OpenBLAS/lapack-netlib/SRC/sorbdb.c

1395 lines
41 KiB
C

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif
#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif
#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif
typedef blasint integer;
typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
#ifdef _MSC_VER
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
#else
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#endif
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef blasint logical;
typedef char logical1;
typedef char integer1;
#define TRUE_ (1)
#define FALSE_ (0)
/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif
/* I/O stuff */
typedef int flag;
typedef int ftnlen;
typedef int ftnint;
/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;
/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;
/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;
/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;
/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;
/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;
#define VOID void
union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};
typedef union Multitype Multitype;
struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;
struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;
#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#ifdef _MSC_VER
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
#else
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#endif
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimagf(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
/* procedure parameter types for -A and -C++ */
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif
static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#ifdef _MSC_VER
static _Fcomplex cpow_ui(complex x, integer n) {
complex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
for(u = n; ; ) {
if(u & 01) pow.r *= x.r, pow.i *= x.i;
if(u >>= 1) x.r *= x.r, x.i *= x.i;
else break;
}
}
_Fcomplex p={pow.r, pow.i};
return p;
}
#else
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
#ifdef _MSC_VER
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
_Dcomplex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
for(u = n; ; ) {
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
else break;
}
}
_Dcomplex p = {pow._Val[0], pow._Val[1]};
return p;
}
#else
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
/* Table of constant values */
static integer c__1 = 1;
/* > \brief \b SORBDB */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download SORBDB + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorbdb.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorbdb.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorbdb.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE SORBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12, */
/* X21, LDX21, X22, LDX22, THETA, PHI, TAUP1, */
/* TAUP2, TAUQ1, TAUQ2, WORK, LWORK, INFO ) */
/* CHARACTER SIGNS, TRANS */
/* INTEGER INFO, LDX11, LDX12, LDX21, LDX22, LWORK, M, P, */
/* $ Q */
/* REAL PHI( * ), THETA( * ) */
/* REAL TAUP1( * ), TAUP2( * ), TAUQ1( * ), TAUQ2( * ), */
/* $ WORK( * ), X11( LDX11, * ), X12( LDX12, * ), */
/* $ X21( LDX21, * ), X22( LDX22, * ) */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > SORBDB simultaneously bidiagonalizes the blocks of an M-by-M */
