1189 lines
31 KiB
C
1189 lines
31 KiB
C
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <complex.h>
|
|
#ifdef complex
|
|
#undef complex
|
|
#endif
|
|
#ifdef I
|
|
#undef I
|
|
#endif
|
|
|
|
#if defined(_WIN64)
|
|
typedef long long BLASLONG;
|
|
typedef unsigned long long BLASULONG;
|
|
#else
|
|
typedef long BLASLONG;
|
|
typedef unsigned long BLASULONG;
|
|
#endif
|
|
|
|
#ifdef LAPACK_ILP64
|
|
typedef BLASLONG blasint;
|
|
#if defined(_WIN64)
|
|
#define blasabs(x) llabs(x)
|
|
#else
|
|
#define blasabs(x) labs(x)
|
|
#endif
|
|
#else
|
|
typedef int blasint;
|
|
#define blasabs(x) abs(x)
|
|
#endif
|
|
|
|
typedef blasint integer;
|
|
|
|
typedef unsigned int uinteger;
|
|
typedef char *address;
|
|
typedef short int shortint;
|
|
typedef float real;
|
|
typedef double doublereal;
|
|
typedef struct { real r, i; } complex;
|
|
typedef struct { doublereal r, i; } doublecomplex;
|
|
#ifdef _MSC_VER
|
|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
|
|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
|
|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
|
|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
|
|
#else
|
|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
|
|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
|
|
#endif
|
|
#define pCf(z) (*_pCf(z))
|
|
#define pCd(z) (*_pCd(z))
|
|
typedef blasint logical;
|
|
|
|
typedef char logical1;
|
|
typedef char integer1;
|
|
|
|
#define TRUE_ (1)
|
|
#define FALSE_ (0)
|
|
|
|
/* Extern is for use with -E */
|
|
#ifndef Extern
|
|
#define Extern extern
|
|
#endif
|
|
|
|
/* I/O stuff */
|
|
|
|
typedef int flag;
|
|
typedef int ftnlen;
|
|
typedef int ftnint;
|
|
|
|
/*external read, write*/
|
|
typedef struct
|
|
{ flag cierr;
|
|
ftnint ciunit;
|
|
flag ciend;
|
|
char *cifmt;
|
|
ftnint cirec;
|
|
} cilist;
|
|
|
|
/*internal read, write*/
|
|
typedef struct
|
|
{ flag icierr;
|
|
char *iciunit;
|
|
flag iciend;
|
|
char *icifmt;
|
|
ftnint icirlen;
|
|
ftnint icirnum;
|
|
} icilist;
|
|
|
|
/*open*/
|
|
typedef struct
|
|
{ flag oerr;
|
|
ftnint ounit;
|
|
char *ofnm;
|
|
ftnlen ofnmlen;
|
|
char *osta;
|
|
char *oacc;
|
|
char *ofm;
|
|
ftnint orl;
|
|
char *oblnk;
|
|
} olist;
|
|
|
|
/*close*/
|
|
typedef struct
|
|
{ flag cerr;
|
|
ftnint cunit;
|
|
char *csta;
|
|
} cllist;
|
|
|
|
/*rewind, backspace, endfile*/
|
|
typedef struct
|
|
{ flag aerr;
|
|
ftnint aunit;
|
|
} alist;
|
|
|
|
/* inquire */
|
|
typedef struct
|
|
{ flag inerr;
|
|
ftnint inunit;
|
|
char *infile;
|
|
ftnlen infilen;
|
|
ftnint *inex; /*parameters in standard's order*/
|
|
ftnint *inopen;
|
|
ftnint *innum;
|
|
ftnint *innamed;
|
|
char *inname;
|
|
ftnlen innamlen;
|
|
char *inacc;
|
|
ftnlen inacclen;
|
|
char *inseq;
|
|
ftnlen inseqlen;
|
|
char *indir;
|
|
ftnlen indirlen;
|
|
char *infmt;
|
|
ftnlen infmtlen;
|
|
char *inform;
|
|
ftnint informlen;
|
|
char *inunf;
|
|
ftnlen inunflen;
|
|
ftnint *inrecl;
|
|
ftnint *innrec;
|
|
char *inblank;
|
|
ftnlen inblanklen;
|
|
} inlist;
|
|
|
|
#define VOID void
|
|
|
|
union Multitype { /* for multiple entry points */
|
|
integer1 g;
|
|
shortint h;
|
|
integer i;
|
|
/* longint j; */
|
|
real r;
|
|
doublereal d;
|
|
complex c;
|
|
doublecomplex z;
|
|
};
|
|
|
|
typedef union Multitype Multitype;
|
|
|
|
struct Vardesc { /* for Namelist */
|
|
char *name;
|
|
char *addr;
|
|
ftnlen *dims;
|
|
int type;
|
|
};
|
|
typedef struct Vardesc Vardesc;
|
|
|
|
struct Namelist {
|
|
char *name;
|
|
Vardesc **vars;
|
|
int nvars;
|
|
};
|
|
typedef struct Namelist Namelist;
|
|
|
|
#define abs(x) ((x) >= 0 ? (x) : -(x))
|
|
#define dabs(x) (fabs(x))
|
|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
|
|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
|
|
#define dmin(a,b) (f2cmin(a,b))
|
|
#define dmax(a,b) (f2cmax(a,b))
|
|
#define bit_test(a,b) ((a) >> (b) & 1)
|
|
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
|
|
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
|
|
|
|
#define abort_() { sig_die("Fortran abort routine called", 1); }
|
|
#define c_abs(z) (cabsf(Cf(z)))
|
|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
|
|
#ifdef _MSC_VER
|
|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
|
|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
|
|
#else
|
|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
|
|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
|
|
#endif
|
|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
|
|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
|
|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
|
|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
|
|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
|
|
#define d_abs(x) (fabs(*(x)))
|
|
#define d_acos(x) (acos(*(x)))
|
|
#define d_asin(x) (asin(*(x)))
|
|
#define d_atan(x) (atan(*(x)))
|
|
#define d_atn2(x, y) (atan2(*(x),*(y)))
|
|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
|
|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
|
|
