OpenBLAS/lapack-netlib/SRC/sorcsd.c

1285 lines
38 KiB
C

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif
#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif
#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif
typedef blasint integer;
typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
#ifdef _MSC_VER
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
#else
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#endif
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef blasint logical;
typedef char logical1;
typedef char integer1;
#define TRUE_ (1)
#define FALSE_ (0)
/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif
/* I/O stuff */
typedef int flag;
typedef int ftnlen;
typedef int ftnint;
/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;
/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;
/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;
/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;
/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;
/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;
#define VOID void
union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};
typedef union Multitype Multitype;
struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;
struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;
#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#ifdef _MSC_VER
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
#else
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#endif
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimagf(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
/* procedure parameter types for -A and -C++ */
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif
static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#ifdef _MSC_VER
static _Fcomplex cpow_ui(complex x, integer n) {
complex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
for(u = n; ; ) {
if(u & 01) pow.r *= x.r, pow.i *= x.i;
if(u >>= 1) x.r *= x.r, x.i *= x.i;
else break;
}
}
_Fcomplex p={pow.r, pow.i};
return p;
}
#else
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
#ifdef _MSC_VER
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
_Dcomplex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
for(u = n; ; ) {
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
else break;
}
}
_Dcomplex p = {pow._Val[0], pow._Val[1]};
return p;
}
#else
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
/* Table of constant values */
static integer c_n1 = -1;
static logical c_false = FALSE_;
/* > \brief \b SORCSD */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download SORCSD + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorcsd.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorcsd.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorcsd.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE SORCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, */
/* SIGNS, M, P, Q, X11, LDX11, X12, */
/* LDX12, X21, LDX21, X22, LDX22, THETA, */
