On entry, if COMPQ = 'V', the matrix Q of Schur vectors. */
|
|
/* > On exit, if COMPQ = 'V', Q has been postmultiplied by the */
|
|
/* > orthogonal transformation matrix which reorders T; the */
|
|
/* > leading M columns of Q form an orthonormal basis for the */
|
|
/* > specified invariant subspace. */
|
|
/* > If COMPQ = 'N', Q is not referenced. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDQ */
|
|
/* > \verbatim */
|
|
/* > LDQ is INTEGER */
|
|
/* > The leading dimension of the array Q. */
|
|
/* > LDQ >= 1; and if COMPQ = 'V', LDQ >= N. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] WR */
|
|
/* > \verbatim */
|
|
/* > WR is REAL array, dimension (N) */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] WI */
|
|
/* > \verbatim */
|
|
/* > WI is REAL array, dimension (N) */
|
|
/* > */
|
|
/* > The real and imaginary parts, respectively, of the reordered */
|
|
/* > eigenvalues of T. The eigenvalues are stored in the same */
|
|
/* > order as on the diagonal of T, with WR(i) = T(i,i) and, if */
|
|
/* > T(i:i+1,i:i+1) is a 2-by-2 diagonal block, WI(i) > 0 and */
|
|
/* > WI(i+1) = -WI(i). Note that if a complex eigenvalue is */
|
|
/* > sufficiently ill-conditioned, then its value may differ */
|
|
/* > significantly from its value before reordering. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] M */
|
|
/* > \verbatim */
|
|
/* > M is INTEGER */
|
|
/* > The dimension of the specified invariant subspace. */
|
|
/* > 0 < = M <= N. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] S */
|
|
/* > \verbatim */
|
|
/* > S is REAL */
|
|
/* > If JOB = 'E' or 'B', S is a lower bound on the reciprocal */
|
|
/* > condition number for the selected cluster of eigenvalues. */
|
|
/* > S cannot underestimate the true reciprocal condition number */
|
|
/* > by more than a factor of sqrt(N). If M = 0 or N, S = 1. */
|
|
/* > If JOB = 'N' or 'V', S is not referenced. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] SEP */
|
|
/* > \verbatim */
|
|
/* > SEP is REAL */
|
|
/* > If JOB = 'V' or 'B', SEP is the estimated reciprocal */
|
|
/* > condition number of the specified invariant subspace. If */
|
|
/* > M = 0 or N, SEP = norm(T). */
|
|
/* > If JOB = 'N' or 'E', SEP is not referenced. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] WORK */
|
|
/* > \verbatim */
|
|
/* > WORK is REAL array, dimension (MAX(1,LWORK)) */
|
|
/* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LWORK */
|
|
/* > \verbatim */
|
|
/* > LWORK is INTEGER */
|
|
/* > The dimension of the array WORK. */
|
|
/* > If JOB = 'N', LWORK >= f2cmax(1,N); */
|
|
/* > if JOB = 'E', LWORK >= f2cmax(1,M*(N-M)); */
|
|
/* > if JOB = 'V' or 'B', LWORK >= f2cmax(1,2*M*(N-M)). */
|
|
/* > */
|
|
/* > If LWORK = -1, then a workspace query is assumed; the routine */
|
|
/* > only calculates the optimal size of the WORK array, returns */