/* > partitioned orthogonal matrix X: */
/* > */
/* > [ B11 | B12 0 0 ] */
/* > [ X11 | X12 ] [ P1 | ] [ 0 | 0 -I 0 ] [ Q1 | ]**T */
/* > X = [-----------] = [---------] [----------------] [---------] . */
/* > [ X21 | X22 ] [ | P2 ] [ B21 | B22 0 0 ] [ | Q2 ] */
/* > [ 0 | 0 0 I ] */
/* > */
/* > X11 is P-by-Q. Q must be no larger than P, M-P, or M-Q. (If this is */
/* > not the case, then X must be transposed and/or permuted. This can be */
/* > done in constant time using the TRANS and SIGNS options. See SORCSD */
/* > for details.) */
/* > */
/* > The orthogonal matrices P1, P2, Q1, and Q2 are P-by-P, (M-P)-by- */
/* > (M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. They are */
/* > represented implicitly by Householder vectors. */
/* > */
/* > B11, B12, B21, and B22 are Q-by-Q bidiagonal matrices represented */
/* > implicitly by angles THETA, PHI. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] TRANS */
/* > \verbatim */
/* > TRANS is CHARACTER */
/* > = 'T': X, U1, U2, V1T, and V2T are stored in row-major */
/* > order; */
/* > otherwise: X, U1, U2, V1T, and V2T are stored in column- */
/* > major order. */
/* > \endverbatim */
/* > */
/* > \param[in] SIGNS */
/* > \verbatim */
/* > SIGNS is CHARACTER */
/* > = 'O': The lower-left block is made nonpositive (the */
/* > "other" convention); */
/* > otherwise: The upper-right block is made nonpositive (the */
/* > "default" convention). */
/* > \endverbatim */
/* > */
/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows and columns in X. */
/* > \endverbatim */
/* > */
/* > \param[in] P */
/* > \verbatim */
/* > P is INTEGER */
/* > The number of rows in X11 and X12. 0 <= P <= M. */
/* > \endverbatim */
/* > */
/* > \param[in] Q */
/* > \verbatim */
/* > Q is INTEGER */
/* > The number of columns in X11 and X21. 0 <= Q <= */
/* > MIN(P,M-P,M-Q). */
/* > \endverbatim */
/* > */
/* > \param[in,out] X11 */
/* > \verbatim */
/* > X11 is REAL array, dimension (LDX11,Q) */
/* > On entry, the top-left block of the orthogonal matrix to be */
/* > reduced. On exit, the form depends on TRANS: */
/* > If TRANS = 'N', then */
/* > the columns of tril(X11) specify reflectors for P1, */
/* > the rows of triu(X11,1) specify reflectors for Q1; */
/* > else TRANS = 'T', and */
/* > the rows of triu(X11) specify reflectors for P1, */
/* > the columns of tril(X11,-1) specify reflectors for Q1. */
/* > \endverbatim */
/* > */
/* > \param[in] LDX11 */
/* > \verbatim */
/* > LDX11 is INTEGER */
/* > The leading dimension of X11. If TRANS = 'N', then LDX11 >= */
/* > P; else LDX11 >= Q. */
/* > \endverbatim */
/* > */
/* > \param[in,out] X12 */
/* > \verbatim */
/* > X12 is REAL array, dimension (LDX12,M-Q) */
/* > On entry, the top-right block of the orthogonal matrix to */
/* > be reduced. On exit, the form depends on TRANS: */
/* > If TRANS = 'N', then */
/* > the rows of triu(X12) specify the first P reflectors for */
/* > Q2; */
/* > else TRANS = 'T', and */
/* > the columns of tril(X12) specify the first P reflectors */
/* > for Q2. */
/* > \endverbatim */
/* > */
/* > \param[in] LDX12 */
/* > \verbatim */
/* > LDX12 is INTEGER */
/* > The leading dimension of X12. If TRANS = 'N', then LDX12 >= */
/* > P; else LDX11 >= M-Q. */