/* U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, */
/* LDV2T, WORK, LWORK, IWORK, INFO ) */
/* CHARACTER JOBU1, JOBU2, JOBV1T, JOBV2T, SIGNS, TRANS */
/* INTEGER INFO, LDU1, LDU2, LDV1T, LDV2T, LDX11, LDX12, */
/* $ LDX21, LDX22, LWORK, M, P, Q */
/* INTEGER IWORK( * ) */
/* REAL THETA( * ) */
/* REAL U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ), */
/* $ V2T( LDV2T, * ), WORK( * ), X11( LDX11, * ), */
/* $ X12( LDX12, * ), X21( LDX21, * ), X22( LDX22, */
/* $ * ) */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > SORCSD computes the CS decomposition of an M-by-M partitioned */
/* > orthogonal matrix X: */
/* > */
/* > [ I 0 0 | 0 0 0 ] */
/* > [ 0 C 0 | 0 -S 0 ] */
/* > [ X11 | X12 ] [ U1 | ] [ 0 0 0 | 0 0 -I ] [ V1 | ]**T */
/* > X = [-----------] = [---------] [---------------------] [---------] . */
/* > [ X21 | X22 ] [ | U2 ] [ 0 0 0 | I 0 0 ] [ | V2 ] */
/* > [ 0 S 0 | 0 C 0 ] */
/* > [ 0 0 I | 0 0 0 ] */
/* > */
/* > X11 is P-by-Q. The orthogonal matrices U1, U2, V1, and V2 are P-by-P, */
/* > (M-P)-by-(M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. C and S are */
/* > R-by-R nonnegative diagonal matrices satisfying C^2 + S^2 = I, in */
/* > which R = MIN(P,M-P,Q,M-Q). */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] JOBU1 */
/* > \verbatim */
/* > JOBU1 is CHARACTER */
/* > = 'Y': U1 is computed; */
/* > otherwise: U1 is not computed. */
/* > \endverbatim */
/* > */
/* > \param[in] JOBU2 */
/* > \verbatim */
/* > JOBU2 is CHARACTER */
/* > = 'Y': U2 is computed; */
/* > otherwise: U2 is not computed. */
/* > \endverbatim */
/* > */
/* > \param[in] JOBV1T */
/* > \verbatim */
/* > JOBV1T is CHARACTER */
/* > = 'Y': V1T is computed; */
/* > otherwise: V1T is not computed. */
/* > \endverbatim */
/* > */
/* > \param[in] JOBV2T */
/* > \verbatim */
/* > JOBV2T is CHARACTER */
/* > = 'Y': V2T is computed; */
/* > otherwise: V2T is not computed. */
/* > \endverbatim */
/* > */
/* > \param[in] TRANS */
/* > \verbatim */
/* > TRANS is CHARACTER */
/* > = 'T': X, U1, U2, V1T, and V2T are stored in row-major */
/* > order; */
/* > otherwise: X, U1, U2, V1T, and V2T are stored in column- */
/* > major order. */
/* > \endverbatim */
/* > */
/* > \param[in] SIGNS */
/* > \verbatim */
/* > SIGNS is CHARACTER */
/* > = 'O': The lower-left block is made nonpositive (the */
/* > "other" convention); */
/* > otherwise: The upper-right block is made nonpositive (the */
/* > "default" convention). */
/* > \endverbatim */
/* > */
/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows and columns in X. */
/* > \endverbatim */
/* > */
/* > \param[in] P */
/* > \verbatim */
/* > P is INTEGER */
/* > The number of rows in X11 and X12. 0 <= P <= M. */
/* > \endverbatim */
/* > */
/* > \param[in] Q */
/* > \verbatim */
/* > Q is INTEGER */
/* > The number of columns in X11 and X21. 0 <= Q <= M. */
/* > \endverbatim */
/* > */
/* > \param[in,out] X11 */
/* > \verbatim */
/* > X11 is REAL array, dimension (LDX11,Q) */
/* > On entry, part of the orthogonal matrix whose CSD is desired. */