#define d_cos(x) (cos(*(x)))
|
|
#define d_cosh(x) (cosh(*(x)))
|
|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
|
|
#define d_exp(x) (exp(*(x)))
|
|
#define d_imag(z) (cimag(Cd(z)))
|
|
#define r_imag(z) (cimagf(Cf(z)))
|
|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define d_log(x) (log(*(x)))
|
|
#define d_mod(x, y) (fmod(*(x), *(y)))
|
|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
|
|
#define d_nint(x) u_nint(*(x))
|
|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
|
|
#define d_sign(a,b) u_sign(*(a),*(b))
|
|
#define r_sign(a,b) u_sign(*(a),*(b))
|
|
#define d_sin(x) (sin(*(x)))
|
|
#define d_sinh(x) (sinh(*(x)))
|
|
#define d_sqrt(x) (sqrt(*(x)))
|
|
#define d_tan(x) (tan(*(x)))
|
|
#define d_tanh(x) (tanh(*(x)))
|
|
#define i_abs(x) abs(*(x))
|
|
#define i_dnnt(x) ((integer)u_nint(*(x)))
|
|
#define i_len(s, n) (n)
|
|
#define i_nint(x) ((integer)u_nint(*(x)))
|
|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
|
|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
|
|
#define pow_si(B,E) spow_ui(*(B),*(E))
|
|
#define pow_ri(B,E) spow_ui(*(B),*(E))
|
|
#define pow_di(B,E) dpow_ui(*(B),*(E))
|
|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
|
|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
|
|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
|
|
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
|
|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
|
|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
|
|
#define sig_die(s, kill) { exit(1); }
|
|
#define s_stop(s, n) {exit(0);}
|
|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
|
|
#define z_abs(z) (cabs(Cd(z)))
|
|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
|
|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
|
|
#define myexit_() break;
|
|
#define mycycle() continue;
|
|
#define myceiling(w) {ceil(w)}
|
|
#define myhuge(w) {HUGE_VAL}
|
|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
|
|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
|
|
|
|
/* procedure parameter types for -A and -C++ */
|
|
|
|
|
|
#ifdef __cplusplus
|
|
typedef logical (*L_fp)(...);
|
|
#else
|
|
typedef logical (*L_fp)();
|
|
#endif
|
|
|
|
static float spow_ui(float x, integer n) {
|
|
float pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
static double dpow_ui(double x, integer n) {
|
|
double pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#ifdef _MSC_VER
|
|
static _Fcomplex cpow_ui(complex x, integer n) {
|
|
complex pow={1.0,0.0}; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow.r *= x.r, pow.i *= x.i;
|
|
if(u >>= 1) x.r *= x.r, x.i *= x.i;
|
|
else break;
|
|
}
|
|
}
|
|
_Fcomplex p={pow.r, pow.i};
|
|
return p;
|
|
}
|
|
#else
|
|
static _Complex float cpow_ui(_Complex float x, integer n) {
|
|
_Complex float pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#endif
|
|
#ifdef _MSC_VER
|
|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
|
|
_Dcomplex pow={1.0,0.0}; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
|
|
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
|
|
else break;
|
|
}
|
|
}
|
|
_Dcomplex p = {pow._Val[0], pow._Val[1]};
|
|
return p;
|
|
}
|
|
#else
|
|
static _Complex double zpow_ui(_Complex double x, integer n) {
|
|
_Complex double pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#endif
|
|
static integer pow_ii(integer x, integer n) {
|
|
integer pow; unsigned long int u;
|
|
if (n <= 0) {
|
|
if (n == 0 || x == 1) pow = 1;
|
|
else if (x != -1) pow = x == 0 ? 1/x : 0;
|
|
else n = -n;
|
|
}
|
|
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
|
|
u = n;
|
|
for(pow = 1; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
|
|
{
|
|
double m; integer i, mi;
|
|
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
|
if (w[i-1]>m) mi=i ,m=w[i-1];
|
|
return mi-s+1;
|
|
}
|
|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
|
|
{
|
|
float m; integer i, mi;
|
|
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
|
if (w[i-1]>m) mi=i ,m=w[i-1];
|
|
return mi-s+1;
|
|
}
|
|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Fcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
|
|
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex float zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Dcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
|
|
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex double zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Fcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
|
|
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex float zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cf(&x[i]) * Cf(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Dcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
|
|
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex double zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cd(&x[i]) * Cd(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#endif
|
|
/* -- translated by f2c (version 20000121).