/* > \endverbatim */
/* > */
/* > \param[in,out] X21 */
/* > \verbatim */
/* > X21 is REAL array, dimension (LDX21,Q) */
/* > On entry, the bottom-left block of the orthogonal matrix to */
/* > be reduced. On exit, the form depends on TRANS: */
/* > If TRANS = 'N', then */
/* > the columns of tril(X21) specify reflectors for P2; */
/* > else TRANS = 'T', and */
/* > the rows of triu(X21) specify reflectors for P2. */
/* > \endverbatim */
/* > */
/* > \param[in] LDX21 */
/* > \verbatim */
/* > LDX21 is INTEGER */
/* > The leading dimension of X21. If TRANS = 'N', then LDX21 >= */
/* > M-P; else LDX21 >= Q. */
/* > \endverbatim */
/* > */
/* > \param[in,out] X22 */
/* > \verbatim */
/* > X22 is REAL array, dimension (LDX22,M-Q) */
/* > On entry, the bottom-right block of the orthogonal matrix to */
/* > be reduced. On exit, the form depends on TRANS: */
/* > If TRANS = 'N', then */
/* > the rows of triu(X22(Q+1:M-P,P+1:M-Q)) specify the last */
/* > M-P-Q reflectors for Q2, */
/* > else TRANS = 'T', and */
/* > the columns of tril(X22(P+1:M-Q,Q+1:M-P)) specify the last */
/* > M-P-Q reflectors for P2. */
/* > \endverbatim */
/* > */
/* > \param[in] LDX22 */
/* > \verbatim */
/* > LDX22 is INTEGER */
/* > The leading dimension of X22. If TRANS = 'N', then LDX22 >= */
/* > M-P; else LDX22 >= M-Q. */
/* > \endverbatim */
/* > */
/* > \param[out] THETA */
/* > \verbatim */
/* > THETA is REAL array, dimension (Q) */
/* > The entries of the bidiagonal blocks B11, B12, B21, B22 can */
/* > be computed from the angles THETA and PHI. See Further */
/* > Details. */
/* > \endverbatim */
/* > */
/* > \param[out] PHI */
/* > \verbatim */
/* > PHI is REAL array, dimension (Q-1) */
/* > The entries of the bidiagonal blocks B11, B12, B21, B22 can */
/* > be computed from the angles THETA and PHI. See Further */
/* > Details. */
/* > \endverbatim */
/* > */
/* > \param[out] TAUP1 */
/* > \verbatim */
/* > TAUP1 is REAL array, dimension (P) */
/* > The scalar factors of the elementary reflectors that define */
/* > P1. */
/* > \endverbatim */
/* > */
/* > \param[out] TAUP2 */
/* > \verbatim */
/* > TAUP2 is REAL array, dimension (M-P) */
/* > The scalar factors of the elementary reflectors that define */
/* > P2. */
/* > \endverbatim */
/* > */
/* > \param[out] TAUQ1 */
/* > \verbatim */
/* > TAUQ1 is REAL array, dimension (Q) */
/* > The scalar factors of the elementary reflectors that define */
/* > Q1. */
/* > \endverbatim */
/* > */
/* > \param[out] TAUQ2 */
/* > \verbatim */
/* > TAUQ2 is REAL array, dimension (M-Q) */
/* > The scalar factors of the elementary reflectors that define */
/* > Q2. */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is REAL array, dimension (LWORK) */
/* > \endverbatim */
/* > */
/* > \param[in] LWORK */
/* > \verbatim */
/* > LWORK is INTEGER */
/* > The dimension of the array WORK. LWORK >= M-Q. */
/* > */
/* > If LWORK = -1, then a workspace query is assumed; the routine */
/* > only calculates the optimal size of the WORK array, returns */
/* > this value as the first entry of the WORK array, and no error */
/* > message related to LWORK is issued by XERBLA. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit. */
/* > < 0: if INFO = -i, the i-th argument had an illegal value. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date December 2016 */