/* > \endverbatim */
/* > */
/* > \param[in] LDX11 */
/* > \verbatim */
/* > LDX11 is INTEGER */
/* > The leading dimension of X11. LDX11 >= MAX(1,P). */
/* > \endverbatim */
/* > */
/* > \param[in,out] X12 */
/* > \verbatim */
/* > X12 is REAL array, dimension (LDX12,M-Q) */
/* > On entry, part of the orthogonal matrix whose CSD is desired. */
/* > \endverbatim */
/* > */
/* > \param[in] LDX12 */
/* > \verbatim */
/* > LDX12 is INTEGER */
/* > The leading dimension of X12. LDX12 >= MAX(1,P). */
/* > \endverbatim */
/* > */
/* > \param[in,out] X21 */
/* > \verbatim */
/* > X21 is REAL array, dimension (LDX21,Q) */
/* > On entry, part of the orthogonal matrix whose CSD is desired. */
/* > \endverbatim */
/* > */
/* > \param[in] LDX21 */
/* > \verbatim */
/* > LDX21 is INTEGER */
/* > The leading dimension of X11. LDX21 >= MAX(1,M-P). */
/* > \endverbatim */
/* > */
/* > \param[in,out] X22 */
/* > \verbatim */
/* > X22 is REAL array, dimension (LDX22,M-Q) */
/* > On entry, part of the orthogonal matrix whose CSD is desired. */
/* > \endverbatim */
/* > */
/* > \param[in] LDX22 */
/* > \verbatim */
/* > LDX22 is INTEGER */
/* > The leading dimension of X11. LDX22 >= MAX(1,M-P). */
/* > \endverbatim */
/* > */
/* > \param[out] THETA */
/* > \verbatim */
/* > THETA is REAL array, dimension (R), in which R = */
/* > MIN(P,M-P,Q,M-Q). */
/* > C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and */
/* > S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ). */
/* > \endverbatim */
/* > */
/* > \param[out] U1 */
/* > \verbatim */
/* > U1 is REAL array, dimension (LDU1,P) */
/* > If JOBU1 = 'Y', U1 contains the P-by-P orthogonal matrix U1. */
/* > \endverbatim */
/* > */
/* > \param[in] LDU1 */
/* > \verbatim */
/* > LDU1 is INTEGER */
/* > The leading dimension of U1. If JOBU1 = 'Y', LDU1 >= */
/* > MAX(1,P). */
/* > \endverbatim */
/* > */
/* > \param[out] U2 */
/* > \verbatim */
/* > U2 is REAL array, dimension (LDU2,M-P) */
/* > If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) orthogonal */
/* > matrix U2. */
/* > \endverbatim */
/* > */
/* > \param[in] LDU2 */
/* > \verbatim */
/* > LDU2 is INTEGER */
/* > The leading dimension of U2. If JOBU2 = 'Y', LDU2 >= */
/* > MAX(1,M-P). */
/* > \endverbatim */
/* > */
/* > \param[out] V1T */
/* > \verbatim */
/* > V1T is REAL array, dimension (LDV1T,Q) */
/* > If JOBV1T = 'Y', V1T contains the Q-by-Q matrix orthogonal */
/* > matrix V1**T. */
/* > \endverbatim */
/* > */
/* > \param[in] LDV1T */
/* > \verbatim */
/* > LDV1T is INTEGER */
/* > The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >= */
/* > MAX(1,Q). */
/* > \endverbatim */
/* > */
/* > \param[out] V2T */
/* > \verbatim */
/* > V2T is REAL array, dimension (LDV2T,M-Q) */
/* > If JOBV2T = 'Y', V2T contains the (M-Q)-by-(M-Q) orthogonal */
/* > matrix V2**T. */
/* > \endverbatim */
/* > */
/* > \param[in] LDV2T */
/* > \verbatim */
/* > LDV2T is INTEGER */
/* > The leading dimension of V2T. If JOBV2T = 'Y', LDV2T >= */