|
|
You must link the resulting object file with the libraries:
|
|
-lf2c -lm (in that order)
|
|
*/
|
|
|
|
|
|
|
|
|
|
/* Table of constant values */
|
|
|
|
static integer c__1 = 1;
|
|
static integer c__2 = 2;
|
|
|
|
/* > \brief \b SLASQ2 computes all the eigenvalues of the symmetric positive definite tridiagonal matrix assoc
|
|
iated with the qd Array Z to high relative accuracy. Used by sbdsqr and sstegr. */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* > \htmlonly */
|
|
/* > Download SLASQ2 + dependencies */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasq2.
|
|
f"> */
|
|
/* > [TGZ]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasq2.
|
|
f"> */
|
|
/* > [ZIP]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasq2.
|
|
f"> */
|
|
/* > [TXT]</a> */
|
|
/* > \endhtmlonly */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* SUBROUTINE SLASQ2( N, Z, INFO ) */
|
|
|
|
/* INTEGER INFO, N */
|
|
/* REAL Z( * ) */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > SLASQ2 computes all the eigenvalues of the symmetric positive */
|
|
/* > definite tridiagonal matrix associated with the qd array Z to high */
|
|
/* > relative accuracy are computed to high relative accuracy, in the */
|
|
/* > absence of denormalization, underflow and overflow. */
|
|
/* > */
|
|
/* > To see the relation of Z to the tridiagonal matrix, let L be a */
|
|
/* > unit lower bidiagonal matrix with subdiagonals Z(2,4,6,,..) and */
|
|
/* > let U be an upper bidiagonal matrix with 1's above and diagonal */
|
|
/* > Z(1,3,5,,..). The tridiagonal is L*U or, if you prefer, the */
|
|
/* > symmetric tridiagonal to which it is similar. */
|
|
/* > */
|
|
/* > Note : SLASQ2 defines a logical variable, IEEE, which is true */
|
|
/* > on machines which follow ieee-754 floating-point standard in their */
|
|
/* > handling of infinities and NaNs, and false otherwise. This variable */
|
|
/* > is passed to SLASQ3. */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > The number of rows and columns in the matrix. N >= 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] Z */
|
|
/* > \verbatim */
|
|
/* > Z is REAL array, dimension ( 4*N ) */
|
|
/* > On entry Z holds the qd array. On exit, entries 1 to N hold */
|
|
/* > the eigenvalues in decreasing order, Z( 2*N+1 ) holds the */
|
|
/* > trace, and Z( 2*N+2 ) holds the sum of the eigenvalues. If */
|
|
/* > N > 2, then Z( 2*N+3 ) holds the iteration count, Z( 2*N+4 ) */
|
|
/* > holds NDIVS/NIN^2, and Z( 2*N+5 ) holds the percentage of */
|
|
/* > shifts that failed. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] INFO */
|
|
/* > \verbatim */
|
|
/* > INFO is INTEGER */
|
|
/* > = 0: successful exit */
|
|
/* > < 0: if the i-th argument is a scalar and had an illegal */
|
|
/* > value, then INFO = -i, if the i-th argument is an */
|
|
/* > array and the j-entry had an illegal value, then */
|
|