|
|
/* > this value as the first entry of the WORK array, and no error */
|
|
/* > message related to LWORK is issued by XERBLA. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] IWORK */
|
|
/* > \verbatim */
|
|
/* > IWORK is INTEGER array, dimension (MAX(1,LIWORK)) */
|
|
/* > On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LIWORK */
|
|
/* > \verbatim */
|
|
/* > LIWORK is INTEGER */
|
|
/* > The dimension of the array IWORK. */
|
|
/* > If JOB = 'N' or 'E', LIWORK >= 1; */
|
|
/* > if JOB = 'V' or 'B', LIWORK >= f2cmax(1,M*(N-M)). */
|
|
/* > */
|
|
/* > If LIWORK = -1, then a workspace query is assumed; the */
|
|
/* > routine only calculates the optimal size of the IWORK array, */
|
|
/* > returns this value as the first entry of the IWORK array, and */
|
|
/* > no error message related to LIWORK is issued by XERBLA. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] INFO */
|
|
/* > \verbatim */
|
|
/* > INFO is INTEGER */
|
|
/* > = 0: successful exit */
|
|
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
|
|
/* > = 1: reordering of T failed because some eigenvalues are too */
|
|
/* > close to separate (the problem is very ill-conditioned); */
|
|
/* > T may have been partially reordered, and WR and WI */
|
|
/* > contain the eigenvalues in the same order as in T; S and */
|
|
/* > SEP (if requested) are set to zero. */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \date April 2012 */
|
|
|
|
/* > \ingroup realOTHERcomputational */
|
|
|
|
/* > \par Further Details: */
|
|
/* ===================== */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > STRSEN first collects the selected eigenvalues by computing an */
|
|
/* > orthogonal transformation Z to move them to the top left corner of T. */
|
|
/* > In other words, the selected eigenvalues are the eigenvalues of T11 */
|
|
/* > in: */
|
|
/* > */
|
|
/* > Z**T * T * Z = ( T11 T12 ) n1 */
|
|
/* > ( 0 T22 ) n2 */
|
|
/* > n1 n2 */
|
|
/* > */
|
|
/* > where N = n1+n2 and Z**T means the transpose of Z. The first n1 columns */
|
|
/* > of Z span the specified invariant subspace of T. */
|
|
/* > */
|
|
/* > If T has been obtained from the real Schur factorization of a matrix */
|
|
/* > A = Q*T*Q**T, then the reordered real Schur factorization of A is given */
|
|
/* > by A = (Q*Z)*(Z**T*T*Z)*(Q*Z)**T, and the first n1 columns of Q*Z span */
|
|
/* > the corresponding invariant subspace of A. */
|
|
/* > */
|
|
/* > The reciprocal condition number of the average of the eigenvalues of */
|
|
/* > T11 may be returned in S. S lies between 0 (very badly conditioned) */
|
|
/* > and 1 (very well conditioned). It is computed as follows. First we */
|
|
/* > compute R so that */
|
|
/* > */
|
|
/* > P = ( I R ) n1 */
|
|
/* > ( 0 0 ) n2 */
|
|
/* > n1 n2 */
|
|
/* > */
|
|
/* > is the projector on the invariant subspace associated with T11. */