/* > MAX(1,M-Q). */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is REAL array, dimension (MAX(1,LWORK)) */
/* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* > If INFO > 0 on exit, WORK(2:R) contains the values PHI(1), */
/* > ..., PHI(R-1) that, together with THETA(1), ..., THETA(R), */
/* > define the matrix in intermediate bidiagonal-block form */
/* > remaining after nonconvergence. INFO specifies the number */
/* > of nonzero PHI's. */
/* > \endverbatim */
/* > */
/* > \param[in] LWORK */
/* > \verbatim */
/* > LWORK is INTEGER */
/* > The dimension of the array WORK. */
/* > */
/* > If LWORK = -1, then a workspace query is assumed; the routine */
/* > only calculates the optimal size of the WORK array, returns */
/* > this value as the first entry of the work array, and no error */
/* > message related to LWORK is issued by XERBLA. */
/* > \endverbatim */
/* > */
/* > \param[out] IWORK */
/* > \verbatim */
/* > IWORK is INTEGER array, dimension (M-MIN(P, M-P, Q, M-Q)) */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit. */
/* > < 0: if INFO = -i, the i-th argument had an illegal value. */
/* > > 0: SBBCSD did not converge. See the description of WORK */
/* > above for details. */
/* > \endverbatim */
/* > \par References: */
/* ================ */
/* > */
/* > [1] Brian D. Sutton. Computing the complete CS decomposition. Numer. */
/* > Algorithms, 50(1):33-65, 2009. */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date June 2017 */
/* > \ingroup realOTHERcomputational */
/* ===================================================================== */
/* Subroutine */ void sorcsd_(char *jobu1, char *jobu2, char *jobv1t, char *
jobv2t, char *trans, char *signs, integer *m, integer *p, integer *q,
real *x11, integer *ldx11, real *x12, integer *ldx12, real *x21,
integer *ldx21, real *x22, integer *ldx22, real *theta, real *u1,
integer *ldu1, real *u2, integer *ldu2, real *v1t, integer *ldv1t,
real *v2t, integer *ldv2t, real *work, integer *lwork, integer *iwork,
integer *info)
{
/* System generated locals */
integer u1_dim1, u1_offset, u2_dim1, u2_offset, v1t_dim1, v1t_offset,
v2t_dim1, v2t_offset, x11_dim1, x11_offset, x12_dim1, x12_offset,
x21_dim1, x21_offset, x22_dim1, x22_offset, i__1, i__2, i__3,
i__4, i__5, i__6;
/* Local variables */
integer ib11d, ib11e, ib12d, ib12e, ib21d, ib21e, ib22d, ib22e, iphi;
logical colmajor;
integer lworkmin;
logical defaultsigns;
integer lworkopt, i__, j;
extern logical lsame_(char *, char *);
integer childinfo;
real dummy[1];
integer lbbcsdworkmin, itaup1, itaup2, itauq1, itauq2, lorbdbworkmin,
lbbcsdworkopt;
logical wantu1, wantu2;
integer ibbcsd, lorbdbworkopt;
extern /* Subroutine */ void sbbcsd_(char *, char *, char *, char *, char *
, integer *, integer *, integer *, real *, real *, real *,
integer *, real *, integer *, real *, integer *, real *, integer *
, real *, real *, real *, real *, real *, real *, real *, real *,
real *, integer *, integer *);
integer iorbdb, lorglqworkmin, lorgqrworkmin;