/* > INFO = -(i*100+j) */
|
|
/* > > 0: the algorithm failed */
|
|
/* > = 1, a split was marked by a positive value in E */
|
|
/* > = 2, current block of Z not diagonalized after 100*N */
|
|
/* > iterations (in inner while loop). On exit Z holds */
|
|
/* > a qd array with the same eigenvalues as the given Z. */
|
|
/* > = 3, termination criterion of outer while loop not met */
|
|
/* > (program created more than N unreduced blocks) */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \date December 2016 */
|
|
|
|
/* > \ingroup auxOTHERcomputational */
|
|
|
|
/* > \par Further Details: */
|
|
/* ===================== */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > Local Variables: I0:N0 defines a current unreduced segment of Z. */
|
|
/* > The shifts are accumulated in SIGMA. Iteration count is in ITER. */
|
|
/* > Ping-pong is controlled by PP (alternates between 0 and 1). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* ===================================================================== */
|
|
/* Subroutine */ void slasq2_(integer *n, real *z__, integer *info)
|
|
{
|
|
/* System generated locals */
|
|
integer i__1, i__2, i__3;
|
|
real r__1, r__2;
|
|
|
|
/* Local variables */
|
|
logical ieee;
|
|
integer nbig;
|
|
real dmin__, emin, emax;
|
|
integer kmin, ndiv, iter;
|
|
real qmin, temp, qmax, zmax;
|
|
integer splt;
|
|
real dmin1, dmin2, d__, e, g;
|
|
integer k;
|
|
real s, t;
|
|
integer nfail;
|
|
real desig, trace, sigma;
|
|
integer iinfo;
|
|
real tempe, tempq;
|
|
integer i0, i1, i4, n0, n1, ttype;
|
|
extern /* Subroutine */ void slasq3_(integer *, integer *, real *, integer
|
|
*, real *, real *, real *, real *, integer *, integer *, integer *
|
|
, logical *, integer *, real *, real *, real *, real *, real *,
|
|
real *, real *);
|
|
real dn;
|
|
integer pp;
|
|
real deemin;
|
|
extern real slamch_(char *);
|
|
integer iwhila, iwhilb;
|
|
real oldemn, safmin;
|
|
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
|
|
real dn1, dn2;
|
|
extern /* Subroutine */ void slasrt_(char *, integer *, real *, integer *);
|
|
real dee, eps, tau, tol;
|
|
integer ipn4;
|
|
real tol2;
|
|
|
|
|
|
/* -- LAPACK computational routine (version 3.7.0) -- */
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
/* December 2016 */
|
|
|
|
|
|
/* ===================================================================== */
|
|
|
|
|
|
/* Test the input arguments. */
|
|
/* (in case SLASQ2 is not called by SLASQ1) */
|
|
|
|
/* Parameter adjustments */
|
|
--z__;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
eps = slamch_("Precision");
|
|
safmin = slamch_("Safe minimum");
|
|
tol = eps * 100.f;
|
|
/* Computing 2nd power */
|
|
r__1 = tol;
|
|
tol2 = r__1 * r__1;
|
|
|
|
if (*n < 0) {
|
|
*info = -1;
|
|
xerbla_("SLASQ2", &c__1, (ftnlen)6);
|
|
return;
|
|
} else if (*n == 0) {
|
|
return;
|
|
} else if (*n == 1) {
|
|
|
|
/* 1-by-1 case. */
|
|
|
|