|
|
/* > R is the solution of the Sylvester equation: */
|
|
/* > */
|
|
/* > T11*R - R*T22 = T12. */
|
|
/* > */
|
|
/* > Let F-norm(M) denote the Frobenius-norm of M and 2-norm(M) denote */
|
|
/* > the two-norm of M. Then S is computed as the lower bound */
|
|
/* > */
|
|
/* > (1 + F-norm(R)**2)**(-1/2) */
|
|
/* > */
|
|
/* > on the reciprocal of 2-norm(P), the true reciprocal condition number. */
|
|
/* > S cannot underestimate 1 / 2-norm(P) by more than a factor of */
|
|
/* > sqrt(N). */
|
|
/* > */
|
|
/* > An approximate error bound for the computed average of the */
|
|
/* > eigenvalues of T11 is */
|
|
/* > */
|
|
/* > EPS * norm(T) / S */
|
|
/* > */
|
|
/* > where EPS is the machine precision. */
|
|
/* > */
|
|
/* > The reciprocal condition number of the right invariant subspace */
|
|
/* > spanned by the first n1 columns of Z (or of Q*Z) is returned in SEP. */
|
|
/* > SEP is defined as the separation of T11 and T22: */
|
|
/* > */
|
|
/* > sep( T11, T22 ) = sigma-f2cmin( C ) */
|
|
/* > */
|
|
/* > where sigma-f2cmin(C) is the smallest singular value of the */
|
|
/* > n1*n2-by-n1*n2 matrix */
|
|
/* > */
|
|
/* > C = kprod( I(n2), T11 ) - kprod( transpose(T22), I(n1) ) */
|
|
/* > */
|
|
/* > I(m) is an m by m identity matrix, and kprod denotes the Kronecker */
|
|
/* > product. We estimate sigma-f2cmin(C) by the reciprocal of an estimate of */
|
|
/* > the 1-norm of inverse(C). The true reciprocal 1-norm of inverse(C) */
|
|
/* > cannot differ from sigma-f2cmin(C) by more than a factor of sqrt(n1*n2). */
|
|
/* > */
|
|
/* > When SEP is small, small changes in T can cause large changes in */
|
|
/* > the invariant subspace. An approximate bound on the maximum angular */
|
|
/* > error in the computed right invariant subspace is */
|
|
/* > */
|
|
/* > EPS * norm(T) / SEP */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* ===================================================================== */
|
|
/* Subroutine */ void strsen_(char *job, char *compq, logical *select, integer
|
|
*n, real *t, integer *ldt, real *q, integer *ldq, real *wr, real *wi,
|
|
integer *m, real *s, real *sep, real *work, integer *lwork, integer *
|
|
iwork, integer *liwork, integer *info)
|
|
{
|
|
/* System generated locals */
|
|
integer q_dim1, q_offset, t_dim1, t_offset, i__1, i__2;
|
|
real r__1, r__2;
|
|
|
|
/* Local variables */
|
|
integer kase;
|
|
logical pair;
|
|
integer ierr;
|
|
logical swap;
|
|
integer k;
|
|
real scale;
|
|
extern logical lsame_(char *, char *);
|
|
integer isave[3], lwmin;
|
|
logical wantq, wants;
|
|
real rnorm;
|
|
integer n1, n2;
|
|
extern /* Subroutine */ void slacn2_(integer *, real *, real *, integer *,
|
|
real *, integer *, integer *);
|
|
integer kk, nn, ks;
|
|
extern real slange_(char *, integer *, integer *, real *, integer *, real
|
|
*);
|
|