extern /* Subroutine */ void sorbdb_(char *, char *, integer *, integer *,
integer *, real *, integer *, real *, integer *, real *, integer *
, real *, integer *, real *, real *, real *, real *, real *, real
*, real *, integer *, integer *);
extern int xerbla_(char *, integer *, ftnlen);
integer lorglqworkopt, lorgqrworkopt;
extern /* Subroutine */ void slacpy_(char *, integer *, integer *, real *,
integer *, real *, integer *);
integer iorglq;
extern /* Subroutine */ void slapmr_(logical *, integer *, integer *, real
*, integer *, integer *), slapmt_(logical *, integer *, integer *,
real *, integer *, integer *);
integer iorgqr;
char signst[1];
extern /* Subroutine */ void sorglq_(integer *, integer *, integer *, real
*, integer *, real *, real *, integer *, integer *);
char transt[1];
integer lbbcsdwork;
extern /* Subroutine */ void sorgqr_(integer *, integer *, integer *, real
*, integer *, real *, real *, integer *, integer *);
logical lquery;
integer lorbdbwork, lorglqwork, lorgqrwork;
logical wantv1t, wantv2t;
/* -- LAPACK computational routine (version 3.7.1) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* June 2017 */
/* =================================================================== */
/* Test input arguments */
/* Parameter adjustments */
x11_dim1 = *ldx11;
x11_offset = 1 + x11_dim1 * 1;
x11 -= x11_offset;
x12_dim1 = *ldx12;
x12_offset = 1 + x12_dim1 * 1;
x12 -= x12_offset;
x21_dim1 = *ldx21;
x21_offset = 1 + x21_dim1 * 1;
x21 -= x21_offset;
x22_dim1 = *ldx22;
x22_offset = 1 + x22_dim1 * 1;
x22 -= x22_offset;
--theta;
u1_dim1 = *ldu1;
u1_offset = 1 + u1_dim1 * 1;
u1 -= u1_offset;
u2_dim1 = *ldu2;
u2_offset = 1 + u2_dim1 * 1;
u2 -= u2_offset;
v1t_dim1 = *ldv1t;
v1t_offset = 1 + v1t_dim1 * 1;
v1t -= v1t_offset;
v2t_dim1 = *ldv2t;
v2t_offset = 1 + v2t_dim1 * 1;
v2t -= v2t_offset;
--work;
--iwork;
/* Function Body */
*info = 0;
wantu1 = lsame_(jobu1, "Y");
wantu2 = lsame_(jobu2, "Y");
wantv1t = lsame_(jobv1t, "Y");
wantv2t = lsame_(jobv2t, "Y");
colmajor = ! lsame_(trans, "T");
defaultsigns = ! lsame_(signs, "O");
lquery = *lwork == -1;
if (*m < 0) {
*info = -7;
} else if (*p < 0 || *p > *m) {
*info = -8;
} else if (*q < 0 || *q > *m) {
*info = -9;
} else if (colmajor && *ldx11 < f2cmax(1,*p)) {
*info = -11;
} else if (! colmajor && *ldx11 < f2cmax(1,*q)) {
*info = -11;
} else if (colmajor && *ldx12 < f2cmax(1,*p)) {
*info = -13;
} else /* if(complicated condition) */ {
/* Computing MAX */
i__1 = 1, i__2 = *m - *q;
if (! colmajor && *ldx12 < f2cmax(i__1,i__2)) {
*info = -13;
} else /* if(complicated condition) */ {
/* Computing MAX */
i__1 = 1, i__2 = *m - *p;
if (colmajor && *ldx21 < f2cmax(i__1,i__2)) {
*info = -15;
} else if (! colmajor && *ldx21 < f2cmax(1,*q)) {
*info = -15;
} else /* if(complicated condition) */ {
/* Computing MAX */
i__1 = 1, i__2 = *m - *p;
if (colmajor && *ldx22 < f2cmax(i__1,i__2)) {
*info = -17;
} else /* if(complicated condition) */ {
/* Computing MAX */
i__1 = 1, i__2 = *m - *q;
if (! colmajor && *ldx22 < f2cmax(i__1,i__2)) {