/* > \ingroup realOTHERcomputational */
/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > The bidiagonal blocks B11, B12, B21, and B22 are represented */
/* > implicitly by angles THETA(1), ..., THETA(Q) and PHI(1), ..., */
/* > PHI(Q-1). B11 and B21 are upper bidiagonal, while B21 and B22 are */
/* > lower bidiagonal. Every entry in each bidiagonal band is a product */
/* > of a sine or cosine of a THETA with a sine or cosine of a PHI. See */
/* > [1] or SORCSD for details. */
/* > */
/* > P1, P2, Q1, and Q2 are represented as products of elementary */
/* > reflectors. See SORCSD for details on generating P1, P2, Q1, and Q2 */
/* > using SORGQR and SORGLQ. */
/* > \endverbatim */
/* > \par References: */
/* ================ */
/* > */
/* > [1] Brian D. Sutton. Computing the complete CS decomposition. Numer. */
/* > Algorithms, 50(1):33-65, 2009. */
/* > */
/* ===================================================================== */
/* Subroutine */ void sorbdb_(char *trans, char *signs, integer *m, integer *p,
integer *q, real *x11, integer *ldx11, real *x12, integer *ldx12,
real *x21, integer *ldx21, real *x22, integer *ldx22, real *theta,
real *phi, real *taup1, real *taup2, real *tauq1, real *tauq2, real *
work, integer *lwork, integer *info)
{
/* System generated locals */
integer x11_dim1, x11_offset, x12_dim1, x12_offset, x21_dim1, x21_offset,
x22_dim1, x22_offset, i__1, i__2, i__3;
real r__1;
/* Local variables */
logical colmajor;
integer lworkmin, lworkopt;
extern real snrm2_(integer *, real *, integer *);
integer i__;
extern logical lsame_(char *, char *);
extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *),
slarf_(char *, integer *, integer *, real *, integer *, real *,
real *, integer *, real *), saxpy_(integer *, real *,
real *, integer *, real *, integer *);
real z1, z2, z3, z4;
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
logical lquery;
extern /* Subroutine */ void slarfgp_(integer *, real *, real *, integer *,
real *);
/* -- LAPACK computational routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */
/* ==================================================================== */
/* Test input arguments */
/* Parameter adjustments */
x11_dim1 = *ldx11;
x11_offset = 1 + x11_dim1 * 1;
x11 -= x11_offset;
x12_dim1 = *ldx12;
x12_offset = 1 + x12_dim1 * 1;
x12 -= x12_offset;
x21_dim1 = *ldx21;
x21_offset = 1 + x21_dim1 * 1;
x21 -= x21_offset;
x22_dim1 = *ldx22;
x22_offset = 1 + x22_dim1 * 1;
x22 -= x22_offset;
--theta;
--phi;
--taup1;
--taup2;
--tauq1;
--tauq2;
--work;
/* Function Body */
*info = 0;
colmajor = ! lsame_(trans, "T");
if (! lsame_(signs, "O")) {
z1 = 1.f;
z2 = 1.f;
z3 = 1.f;
z4 = 1.f;
} else {
z1 = 1.f;
z2 = -1.f;
z3 = 1.f;
z4 = -1.f;
}
lquery = *lwork == -1;
if (*m < 0) {
*info = -3;
} else if (*p < 0 || *p > *m) {
*info = -4;
} else if (*q < 0 || *q > *p || *q > *m - *p || *q > *m - *q) {
*info = -5;
} else if (colmajor && *ldx11 < f2cmax(1,*p)) {
*info = -7;
} else if (! colmajor && *ldx11 < f2cmax(1,*q)) {
*info = -7;
} else if (colmajor && *ldx12 < f2cmax(1,*p)) {
*info = -9;
} else /* if(complicated condition) */ {
/* Computing MAX */
i__1 = 1, i__2 = *m - *q;
if (! colmajor && *ldx12 < f2cmax(i__1,i__2)) {
*info = -9;
} else /* if(complicated condition) */ {