if (z__[1] < 0.f) {
|
|
*info = -201;
|
|
xerbla_("SLASQ2", &c__2, (ftnlen)6);
|
|
}
|
|
return;
|
|
} else if (*n == 2) {
|
|
|
|
/* 2-by-2 case. */
|
|
|
|
if (z__[1] < 0.f) {
|
|
*info = -201;
|
|
xerbla_("SLASQ2", &c__2, (ftnlen)6);
|
|
return;
|
|
} else if (z__[2] < 0.f) {
|
|
*info = -202;
|
|
xerbla_("SLASQ2", &c__2, (ftnlen)6);
|
|
return;
|
|
} else if (z__[3] < 0.f) {
|
|
*info = -203;
|
|
xerbla_("SLASQ2", &c__2, (ftnlen)6);
|
|
return;
|
|
} else if (z__[3] > z__[1]) {
|
|
d__ = z__[3];
|
|
z__[3] = z__[1];
|
|
z__[1] = d__;
|
|
}
|
|
z__[5] = z__[1] + z__[2] + z__[3];
|
|
if (z__[2] > z__[3] * tol2) {
|
|
t = (z__[1] - z__[3] + z__[2]) * .5f;
|
|
s = z__[3] * (z__[2] / t);
|
|
if (s <= t) {
|
|
s = z__[3] * (z__[2] / (t * (sqrt(s / t + 1.f) + 1.f)));
|
|
} else {
|
|
s = z__[3] * (z__[2] / (t + sqrt(t) * sqrt(t + s)));
|
|
}
|
|
t = z__[1] + (s + z__[2]);
|
|
z__[3] *= z__[1] / t;
|
|
z__[1] = t;
|
|
}
|
|
z__[2] = z__[3];
|
|
z__[6] = z__[2] + z__[1];
|
|
return;
|
|
}
|
|
|
|
/* Check for negative data and compute sums of q's and e's. */
|
|
|
|
z__[*n * 2] = 0.f;
|
|
emin = z__[2];
|
|
qmax = 0.f;
|
|
zmax = 0.f;
|
|
d__ = 0.f;
|
|
e = 0.f;
|
|
|
|
i__1 = *n - 1 << 1;
|
|
for (k = 1; k <= i__1; k += 2) {
|
|
if (z__[k] < 0.f) {
|
|
*info = -(k + 200);
|
|
xerbla_("SLASQ2", &c__2, (ftnlen)6);
|
|
return;
|
|
} else if (z__[k + 1] < 0.f) {
|
|
*info = -(k + 201);
|
|
xerbla_("SLASQ2", &c__2, (ftnlen)6);
|
|
return;
|
|
}
|
|
d__ += z__[k];
|
|
e += z__[k + 1];
|
|
/* Computing MAX */
|
|
r__1 = qmax, r__2 = z__[k];
|
|
qmax = f2cmax(r__1,r__2);
|
|
/* Computing MIN */
|
|
r__1 = emin, r__2 = z__[k + 1];
|
|
emin = f2cmin(r__1,r__2);
|
|
/* Computing MAX */
|
|
r__1 = f2cmax(qmax,zmax), r__2 = z__[k + 1];
|
|
zmax = f2cmax(r__1,r__2);
|
|
/* L10: */
|
|
}
|
|
if (z__[(*n << 1) - 1] < 0.f) {
|
|
*info = -((*n << 1) + 199);
|
|
xerbla_("SLASQ2", &c__2, (ftnlen)6);
|
|
return;
|
|
}
|
|
d__ += z__[(*n << 1) - 1];
|
|
/* Computing MAX */
|
|
r__1 = qmax, r__2 = z__[(*n << 1) - 1];
|
|
qmax = f2cmax(r__1,r__2);
|
|
zmax = f2cmax(qmax,zmax);
|
|
|
|
/* Check for diagonality. */
|
|
|
|
if (e == 0.f) {
|
|
i__1 = *n;
|
|
for (k = 2; k <= i__1; ++k) {
|
|
z__[k] = z__[(k << 1) - 1];
|
|
/* L20: */
|
|
}
|
|
slasrt_("D", n, &z__[1], &iinfo);
|
|
z__[(*n << 1) - 1] = d__;
|
|
return;
|
|
}
|
|
|
|
trace = d__ + e;
|
|
|
|
/* Check for zero data. */
|
|
|
|
if (trace == 0.f) {
|
|
z__[(*n << 1) - 1] = 0.f;
|
|
return;
|
|
}
|
|
|
|
/* Check whether the machine is IEEE conformable. */
|
|
|
|
/* IEEE = ILAENV( 10, 'SLASQ2', 'N', 1, 2, 3, 4 ).EQ.1 .AND. */
|
|
/* $ ILAENV( 11, 'SLASQ2', 'N', 1, 2, 3, 4 ).EQ.1 */
|
|
|
|
/* [11/15/2008] The case IEEE=.TRUE. has a problem in single precision with */
|
|
/* some the test matrices of type 16. The double precision code is fine. */
|
|
|
|
ieee = FALSE_;
|
|
|
|
/* Rearrange data for locality: Z=(q1,qq1,e1,ee1,q2,qq2,e2,ee2,...). */