*info = -17;
} else if (wantu1 && *ldu1 < *p) {
*info = -20;
} else if (wantu2 && *ldu2 < *m - *p) {
*info = -22;
} else if (wantv1t && *ldv1t < *q) {
*info = -24;
} else if (wantv2t && *ldv2t < *m - *q) {
*info = -26;
}
}
}
}
}
/* Work with transpose if convenient */
/* Computing MIN */
i__1 = *p, i__2 = *m - *p;
/* Computing MIN */
i__3 = *q, i__4 = *m - *q;
if (*info == 0 && f2cmin(i__1,i__2) < f2cmin(i__3,i__4)) {
if (colmajor) {
*(unsigned char *)transt = 'T';
} else {
*(unsigned char *)transt = 'N';
}
if (defaultsigns) {
*(unsigned char *)signst = 'O';
} else {
*(unsigned char *)signst = 'D';
}
sorcsd_(jobv1t, jobv2t, jobu1, jobu2, transt, signst, m, q, p, &x11[
x11_offset], ldx11, &x21[x21_offset], ldx21, &x12[x12_offset],
ldx12, &x22[x22_offset], ldx22, &theta[1], &v1t[v1t_offset],
ldv1t, &v2t[v2t_offset], ldv2t, &u1[u1_offset], ldu1, &u2[
u2_offset], ldu2, &work[1], lwork, &iwork[1], info);
return;
}
/* Work with permutation [ 0 I; I 0 ] * X * [ 0 I; I 0 ] if */
/* convenient */
if (*info == 0 && *m - *q < *q) {
if (defaultsigns) {
*(unsigned char *)signst = 'O';
} else {
*(unsigned char *)signst = 'D';
}
i__1 = *m - *p;
i__2 = *m - *q;
sorcsd_(jobu2, jobu1, jobv2t, jobv1t, trans, signst, m, &i__1, &i__2,
&x22[x22_offset], ldx22, &x21[x21_offset], ldx21, &x12[
x12_offset], ldx12, &x11[x11_offset], ldx11, &theta[1], &u2[
u2_offset], ldu2, &u1[u1_offset], ldu1, &v2t[v2t_offset],
ldv2t, &v1t[v1t_offset], ldv1t, &work[1], lwork, &iwork[1],
info);
return;
}
/* Compute workspace */
if (*info == 0) {
iphi = 2;
/* Computing MAX */
i__1 = 1, i__2 = *q - 1;
itaup1 = iphi + f2cmax(i__1,i__2);
itaup2 = itaup1 + f2cmax(1,*p);
/* Computing MAX */
i__1 = 1, i__2 = *m - *p;
itauq1 = itaup2 + f2cmax(i__1,i__2);
itauq2 = itauq1 + f2cmax(1,*q);
/* Computing MAX */
i__1 = 1, i__2 = *m - *q;
iorgqr = itauq2 + f2cmax(i__1,i__2);
i__1 = *m - *q;
i__2 = *m - *q;
i__3 = *m - *q;
/* Computing MAX */
i__5 = 1, i__6 = *m - *q;
i__4 = f2cmax(i__5,i__6);
sorgqr_(&i__1, &i__2, &i__3, dummy, &i__4, dummy, &work[1], &c_n1, &
childinfo);
lorgqrworkopt = (integer) work[1];
/* Computing MAX */
i__1 = 1, i__2 = *m - *q;
lorgqrworkmin = f2cmax(i__1,i__2);
/* Computing MAX */
i__1 = 1, i__2 = *m - *q;
iorglq = itauq2 + f2cmax(i__1,i__2);
i__1 = *m - *q;
i__2 = *m - *q;
i__3 = *m - *q;
/* Computing MAX */
i__5 = 1, i__6 = *m - *q;
i__4 = f2cmax(i__5,i__6);
sorglq_(&i__1, &i__2, &i__3, dummy, &i__4, dummy, &work[1], &c_n1, &
childinfo);
lorglqworkopt = (integer) work[1];
/* Computing MAX */
i__1 = 1, i__2 = *m - *q;
lorglqworkmin = f2cmax(i__1,i__2);
/* Computing MAX */
i__1 = 1, i__2 = *m - *q;
iorbdb = itauq2 + f2cmax(i__1,i__2);
sorbdb_(trans, signs, m, p, q, &x11[x11_offset], ldx11, &x12[
x12_offset], ldx12, &x21[x21_offset], ldx21, &x22[x22_offset],
ldx22, dummy, dummy, dummy, dummy, dummy, dummy, &work[1], &
c_n1, &childinfo);
lorbdbworkopt = (integer) work[1];
lorbdbworkmin = lorbdbworkopt;
/* Computing MAX */
i__1 = 1, i__2 = *m - *q;
ib11d = itauq2 + f2cmax(i__1,i__2);
ib11e = ib11d + f2cmax(1,*q);