/* Computing MAX */
i__1 = 1, i__2 = *m - *p;
if (colmajor && *ldx21 < f2cmax(i__1,i__2)) {
*info = -11;
} else if (! colmajor && *ldx21 < f2cmax(1,*q)) {
*info = -11;
} else /* if(complicated condition) */ {
/* Computing MAX */
i__1 = 1, i__2 = *m - *p;
if (colmajor && *ldx22 < f2cmax(i__1,i__2)) {
*info = -13;
} else /* if(complicated condition) */ {
/* Computing MAX */
i__1 = 1, i__2 = *m - *q;
if (! colmajor && *ldx22 < f2cmax(i__1,i__2)) {
*info = -13;
}
}
}
}
}
/* Compute workspace */
if (*info == 0) {
lworkopt = *m - *q;
lworkmin = *m - *q;
work[1] = (real) lworkopt;
if (*lwork < lworkmin && ! lquery) {
*info = -21;
}
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("xORBDB", &i__1, (ftnlen)6);
return;
} else if (lquery) {
return;
}
/* Handle column-major and row-major separately */
if (colmajor) {
/* Reduce columns 1, ..., Q of X11, X12, X21, and X22 */
i__1 = *q;
for (i__ = 1; i__ <= i__1; ++i__) {
if (i__ == 1) {
i__2 = *p - i__ + 1;
sscal_(&i__2, &z1, &x11[i__ + i__ * x11_dim1], &c__1);
} else {
i__2 = *p - i__ + 1;
r__1 = z1 * cos(phi[i__ - 1]);
sscal_(&i__2, &r__1, &x11[i__ + i__ * x11_dim1], &c__1);
i__2 = *p - i__ + 1;
r__1 = -z1 * z3 * z4 * sin(phi[i__ - 1]);
saxpy_(&i__2, &r__1, &x12[i__ + (i__ - 1) * x12_dim1], &c__1,
&x11[i__ + i__ * x11_dim1], &c__1);
}
if (i__ == 1) {
i__2 = *m - *p - i__ + 1;
sscal_(&i__2, &z2, &x21[i__ + i__ * x21_dim1], &c__1);
} else {
i__2 = *m - *p - i__ + 1;
r__1 = z2 * cos(phi[i__ - 1]);
sscal_(&i__2, &r__1, &x21[i__ + i__ * x21_dim1], &c__1);
i__2 = *m - *p - i__ + 1;
r__1 = -z2 * z3 * z4 * sin(phi[i__ - 1]);
saxpy_(&i__2, &r__1, &x22[i__ + (i__ - 1) * x22_dim1], &c__1,
&x21[i__ + i__ * x21_dim1], &c__1);
}
i__2 = *m - *p - i__ + 1;
i__3 = *p - i__ + 1;
theta[i__] = atan2(snrm2_(&i__2, &x21[i__ + i__ * x21_dim1], &
c__1), snrm2_(&i__3, &x11[i__ + i__ * x11_dim1], &c__1));
if (*p > i__) {
i__2 = *p - i__ + 1;
slarfgp_(&i__2, &x11[i__ + i__ * x11_dim1], &x11[i__ + 1 +
i__ * x11_dim1], &c__1, &taup1[i__]);
} else if (*p == i__) {
i__2 = *p - i__ + 1;
slarfgp_(&i__2, &x11[i__ + i__ * x11_dim1], &x11[i__ + i__ *
x11_dim1], &c__1, &taup1[i__]);
}
x11[i__ + i__ * x11_dim1] = 1.f;
if (*m - *p > i__) {
i__2 = *m - *p - i__ + 1;
slarfgp_(&i__2, &x21[i__ + i__ * x21_dim1], &x21[i__ + 1 +
i__ * x21_dim1], &c__1, &taup2[i__]);
} else if (*m - *p == i__) {
i__2 = *m - *p - i__ + 1;
slarfgp_(&i__2, &x21[i__ + i__ * x21_dim1], &x21[i__ + i__ *
x21_dim1], &c__1, &taup2[i__]);
}
x21[i__ + i__ * x21_dim1] = 1.f;
if (*q > i__) {
i__2 = *p - i__ + 1;
i__3 = *q - i__;
slarf_("L", &i__2, &i__3, &x11[i__ + i__ * x11_dim1], &c__1, &
taup1[i__], &x11[i__ + (i__ + 1) * x11_dim1], ldx11, &
work[1]);
}
if (*m - *q + 1 > i__) {
i__2 = *p - i__ + 1;
i__3 = *m - *q - i__ + 1;
slarf_("L", &i__2, &i__3, &x11[i__ + i__ * x11_dim1], &c__1, &
taup1[i__], &x12[i__ + i__ * x12_dim1], ldx12, &work[
1]);
}
if (*q > i__) {
i__2 = *m - *p - i__ + 1;
i__3 = *q - i__;
slarf_("L", &i__2, &i__3, &x21[i__ + i__ * x21_dim1], &c__1, &
taup2[i__], &x21[i__ + (i__ + 1) * x21_dim1], ldx21, &
work[1]);
}
if (*m - *q + 1 > i__) {
i__2 = *m - *p - i__ + 1;
i__3 = *m - *q - i__ + 1;
slarf_("L", &i__2, &i__3, &x21[i__ + i__ * x21_dim1], &c__1, &
taup2[i__], &x22[i__ + i__ * x22_dim1], ldx22, &work[
1]);
}
if (i__ < *q) {
i__2 = *q - i__;
r__1 = -z1 * z3 * sin(theta[i__]);