|
|
|
|
for (k = *n << 1; k >= 2; k += -2) {
|
|
z__[k * 2] = 0.f;
|
|
z__[(k << 1) - 1] = z__[k];
|
|
z__[(k << 1) - 2] = 0.f;
|
|
z__[(k << 1) - 3] = z__[k - 1];
|
|
/* L30: */
|
|
}
|
|
|
|
i0 = 1;
|
|
n0 = *n;
|
|
|
|
/* Reverse the qd-array, if warranted. */
|
|
|
|
if (z__[(i0 << 2) - 3] * 1.5f < z__[(n0 << 2) - 3]) {
|
|
ipn4 = i0 + n0 << 2;
|
|
i__1 = i0 + n0 - 1 << 1;
|
|
for (i4 = i0 << 2; i4 <= i__1; i4 += 4) {
|
|
temp = z__[i4 - 3];
|
|
z__[i4 - 3] = z__[ipn4 - i4 - 3];
|
|
z__[ipn4 - i4 - 3] = temp;
|
|
temp = z__[i4 - 1];
|
|
z__[i4 - 1] = z__[ipn4 - i4 - 5];
|
|
z__[ipn4 - i4 - 5] = temp;
|
|
/* L40: */
|
|
}
|
|
}
|
|
|
|
/* Initial split checking via dqd and Li's test. */
|
|
|
|
pp = 0;
|
|
|
|
for (k = 1; k <= 2; ++k) {
|
|
|
|
d__ = z__[(n0 << 2) + pp - 3];
|
|
i__1 = (i0 << 2) + pp;
|
|
for (i4 = (n0 - 1 << 2) + pp; i4 >= i__1; i4 += -4) {
|
|
if (z__[i4 - 1] <= tol2 * d__) {
|
|
z__[i4 - 1] = 0.f;
|
|
d__ = z__[i4 - 3];
|
|
} else {
|
|
d__ = z__[i4 - 3] * (d__ / (d__ + z__[i4 - 1]));
|
|
}
|
|
/* L50: */
|
|
}
|
|
|
|
/* dqd maps Z to ZZ plus Li's test. */
|
|
|
|
emin = z__[(i0 << 2) + pp + 1];
|
|
d__ = z__[(i0 << 2) + pp - 3];
|
|
i__1 = (n0 - 1 << 2) + pp;
|
|
for (i4 = (i0 << 2) + pp; i4 <= i__1; i4 += 4) {
|
|
z__[i4 - (pp << 1) - 2] = d__ + z__[i4 - 1];
|
|
if (z__[i4 - 1] <= tol2 * d__) {
|
|
z__[i4 - 1] = 0.f;
|
|
z__[i4 - (pp << 1) - 2] = d__;
|
|
z__[i4 - (pp << 1)] = 0.f;
|
|
d__ = z__[i4 + 1];
|
|
} else if (safmin * z__[i4 + 1] < z__[i4 - (pp << 1) - 2] &&
|
|
safmin * z__[i4 - (pp << 1) - 2] < z__[i4 + 1]) {
|
|
temp = z__[i4 + 1] / z__[i4 - (pp << 1) - 2];
|
|
z__[i4 - (pp << 1)] = z__[i4 - 1] * temp;
|
|
d__ *= temp;
|
|
} else {
|
|
z__[i4 - (pp << 1)] = z__[i4 + 1] * (z__[i4 - 1] / z__[i4 - (
|
|
pp << 1) - 2]);
|
|
d__ = z__[i4 + 1] * (d__ / z__[i4 - (pp << 1) - 2]);
|
|
}
|
|
/* Computing MIN */
|
|
r__1 = emin, r__2 = z__[i4 - (pp << 1)];
|
|
emin = f2cmin(r__1,r__2);
|
|
/* L60: */
|
|
}
|
|
z__[(n0 << 2) - pp - 2] = d__;
|
|
|
|
/* Now find qmax. */
|
|
|
|
qmax = z__[(i0 << 2) - pp - 2];
|
|
i__1 = (n0 << 2) - pp - 2;
|
|
for (i4 = (i0 << 2) - pp + 2; i4 <= i__1; i4 += 4) {
|
|
/* Computing MAX */
|
|
r__1 = qmax, r__2 = z__[i4];
|
|
qmax = f2cmax(r__1,r__2);
|
|
/* L70: */
|
|
}
|
|
|
|
/* Prepare for the next iteration on K. */
|
|
|
|
pp = 1 - pp;
|
|
/* L80: */
|
|
}
|
|
|
|
/* Initialise variables to pass to SLASQ3. */
|
|
|
|
ttype = 0;
|
|
dmin1 = 0.f;
|
|
dmin2 = 0.f;
|
|
dn = 0.f;
|
|
dn1 = 0.f;
|
|
dn2 = 0.f;
|
|
g = 0.f;
|
|
tau = 0.f;
|
|
|
|
iter = 2;
|
|
nfail = 0;
|
|
ndiv = n0 - i0 << 1;
|
|
|
|
i__1 = *n + 1;
|
|
for (iwhila = 1; iwhila <= i__1; ++iwhila) {
|
|
if (n0 < 1) {
|
|
goto L170;
|
|
}
|
|
|
|
/* While array unfinished do */
|
|
|
|
/* E(N0) holds the value of SIGMA when submatrix in I0:N0 */
|
|
/* splits from the rest of the array, but is negated. */
|
|
|
|
desig = 0.f;