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
|
|
logical wantbh;
|
|
extern /* Subroutine */ void slacpy_(char *, integer *, integer *, real *,
|
|
integer *, real *, integer *);
|
|
integer liwmin;
|
|
extern /* Subroutine */ void strexc_(char *, integer *, real *, integer *,
|
|
real *, integer *, integer *, integer *, real *, integer *);
|
|
logical wantsp, lquery;
|
|
extern /* Subroutine */ void strsyl_(char *, char *, integer *, integer *,
|
|
integer *, real *, integer *, real *, integer *, real *, integer *
|
|
, real *, integer *);
|
|
real est;
|
|
|
|
|
|
/* -- LAPACK computational routine (version 3.7.0) -- */
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
/* April 2012 */
|
|
|
|
|
|
/* ===================================================================== */
|
|
|
|
|
|
/* Decode and test the input parameters */
|
|
|
|
/* Parameter adjustments */
|
|
--select;
|
|
t_dim1 = *ldt;
|
|
t_offset = 1 + t_dim1 * 1;
|
|
t -= t_offset;
|
|
q_dim1 = *ldq;
|
|
q_offset = 1 + q_dim1 * 1;
|
|
q -= q_offset;
|
|
--wr;
|
|
--wi;
|
|
--work;
|
|
--iwork;
|
|
|
|
/* Function Body */
|
|
wantbh = lsame_(job, "B");
|
|
wants = lsame_(job, "E") || wantbh;
|
|
wantsp = lsame_(job, "V") || wantbh;
|
|
wantq = lsame_(compq, "V");
|
|
|
|
*info = 0;
|
|
lquery = *lwork == -1;
|
|
if (! lsame_(job, "N") && ! wants && ! wantsp) {
|
|
*info = -1;
|
|
} else if (! lsame_(compq, "N") && ! wantq) {
|
|
*info = -2;
|
|
} else if (*n < 0) {
|
|
*info = -4;
|
|
} else if (*ldt < f2cmax(1,*n)) {
|
|
*info = -6;
|
|
} else if (*ldq < 1 || wantq && *ldq < *n) {
|
|
*info = -8;
|
|
} else {
|
|
|
|
/* Set M to the dimension of the specified invariant subspace, */
|
|
/* and test LWORK and LIWORK. */
|
|
|
|
*m = 0;
|
|
pair = FALSE_;
|
|
i__1 = *n;
|
|
for (k = 1; k <= i__1; ++k) {
|
|
if (pair) {
|
|
pair = FALSE_;
|
|
} else {
|
|
if (k < *n) {
|
|
if (t[k + 1 + k * t_dim1] == 0.f) {
|
|
if (select[k]) {
|
|
++(*m);
|
|
}
|
|
} else {
|
|
pair = TRUE_;
|
|
if (select[k] || select[k + 1]) {
|
|
*m += 2;
|
|
}
|
|
}
|
|
} else {
|
|
if (select[*n]) {
|
|
++(*m);
|
|
}
|
|
}
|
|
}
|
|
/* L10: */
|
|
}
|
|
|
|
n1 = *m;
|
|
n2 = *n - *m;
|
|
nn = n1 * n2;
|
|
|
|
if (wantsp) {
|
|
/* Computing MAX */
|
|
i__1 = 1, i__2 = nn << 1;
|
|
lwmin = f2cmax(i__1,i__2);
|
|
liwmin = f2cmax(1,nn);
|
|
} else if (lsame_(job, "N")) {
|
|
lwmin = f2cmax(1,*n);
|
|
liwmin = 1;
|
|
} else if (lsame_(job, "E")) {
|
|
lwmin = f2cmax(1,nn);
|
|
liwmin = 1;
|
|
}
|
|
|
|
if (*lwork < lwmin && ! lquery) {
|
|
*info = -15;
|
|
} else if (*liwork < liwmin && ! lquery) {
|
|
*info = -17;
|
|
}
|
|
}
|
|
|
|
if (*info == 0) {
|
|
work[1] = (real) lwmin;
|
|
iwork[1] = liwmin;
|
|
}
|
|
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_("STRSEN", &i__1, (ftnlen)6);
|
|
return;
|
|
} else if (lquery) {
|
|
return;
|
|
}
|
|
|
|
/* Quick return if possible. */