sscal_(&i__2, &r__1, &x11[i__ + (i__ + 1) * x11_dim1], ldx11);
i__2 = *q - i__;
r__1 = z2 * z3 * cos(theta[i__]);
saxpy_(&i__2, &r__1, &x21[i__ + (i__ + 1) * x21_dim1], ldx21,
&x11[i__ + (i__ + 1) * x11_dim1], ldx11);
}
i__2 = *m - *q - i__ + 1;
r__1 = -z1 * z4 * sin(theta[i__]);
sscal_(&i__2, &r__1, &x12[i__ + i__ * x12_dim1], ldx12);
i__2 = *m - *q - i__ + 1;
r__1 = z2 * z4 * cos(theta[i__]);
saxpy_(&i__2, &r__1, &x22[i__ + i__ * x22_dim1], ldx22, &x12[i__
+ i__ * x12_dim1], ldx12);
if (i__ < *q) {
i__2 = *q - i__;
i__3 = *m - *q - i__ + 1;
phi[i__] = atan2(snrm2_(&i__2, &x11[i__ + (i__ + 1) *
x11_dim1], ldx11), snrm2_(&i__3, &x12[i__ + i__ *
x12_dim1], ldx12));
}
if (i__ < *q) {
if (*q - i__ == 1) {
i__2 = *q - i__;
slarfgp_(&i__2, &x11[i__ + (i__ + 1) * x11_dim1], &x11[
i__ + (i__ + 1) * x11_dim1], ldx11, &tauq1[i__]);
} else {
i__2 = *q - i__;
slarfgp_(&i__2, &x11[i__ + (i__ + 1) * x11_dim1], &x11[
i__ + (i__ + 2) * x11_dim1], ldx11, &tauq1[i__]);
}
x11[i__ + (i__ + 1) * x11_dim1] = 1.f;
}
if (*q + i__ - 1 < *m) {
if (*m - *q == i__) {
i__2 = *m - *q - i__ + 1;
slarfgp_(&i__2, &x12[i__ + i__ * x12_dim1], &x12[i__ +
i__ * x12_dim1], ldx12, &tauq2[i__]);
} else {
i__2 = *m - *q - i__ + 1;
slarfgp_(&i__2, &x12[i__ + i__ * x12_dim1], &x12[i__ + (
i__ + 1) * x12_dim1], ldx12, &tauq2[i__]);
}
}
x12[i__ + i__ * x12_dim1] = 1.f;
if (i__ < *q) {
i__2 = *p - i__;
i__3 = *q - i__;
slarf_("R", &i__2, &i__3, &x11[i__ + (i__ + 1) * x11_dim1],
ldx11, &tauq1[i__], &x11[i__ + 1 + (i__ + 1) *
x11_dim1], ldx11, &work[1]);
i__2 = *m - *p - i__;
i__3 = *q - i__;
slarf_("R", &i__2, &i__3, &x11[i__ + (i__ + 1) * x11_dim1],
ldx11, &tauq1[i__], &x21[i__ + 1 + (i__ + 1) *
x21_dim1], ldx21, &work[1]);
}
if (*p > i__) {
i__2 = *p - i__;
i__3 = *m - *q - i__ + 1;
slarf_("R", &i__2, &i__3, &x12[i__ + i__ * x12_dim1], ldx12, &
tauq2[i__], &x12[i__ + 1 + i__ * x12_dim1], ldx12, &
work[1]);
}
if (*m - *p > i__) {
i__2 = *m - *p - i__;
i__3 = *m - *q - i__ + 1;
slarf_("R", &i__2, &i__3, &x12[i__ + i__ * x12_dim1], ldx12, &
tauq2[i__], &x22[i__ + 1 + i__ * x22_dim1], ldx22, &
work[1]);
}
}
/* Reduce columns Q + 1, ..., P of X12, X22 */
i__1 = *p;
for (i__ = *q + 1; i__ <= i__1; ++i__) {
i__2 = *m - *q - i__ + 1;
r__1 = -z1 * z4;
sscal_(&i__2, &r__1, &x12[i__ + i__ * x12_dim1], ldx12);
if (i__ >= *m - *q) {
i__2 = *m - *q - i__ + 1;
slarfgp_(&i__2, &x12[i__ + i__ * x12_dim1], &x12[i__ + i__ *
x12_dim1], ldx12, &tauq2[i__]);
} else {
i__2 = *m - *q - i__ + 1;
slarfgp_(&i__2, &x12[i__ + i__ * x12_dim1], &x12[i__ + (i__ +
1) * x12_dim1], ldx12, &tauq2[i__]);
}
x12[i__ + i__ * x12_dim1] = 1.f;
if (*p > i__) {
i__2 = *p - i__;
i__3 = *m - *q - i__ + 1;
slarf_("R", &i__2, &i__3, &x12[i__ + i__ * x12_dim1], ldx12, &
tauq2[i__], &x12[i__ + 1 + i__ * x12_dim1], ldx12, &
work[1]);
}
if (*m - *p - *q >= 1) {
i__2 = *m - *p - *q;
i__3 = *m - *q - i__ + 1;
slarf_("R", &i__2, &i__3, &x12[i__ + i__ * x12_dim1], ldx12, &
tauq2[i__], &x22[*q + 1 + i__ * x22_dim1], ldx22, &
work[1]);
}
}
/* Reduce columns P + 1, ..., M - Q of X12, X22 */
i__1 = *m - *p - *q;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = *m - *p - *q - i__ + 1;
r__1 = z2 * z4;
sscal_(&i__2, &r__1, &x22[*q + i__ + (*p + i__) * x22_dim1],
ldx22);
if (i__ == *m - *p - *q) {
i__2 = *m - *p - *q - i__ + 1;