|
|
if (n0 == *n) {
|
|
sigma = 0.f;
|
|
} else {
|
|
sigma = -z__[(n0 << 2) - 1];
|
|
}
|
|
if (sigma < 0.f) {
|
|
*info = 1;
|
|
return;
|
|
}
|
|
|
|
/* Find last unreduced submatrix's top index I0, find QMAX and */
|
|
/* EMIN. Find Gershgorin-type bound if Q's much greater than E's. */
|
|
|
|
emax = 0.f;
|
|
if (n0 > i0) {
|
|
emin = (r__1 = z__[(n0 << 2) - 5], abs(r__1));
|
|
} else {
|
|
emin = 0.f;
|
|
}
|
|
qmin = z__[(n0 << 2) - 3];
|
|
qmax = qmin;
|
|
for (i4 = n0 << 2; i4 >= 8; i4 += -4) {
|
|
if (z__[i4 - 5] <= 0.f) {
|
|
goto L100;
|
|
}
|
|
if (qmin >= emax * 4.f) {
|
|
/* Computing MIN */
|
|
r__1 = qmin, r__2 = z__[i4 - 3];
|
|
qmin = f2cmin(r__1,r__2);
|
|
/* Computing MAX */
|
|
r__1 = emax, r__2 = z__[i4 - 5];
|
|
emax = f2cmax(r__1,r__2);
|
|
}
|
|
/* Computing MAX */
|
|
r__1 = qmax, r__2 = z__[i4 - 7] + z__[i4 - 5];
|
|
qmax = f2cmax(r__1,r__2);
|
|
/* Computing MIN */
|
|
r__1 = emin, r__2 = z__[i4 - 5];
|
|
emin = f2cmin(r__1,r__2);
|
|
/* L90: */
|
|
}
|
|
i4 = 4;
|
|
|
|
L100:
|
|
i0 = i4 / 4;
|
|
pp = 0;
|
|
|
|
if (n0 - i0 > 1) {
|
|
dee = z__[(i0 << 2) - 3];
|
|
deemin = dee;
|
|
kmin = i0;
|
|
i__2 = (n0 << 2) - 3;
|
|
for (i4 = (i0 << 2) + 1; i4 <= i__2; i4 += 4) {
|
|
dee = z__[i4] * (dee / (dee + z__[i4 - 2]));
|
|
if (dee <= deemin) {
|
|
deemin = dee;
|
|
kmin = (i4 + 3) / 4;
|
|
}
|
|
/* L110: */
|
|
}
|
|
if (kmin - i0 << 1 < n0 - kmin && deemin <= z__[(n0 << 2) - 3] *
|
|
.5f) {
|
|
ipn4 = i0 + n0 << 2;
|
|
pp = 2;
|
|
i__2 = i0 + n0 - 1 << 1;
|
|
for (i4 = i0 << 2; i4 <= i__2; i4 += 4) {
|
|
temp = z__[i4 - 3];
|
|
z__[i4 - 3] = z__[ipn4 - i4 - 3];
|
|
z__[ipn4 - i4 - 3] = temp;
|
|
temp = z__[i4 - 2];
|
|
z__[i4 - 2] = z__[ipn4 - i4 - 2];
|
|
z__[ipn4 - i4 - 2] = temp;
|
|
temp = z__[i4 - 1];
|
|
z__[i4 - 1] = z__[ipn4 - i4 - 5];
|
|
z__[ipn4 - i4 - 5] = temp;
|
|
temp = z__[i4];
|
|
z__[i4] = z__[ipn4 - i4 - 4];
|
|
z__[ipn4 - i4 - 4] = temp;
|
|
/* L120: */
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Put -(initial shift) into DMIN. */
|
|
|
|
/* Computing MAX */
|
|
r__1 = 0.f, r__2 = qmin - sqrt(qmin) * 2.f * sqrt(emax);
|
|
dmin__ = -f2cmax(r__1,r__2);
|
|
|
|
/* Now I0:N0 is unreduced. */
|
|
/* PP = 0 for ping, PP = 1 for pong. */
|
|
/* PP = 2 indicates that flipping was applied to the Z array and */
|
|
/* and that the tests for deflation upon entry in SLASQ3 */
|
|
/* should not be performed. */
|
|
|
|
nbig = (n0 - i0 + 1) * 100;
|
|
i__2 = nbig;
|
|
for (iwhilb = 1; iwhilb <= i__2; ++iwhilb) {
|
|
if (i0 > n0) {
|
|
goto L150;
|
|
}
|
|
|
|
/* While submatrix unfinished take a good dqds step. */
|
|
|
|
slasq3_(&i0, &n0, &z__[1], &pp, &dmin__, &sigma, &desig, &qmax, &
|
|
nfail, &iter, &ndiv, &ieee, &ttype, &dmin1, &dmin2, &dn, &
|
|
dn1, &dn2, &g, &tau);
|
|
|
|
pp = 1 - pp;
|
|
|
|
/* When EMIN is very small check for splits. */
|
|
|
|
if (pp == 0 && n0 - i0 >= 3) {
|
|