/* Computing MAX */
i__1 = 1, i__2 = *q - 1;
ib12d = ib11e + f2cmax(i__1,i__2);
ib12e = ib12d + f2cmax(1,*q);
/* Computing MAX */
i__1 = 1, i__2 = *q - 1;
ib21d = ib12e + f2cmax(i__1,i__2);
ib21e = ib21d + f2cmax(1,*q);
/* Computing MAX */
i__1 = 1, i__2 = *q - 1;
ib22d = ib21e + f2cmax(i__1,i__2);
ib22e = ib22d + f2cmax(1,*q);
/* Computing MAX */
i__1 = 1, i__2 = *q - 1;
ibbcsd = ib22e + f2cmax(i__1,i__2);
sbbcsd_(jobu1, jobu2, jobv1t, jobv2t, trans, m, p, q, dummy, dummy, &
u1[u1_offset], ldu1, &u2[u2_offset], ldu2, &v1t[v1t_offset],
ldv1t, &v2t[v2t_offset], ldv2t, dummy, dummy, dummy, dummy,
dummy, dummy, dummy, dummy, &work[1], &c_n1, &childinfo);
lbbcsdworkopt = (integer) work[1];
lbbcsdworkmin = lbbcsdworkopt;
/* Computing MAX */
i__1 = iorgqr + lorgqrworkopt, i__2 = iorglq + lorglqworkopt, i__1 =
f2cmax(i__1,i__2), i__2 = iorbdb + lorbdbworkopt, i__1 = f2cmax(
i__1,i__2), i__2 = ibbcsd + lbbcsdworkopt;
lworkopt = f2cmax(i__1,i__2) - 1;
/* Computing MAX */
i__1 = iorgqr + lorgqrworkmin, i__2 = iorglq + lorglqworkmin, i__1 =
f2cmax(i__1,i__2), i__2 = iorbdb + lorbdbworkopt, i__1 = f2cmax(
i__1,i__2), i__2 = ibbcsd + lbbcsdworkmin;
lworkmin = f2cmax(i__1,i__2) - 1;
work[1] = (real) f2cmax(lworkopt,lworkmin);
if (*lwork < lworkmin && ! lquery) {
*info = -22;
} else {
lorgqrwork = *lwork - iorgqr + 1;
lorglqwork = *lwork - iorglq + 1;
lorbdbwork = *lwork - iorbdb + 1;
lbbcsdwork = *lwork - ibbcsd + 1;
}
}
/* Abort if any illegal arguments */
if (*info != 0) {
i__1 = -(*info);
xerbla_("SORCSD", &i__1, (ftnlen)6);
return;
} else if (lquery) {
return;
}
/* Transform to bidiagonal block form */
sorbdb_(trans, signs, m, p, q, &x11[x11_offset], ldx11, &x12[x12_offset],
ldx12, &x21[x21_offset], ldx21, &x22[x22_offset], ldx22, &theta[1]
, &work[iphi], &work[itaup1], &work[itaup2], &work[itauq1], &work[
itauq2], &work[iorbdb], &lorbdbwork, &childinfo);
/* Accumulate Householder reflectors */
if (colmajor) {
if (wantu1 && *p > 0) {
slacpy_("L", p, q, &x11[x11_offset], ldx11, &u1[u1_offset], ldu1);
sorgqr_(p, p, q, &u1[u1_offset], ldu1, &work[itaup1], &work[
iorgqr], &lorgqrwork, info);
}
if (wantu2 && *m - *p > 0) {
i__1 = *m - *p;
slacpy_("L", &i__1, q, &x21[x21_offset], ldx21, &u2[u2_offset],
ldu2);
i__1 = *m - *p;
i__2 = *m - *p;
sorgqr_(&i__1, &i__2, q, &u2[u2_offset], ldu2, &work[itaup2], &
work[iorgqr], &lorgqrwork, info);
}
if (wantv1t && *q > 0) {
i__1 = *q - 1;
i__2 = *q - 1;
slacpy_("U", &i__1, &i__2, &x11[(x11_dim1 << 1) + 1], ldx11, &v1t[
(v1t_dim1 << 1) + 2], ldv1t);
v1t[v1t_dim1 + 1] = 1.f;
i__1 = *q;
for (j = 2; j <= i__1; ++j) {
v1t[j * v1t_dim1 + 1] = 0.f;
v1t[j + v1t_dim1] = 0.f;
}
i__1 = *q - 1;
i__2 = *q - 1;
i__3 = *q - 1;
sorglq_(&i__1, &i__2, &i__3, &v1t[(v1t_dim1 << 1) + 2], ldv1t, &
work[itauq1], &work[iorglq], &lorglqwork, info);
}
if (wantv2t && *m - *q > 0) {
i__1 = *m - *q;
slacpy_("U", p, &i__1, &x12[x12_offset], ldx12, &v2t[v2t_offset],
ldv2t);
i__1 = *m - *p - *q;
i__2 = *m - *p - *q;
slacpy_("U", &i__1, &i__2, &x22[*q + 1 + (*p + 1) * x22_dim1],