|
|
|
|
if (*m == *n || *m == 0) {
|
|
if (wants) {
|
|
*s = 1.f;
|
|
}
|
|
if (wantsp) {
|
|
*sep = slange_("1", n, n, &t[t_offset], ldt, &work[1]);
|
|
}
|
|
goto L40;
|
|
}
|
|
|
|
/* Collect the selected blocks at the top-left corner of T. */
|
|
|
|
ks = 0;
|
|
pair = FALSE_;
|
|
i__1 = *n;
|
|
for (k = 1; k <= i__1; ++k) {
|
|
if (pair) {
|
|
pair = FALSE_;
|
|
} else {
|
|
swap = select[k];
|
|
if (k < *n) {
|
|
if (t[k + 1 + k * t_dim1] != 0.f) {
|
|
pair = TRUE_;
|
|
swap = swap || select[k + 1];
|
|
}
|
|
}
|
|
if (swap) {
|
|
++ks;
|
|
|
|
/* Swap the K-th block to position KS. */
|
|
|
|
ierr = 0;
|
|
kk = k;
|
|
if (k != ks) {
|
|
strexc_(compq, n, &t[t_offset], ldt, &q[q_offset], ldq, &
|
|
kk, &ks, &work[1], &ierr);
|
|
}
|
|
if (ierr == 1 || ierr == 2) {
|
|
|
|
/* Blocks too close to swap: exit. */
|
|
|
|
*info = 1;
|
|
if (wants) {
|
|
*s = 0.f;
|
|
}
|
|
if (wantsp) {
|
|
*sep = 0.f;
|
|
}
|
|
goto L40;
|
|
}
|
|
if (pair) {
|
|
++ks;
|
|
}
|
|
}
|
|
}
|
|
/* L20: */
|
|
}
|
|
|
|
if (wants) {
|
|
|
|
/* Solve Sylvester equation for R: */
|
|
|
|
/* T11*R - R*T22 = scale*T12 */
|
|
|
|
slacpy_("F", &n1, &n2, &t[(n1 + 1) * t_dim1 + 1], ldt, &work[1], &n1);
|
|
strsyl_("N", "N", &c_n1, &n1, &n2, &t[t_offset], ldt, &t[n1 + 1 + (n1
|
|
+ 1) * t_dim1], ldt, &work[1], &n1, &scale, &ierr);
|
|
|
|
/* Estimate the reciprocal of the condition number of the cluster */
|
|
/* of eigenvalues. */
|
|
|
|
rnorm = slange_("F", &n1, &n2, &work[1], &n1, &work[1]);
|
|
if (rnorm == 0.f) {
|
|
*s = 1.f;
|
|
} else {
|
|
*s = scale / (sqrt(scale * scale / rnorm + rnorm) * sqrt(rnorm));
|
|
}
|
|
}
|
|
|
|
if (wantsp) {
|
|
|
|
/* Estimate sep(T11,T22). */
|
|
|
|
est = 0.f;
|
|
kase = 0;
|
|
L30:
|
|
slacn2_(&nn, &work[nn + 1], &work[1], &iwork[1], &est, &kase, isave);
|
|
if (kase != 0) {
|
|
if (kase == 1) {
|
|
|
|
/* Solve T11*R - R*T22 = scale*X. */
|
|
|
|
strsyl_("N", "N", &c_n1, &n1, &n2, &t[t_offset], ldt, &t[n1 +
|
|
1 + (n1 + 1) * t_dim1], ldt, &work[1], &n1, &scale, &
|
|
ierr);
|
|
} else {
|
|
|
|
/* Solve T11**T*R - R*T22**T = scale*X. */
|
|
|
|
strsyl_("T", "T", &c_n1, &n1, &n2, &t[t_offset], ldt, &t[n1 +
|
|
1 + (n1 + 1) * t_dim1], ldt, &work[1], &n1, &scale, &
|
|
ierr);
|
|
}
|
|
goto L30;
|
|
}
|
|
|
|
*sep = scale / est;
|
|
}
|
|
|
|
L40:
|
|
|
|
/* Store the output eigenvalues in WR and WI. */
|
|
|
|
i__1 = *n;
|
|
for (k = 1; k <= i__1; ++k) {
|
|
wr[k] = t[k + k * t_dim1];
|
|
wi[k] = 0.f;
|
|
/* L50: */
|
|
}
|
|
i__1 = *n - 1;
|
|
for (k = 1; k <= i__1; ++k) {
|
|
if (t[k + 1 + k * t_dim1] != 0.f) {
|
|
wi[k] = sqrt((r__1 = t[k + (k + 1) * t_dim1], abs(r__1))) * sqrt((
|
|
r__2 = t[k + 1 + k * t_dim1], abs(r__2)));
|
|
wi[k + 1] = -wi[k];
|
|
}
|
|
/* L60: */
|
|
}
|
|
|
|
work[1] = (real) lwmin;
|
|
iwork[1] = liwmin;
|
|
|
|
return;
|
|
|
|
/* End of STRSEN */
|
|
|
|
} /* strsen_ */
|
|
|