if (z__[n0 * 4] <= tol2 * qmax || z__[(n0 << 2) - 1] <= tol2 *
|
|
sigma) {
|
|
splt = i0 - 1;
|
|
qmax = z__[(i0 << 2) - 3];
|
|
emin = z__[(i0 << 2) - 1];
|
|
oldemn = z__[i0 * 4];
|
|
i__3 = n0 - 3 << 2;
|
|
for (i4 = i0 << 2; i4 <= i__3; i4 += 4) {
|
|
if (z__[i4] <= tol2 * z__[i4 - 3] || z__[i4 - 1] <=
|
|
tol2 * sigma) {
|
|
z__[i4 - 1] = -sigma;
|
|
splt = i4 / 4;
|
|
qmax = 0.f;
|
|
emin = z__[i4 + 3];
|
|
oldemn = z__[i4 + 4];
|
|
} else {
|
|
/* Computing MAX */
|
|
r__1 = qmax, r__2 = z__[i4 + 1];
|
|
qmax = f2cmax(r__1,r__2);
|
|
/* Computing MIN */
|
|
r__1 = emin, r__2 = z__[i4 - 1];
|
|
emin = f2cmin(r__1,r__2);
|
|
/* Computing MIN */
|
|
r__1 = oldemn, r__2 = z__[i4];
|
|
oldemn = f2cmin(r__1,r__2);
|
|
}
|
|
/* L130: */
|
|
}
|
|
z__[(n0 << 2) - 1] = emin;
|
|
z__[n0 * 4] = oldemn;
|
|
i0 = splt + 1;
|
|
}
|
|
}
|
|
|
|
/* L140: */
|
|
}
|
|
|
|
*info = 2;
|
|
|
|
/* Maximum number of iterations exceeded, restore the shift */
|
|
/* SIGMA and place the new d's and e's in a qd array. */
|
|
/* This might need to be done for several blocks */
|
|
|
|
i1 = i0;
|
|
n1 = n0;
|
|
L145:
|
|
tempq = z__[(i0 << 2) - 3];
|
|
z__[(i0 << 2) - 3] += sigma;
|
|
i__2 = n0;
|
|
for (k = i0 + 1; k <= i__2; ++k) {
|
|
tempe = z__[(k << 2) - 5];
|
|
z__[(k << 2) - 5] *= tempq / z__[(k << 2) - 7];
|
|
tempq = z__[(k << 2) - 3];
|
|
z__[(k << 2) - 3] = z__[(k << 2) - 3] + sigma + tempe - z__[(k <<
|
|
2) - 5];
|
|
}
|
|
|
|
/* Prepare to do this on the previous block if there is one */
|
|
|
|
if (i1 > 1) {
|
|
n1 = i1 - 1;
|
|
while(i1 >= 2 && z__[(i1 << 2) - 5] >= 0.f) {
|
|
--i1;
|
|
}
|
|
if (i1 >= 1) {
|
|
sigma = -z__[(n1 << 2) - 1];
|
|
goto L145;
|
|
}
|
|
}
|
|
i__2 = *n;
|
|
for (k = 1; k <= i__2; ++k) {
|
|
z__[(k << 1) - 1] = z__[(k << 2) - 3];
|
|
|
|
/* Only the block 1..N0 is unfinished. The rest of the e's */
|
|
/* must be essentially zero, although sometimes other data */
|
|
/* has been stored in them. */
|
|
|
|
if (k < n0) {
|
|
z__[k * 2] = z__[(k << 2) - 1];
|
|
} else {
|
|
z__[k * 2] = 0.f;
|
|
}
|
|
}
|
|
return;
|
|
|
|
/* end IWHILB */
|
|
|
|
L150:
|
|
|
|
/* L160: */
|
|
;
|
|
}
|
|
|
|
*info = 3;
|
|
return;
|
|
|
|
/* end IWHILA */
|
|
|
|
L170:
|
|
|
|
/* Move q's to the front. */
|
|
|
|
i__1 = *n;
|
|
for (k = 2; k <= i__1; ++k) {
|
|
z__[k] = z__[(k << 2) - 3];
|
|
/* L180: */
|
|
}
|
|
|
|
/* Sort and compute sum of eigenvalues. */
|
|
|
|
slasrt_("D", n, &z__[1], &iinfo);
|
|
|
|
e = 0.f;
|
|
for (k = *n; k >= 1; --k) {
|
|
e += z__[k];
|
|
/* L190: */
|
|
}
|
|
|
|
/* Store trace, sum(eigenvalues) and information on performance. */
|
|
|
|
z__[(*n << 1) + 1] = trace;
|
|
z__[(*n << 1) + 2] = e;
|
|
z__[(*n << 1) + 3] = (real) iter;
|
|
/* Computing 2nd power */
|
|
i__1 = *n;
|
|
z__[(*n << 1) + 4] = (real) ndiv / (real) (i__1 * i__1);
|
|
z__[(*n << 1) + 5] = nfail * 100.f / (real) iter;
|
|
return;
|
|
|
|
/* End of SLASQ2 */
|
|
|
|
} /* slasq2_ */
|
|
|