slarfgp_(&i__2, &x22[*q + i__ + (*p + i__) * x22_dim1], &x22[*
q + i__ + (*p + i__) * x22_dim1], ldx22, &tauq2[*p +
i__]);
} else {
i__2 = *m - *p - *q - i__ + 1;
slarfgp_(&i__2, &x22[*q + i__ + (*p + i__) * x22_dim1], &x22[*
q + i__ + (*p + i__ + 1) * x22_dim1], ldx22, &tauq2[*
p + i__]);
}
x22[*q + i__ + (*p + i__) * x22_dim1] = 1.f;
if (i__ < *m - *p - *q) {
i__2 = *m - *p - *q - i__;
i__3 = *m - *p - *q - i__ + 1;
slarf_("R", &i__2, &i__3, &x22[*q + i__ + (*p + i__) *
x22_dim1], ldx22, &tauq2[*p + i__], &x22[*q + i__ + 1
+ (*p + i__) * x22_dim1], ldx22, &work[1]);
}
}
} else {
/* Reduce columns 1, ..., Q of X11, X12, X21, X22 */
i__1 = *q;
for (i__ = 1; i__ <= i__1; ++i__) {
if (i__ == 1) {
i__2 = *p - i__ + 1;
sscal_(&i__2, &z1, &x11[i__ + i__ * x11_dim1], ldx11);
} else {
i__2 = *p - i__ + 1;
r__1 = z1 * cos(phi[i__ - 1]);
sscal_(&i__2, &r__1, &x11[i__ + i__ * x11_dim1], ldx11);
i__2 = *p - i__ + 1;
r__1 = -z1 * z3 * z4 * sin(phi[i__ - 1]);
saxpy_(&i__2, &r__1, &x12[i__ - 1 + i__ * x12_dim1], ldx12, &
x11[i__ + i__ * x11_dim1], ldx11);
}
if (i__ == 1) {
i__2 = *m - *p - i__ + 1;
sscal_(&i__2, &z2, &x21[i__ + i__ * x21_dim1], ldx21);
} else {
i__2 = *m - *p - i__ + 1;
r__1 = z2 * cos(phi[i__ - 1]);
sscal_(&i__2, &r__1, &x21[i__ + i__ * x21_dim1], ldx21);
i__2 = *m - *p - i__ + 1;
r__1 = -z2 * z3 * z4 * sin(phi[i__ - 1]);
saxpy_(&i__2, &r__1, &x22[i__ - 1 + i__ * x22_dim1], ldx22, &
x21[i__ + i__ * x21_dim1], ldx21);
}
i__2 = *m - *p - i__ + 1;
i__3 = *p - i__ + 1;
theta[i__] = atan2(snrm2_(&i__2, &x21[i__ + i__ * x21_dim1],
ldx21), snrm2_(&i__3, &x11[i__ + i__ * x11_dim1], ldx11));
i__2 = *p - i__ + 1;
slarfgp_(&i__2, &x11[i__ + i__ * x11_dim1], &x11[i__ + (i__ + 1) *
x11_dim1], ldx11, &taup1[i__]);
x11[i__ + i__ * x11_dim1] = 1.f;
if (i__ == *m - *p) {
i__2 = *m - *p - i__ + 1;
slarfgp_(&i__2, &x21[i__ + i__ * x21_dim1], &x21[i__ + i__ *
x21_dim1], ldx21, &taup2[i__]);
} else {
i__2 = *m - *p - i__ + 1;
slarfgp_(&i__2, &x21[i__ + i__ * x21_dim1], &x21[i__ + (i__ +
1) * x21_dim1], ldx21, &taup2[i__]);
}
x21[i__ + i__ * x21_dim1] = 1.f;
if (*q > i__) {
i__2 = *q - i__;
i__3 = *p - i__ + 1;
slarf_("R", &i__2, &i__3, &x11[i__ + i__ * x11_dim1], ldx11, &
taup1[i__], &x11[i__ + 1 + i__ * x11_dim1], ldx11, &
work[1]);
}
if (*m - *q + 1 > i__) {
i__2 = *m - *q - i__ + 1;
i__3 = *p - i__ + 1;
slarf_("R", &i__2, &i__3, &x11[i__ + i__ * x11_dim1], ldx11, &
taup1[i__], &x12[i__ + i__ * x12_dim1], ldx12, &work[
1]);
}
if (*q > i__) {
i__2 = *q - i__;
i__3 = *m - *p - i__ + 1;
slarf_("R", &i__2, &i__3, &x21[i__ + i__ * x21_dim1], ldx21, &
taup2[i__], &x21[i__ + 1 + i__ * x21_dim1], ldx21, &
work[1]);
}
if (*m - *q + 1 > i__) {
i__2 = *m - *q - i__ + 1;
i__3 = *m - *p - i__ + 1;
slarf_("R", &i__2, &i__3, &x21[i__ + i__ * x21_dim1], ldx21, &
taup2[i__], &x22[i__ + i__ * x22_dim1], ldx22, &work[
1]);
}
if (i__ < *q) {
i__2 = *q - i__;
r__1 = -z1 * z3 * sin(theta[i__]);
sscal_(&i__2, &r__1, &x11[i__ + 1 + i__ * x11_dim1], &c__1);
i__2 = *q - i__;
r__1 = z2 * z3 * cos(theta[i__]);
saxpy_(&i__2, &r__1, &x21[i__ + 1 + i__ * x21_dim1], &c__1, &
x11[i__ + 1 + i__ * x11_dim1], &c__1);
}
i__2 = *m - *q - i__ + 1;
r__1 = -z1 * z4 * sin(theta[i__]);
sscal_(&i__2, &r__1, &x12[i__ + i__ * x12_dim1], &c__1);
i__2 = *m - *q - i__ + 1;
r__1 = z2 * z4 * cos(theta[i__]);