ldx22, &v2t[*p + 1 + (*p + 1) * v2t_dim1], ldv2t);
i__1 = *m - *q;
i__2 = *m - *q;
i__3 = *m - *q;
sorglq_(&i__1, &i__2, &i__3, &v2t[v2t_offset], ldv2t, &work[
itauq2], &work[iorglq], &lorglqwork, info);
}
} else {
if (wantu1 && *p > 0) {
slacpy_("U", q, p, &x11[x11_offset], ldx11, &u1[u1_offset], ldu1);
sorglq_(p, p, q, &u1[u1_offset], ldu1, &work[itaup1], &work[
iorglq], &lorglqwork, info);
}
if (wantu2 && *m - *p > 0) {
i__1 = *m - *p;
slacpy_("U", q, &i__1, &x21[x21_offset], ldx21, &u2[u2_offset],
ldu2);
i__1 = *m - *p;
i__2 = *m - *p;
sorglq_(&i__1, &i__2, q, &u2[u2_offset], ldu2, &work[itaup2], &
work[iorglq], &lorglqwork, info);
}
if (wantv1t && *q > 0) {
i__1 = *q - 1;
i__2 = *q - 1;
slacpy_("L", &i__1, &i__2, &x11[x11_dim1 + 2], ldx11, &v1t[(
v1t_dim1 << 1) + 2], ldv1t);
v1t[v1t_dim1 + 1] = 1.f;
i__1 = *q;
for (j = 2; j <= i__1; ++j) {
v1t[j * v1t_dim1 + 1] = 0.f;
v1t[j + v1t_dim1] = 0.f;
}
i__1 = *q - 1;
i__2 = *q - 1;
i__3 = *q - 1;
sorgqr_(&i__1, &i__2, &i__3, &v1t[(v1t_dim1 << 1) + 2], ldv1t, &
work[itauq1], &work[iorgqr], &lorgqrwork, info);
}
if (wantv2t && *m - *q > 0) {
i__1 = *m - *q;
slacpy_("L", &i__1, p, &x12[x12_offset], ldx12, &v2t[v2t_offset],
ldv2t);
i__1 = *m - *p - *q;
i__2 = *m - *p - *q;
slacpy_("L", &i__1, &i__2, &x22[*p + 1 + (*q + 1) * x22_dim1],
ldx22, &v2t[*p + 1 + (*p + 1) * v2t_dim1], ldv2t);
i__1 = *m - *q;
i__2 = *m - *q;
i__3 = *m - *q;
sorgqr_(&i__1, &i__2, &i__3, &v2t[v2t_offset], ldv2t, &work[
itauq2], &work[iorgqr], &lorgqrwork, info);
}
}
/* Compute the CSD of the matrix in bidiagonal-block form */
sbbcsd_(jobu1, jobu2, jobv1t, jobv2t, trans, m, p, q, &theta[1], &work[
iphi], &u1[u1_offset], ldu1, &u2[u2_offset], ldu2, &v1t[
v1t_offset], ldv1t, &v2t[v2t_offset], ldv2t, &work[ib11d], &work[
ib11e], &work[ib12d], &work[ib12e], &work[ib21d], &work[ib21e], &
work[ib22d], &work[ib22e], &work[ibbcsd], &lbbcsdwork, info);
/* Permute rows and columns to place identity submatrices in top- */
/* left corner of (1,1)-block and/or bottom-right corner of (1,2)- */
/* block and/or bottom-right corner of (2,1)-block and/or top-left */
/* corner of (2,2)-block */
if (*q > 0 && wantu2) {
i__1 = *q;
for (i__ = 1; i__ <= i__1; ++i__) {
iwork[i__] = *m - *p - *q + i__;
}
i__1 = *m - *p;
for (i__ = *q + 1; i__ <= i__1; ++i__) {
iwork[i__] = i__ - *q;
}
if (colmajor) {
i__1 = *m - *p;
i__2 = *m - *p;
slapmt_(&c_false, &i__1, &i__2, &u2[u2_offset], ldu2, &iwork[1]);
} else {
i__1 = *m - *p;
i__2 = *m - *p;
slapmr_(&c_false, &i__1, &i__2, &u2[u2_offset], ldu2, &iwork[1]);
}
}
if (*m > 0 && wantv2t) {
i__1 = *p;
for (i__ = 1; i__ <= i__1; ++i__) {
iwork[i__] = *m - *p - *q + i__;
}
i__1 = *m - *q;
for (i__ = *p + 1; i__ <= i__1; ++i__) {
iwork[i__] = i__ - *p;
}
if (! colmajor) {
i__1 = *m - *q;
i__2 = *m - *q;
slapmt_(&c_false, &i__1, &i__2, &v2t[v2t_offset], ldv2t, &iwork[1]
);
} else {
i__1 = *m - *q;
i__2 = *m - *q;
slapmr_(&c_false, &i__1, &i__2, &v2t[v2t_offset], ldv2t, &iwork[1]
);
}
}
return;
/* End SORCSD */
} /* sorcsd_ */