saxpy_(&i__2, &r__1, &x22[i__ + i__ * x22_dim1], &c__1, &x12[i__
+ i__ * x12_dim1], &c__1);
if (i__ < *q) {
i__2 = *q - i__;
i__3 = *m - *q - i__ + 1;
phi[i__] = atan2(snrm2_(&i__2, &x11[i__ + 1 + i__ * x11_dim1],
&c__1), snrm2_(&i__3, &x12[i__ + i__ * x12_dim1], &
c__1));
}
if (i__ < *q) {
if (*q - i__ == 1) {
i__2 = *q - i__;
slarfgp_(&i__2, &x11[i__ + 1 + i__ * x11_dim1], &x11[i__
+ 1 + i__ * x11_dim1], &c__1, &tauq1[i__]);
} else {
i__2 = *q - i__;
slarfgp_(&i__2, &x11[i__ + 1 + i__ * x11_dim1], &x11[i__
+ 2 + i__ * x11_dim1], &c__1, &tauq1[i__]);
}
x11[i__ + 1 + i__ * x11_dim1] = 1.f;
}
if (*m - *q > i__) {
i__2 = *m - *q - i__ + 1;
slarfgp_(&i__2, &x12[i__ + i__ * x12_dim1], &x12[i__ + 1 +
i__ * x12_dim1], &c__1, &tauq2[i__]);
} else {
i__2 = *m - *q - i__ + 1;
slarfgp_(&i__2, &x12[i__ + i__ * x12_dim1], &x12[i__ + i__ *
x12_dim1], &c__1, &tauq2[i__]);
}
x12[i__ + i__ * x12_dim1] = 1.f;
if (i__ < *q) {
i__2 = *q - i__;
i__3 = *p - i__;
slarf_("L", &i__2, &i__3, &x11[i__ + 1 + i__ * x11_dim1], &
c__1, &tauq1[i__], &x11[i__ + 1 + (i__ + 1) *
x11_dim1], ldx11, &work[1]);
i__2 = *q - i__;
i__3 = *m - *p - i__;
slarf_("L", &i__2, &i__3, &x11[i__ + 1 + i__ * x11_dim1], &
c__1, &tauq1[i__], &x21[i__ + 1 + (i__ + 1) *
x21_dim1], ldx21, &work[1]);
}
i__2 = *m - *q - i__ + 1;
i__3 = *p - i__;
slarf_("L", &i__2, &i__3, &x12[i__ + i__ * x12_dim1], &c__1, &
tauq2[i__], &x12[i__ + (i__ + 1) * x12_dim1], ldx12, &
work[1]);
if (*m - *p - i__ > 0) {
i__2 = *m - *q - i__ + 1;
i__3 = *m - *p - i__;
slarf_("L", &i__2, &i__3, &x12[i__ + i__ * x12_dim1], &c__1, &
tauq2[i__], &x22[i__ + (i__ + 1) * x22_dim1], ldx22, &
work[1]);
}
}
/* Reduce columns Q + 1, ..., P of X12, X22 */
i__1 = *p;
for (i__ = *q + 1; i__ <= i__1; ++i__) {
i__2 = *m - *q - i__ + 1;
r__1 = -z1 * z4;
sscal_(&i__2, &r__1, &x12[i__ + i__ * x12_dim1], &c__1);
i__2 = *m - *q - i__ + 1;
slarfgp_(&i__2, &x12[i__ + i__ * x12_dim1], &x12[i__ + 1 + i__ *
x12_dim1], &c__1, &tauq2[i__]);
x12[i__ + i__ * x12_dim1] = 1.f;
if (*p > i__) {
i__2 = *m - *q - i__ + 1;
i__3 = *p - i__;
slarf_("L", &i__2, &i__3, &x12[i__ + i__ * x12_dim1], &c__1, &
tauq2[i__], &x12[i__ + (i__ + 1) * x12_dim1], ldx12, &
work[1]);
}
if (*m - *p - *q >= 1) {
i__2 = *m - *q - i__ + 1;
i__3 = *m - *p - *q;
slarf_("L", &i__2, &i__3, &x12[i__ + i__ * x12_dim1], &c__1, &
tauq2[i__], &x22[i__ + (*q + 1) * x22_dim1], ldx22, &
work[1]);
}
}
/* Reduce columns P + 1, ..., M - Q of X12, X22 */
i__1 = *m - *p - *q;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = *m - *p - *q - i__ + 1;
r__1 = z2 * z4;
sscal_(&i__2, &r__1, &x22[*p + i__ + (*q + i__) * x22_dim1], &
c__1);
if (*m - *p - *q == i__) {
i__2 = *m - *p - *q - i__ + 1;
slarfgp_(&i__2, &x22[*p + i__ + (*q + i__) * x22_dim1], &x22[*
p + i__ + (*q + i__) * x22_dim1], &c__1, &tauq2[*p +
i__]);
x22[*p + i__ + (*q + i__) * x22_dim1] = 1.f;
} else {
i__2 = *m - *p - *q - i__ + 1;
slarfgp_(&i__2, &x22[*p + i__ + (*q + i__) * x22_dim1], &x22[*
p + i__ + 1 + (*q + i__) * x22_dim1], &c__1, &tauq2[*
p + i__]);
x22[*p + i__ + (*q + i__) * x22_dim1] = 1.f;
i__2 = *m - *p - *q - i__ + 1;
i__3 = *m - *p - *q - i__;
slarf_("L", &i__2, &i__3, &x22[*p + i__ + (*q + i__) *
x22_dim1], &c__1, &tauq2[*p + i__], &x22[*p + i__ + (*
q + i__ + 1) * x22_dim1], ldx22, &work[1]);
}
}
}
return;
/* End of SORBDB */
} /* sorbdb_ */