OpenBLAS/lapack-netlib/SRC/slasda.c

1093 lines
33 KiB
C

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif
#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif
#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif
typedef blasint integer;
typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
#ifdef _MSC_VER
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
#else
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#endif
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef blasint logical;
typedef char logical1;
typedef char integer1;
#define TRUE_ (1)
#define FALSE_ (0)
/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif
/* I/O stuff */
typedef int flag;
typedef int ftnlen;
typedef int ftnint;
/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;
/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;
/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;
/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;
/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;
/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;
#define VOID void
union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};
typedef union Multitype Multitype;
struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;
struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;
#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#ifdef _MSC_VER
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
#else
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#endif
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimagf(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
/* procedure parameter types for -A and -C++ */
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif
static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#ifdef _MSC_VER
static _Fcomplex cpow_ui(complex x, integer n) {
complex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
for(u = n; ; ) {
if(u & 01) pow.r *= x.r, pow.i *= x.i;
if(u >>= 1) x.r *= x.r, x.i *= x.i;
else break;
}
}
_Fcomplex p={pow.r, pow.i};
return p;
}
#else
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
#ifdef _MSC_VER
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
_Dcomplex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
for(u = n; ; ) {
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
else break;
}
}
_Dcomplex p = {pow._Val[0], pow._Val[1]};
return p;
}
#else
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
/* Table of constant values */
static integer c__0 = 0;
static real c_b11 = 0.f;
static real c_b12 = 1.f;
static integer c__1 = 1;
static integer c__2 = 2;
/* > \brief \b SLASDA computes the singular value decomposition (SVD) of a real upper bidiagonal matrix with d
iagonal d and off-diagonal e. Used by sbdsdc. */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download SLASDA + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasda.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasda.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasda.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE SLASDA( ICOMPQ, SMLSIZ, N, SQRE, D, E, U, LDU, VT, K, */
/* DIFL, DIFR, Z, POLES, GIVPTR, GIVCOL, LDGCOL, */
/* PERM, GIVNUM, C, S, WORK, IWORK, INFO ) */
/* INTEGER ICOMPQ, INFO, LDGCOL, LDU, N, SMLSIZ, SQRE */
/* INTEGER GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ), */
/* $ K( * ), PERM( LDGCOL, * ) */
/* REAL C( * ), D( * ), DIFL( LDU, * ), DIFR( LDU, * ), */
/* $ E( * ), GIVNUM( LDU, * ), POLES( LDU, * ), */
/* $ S( * ), U( LDU, * ), VT( LDU, * ), WORK( * ), */
/* $ Z( LDU, * ) */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > Using a divide and conquer approach, SLASDA computes the singular */
/* > value decomposition (SVD) of a real upper bidiagonal N-by-M matrix */
/* > B with diagonal D and offdiagonal E, where M = N + SQRE. The */
/* > algorithm computes the singular values in the SVD B = U * S * VT. */
/* > The orthogonal matrices U and VT are optionally computed in */
/* > compact form. */
/* > */
/* > A related subroutine, SLASD0, computes the singular values and */
/* > the singular vectors in explicit form. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] ICOMPQ */
/* > \verbatim */
/* > ICOMPQ is INTEGER */
/* > Specifies whether singular vectors are to be computed */
/* > in compact form, as follows */
/* > = 0: Compute singular values only. */
/* > = 1: Compute singular vectors of upper bidiagonal */
/* > matrix in compact form. */
/* > \endverbatim */
/* > */
/* > \param[in] SMLSIZ */
/* > \verbatim */
/* > SMLSIZ is INTEGER */
/* > The maximum size of the subproblems at the bottom of the */
/* > computation tree. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The row dimension of the upper bidiagonal matrix. This is */
/* > also the dimension of the main diagonal array D. */
/* > \endverbatim */
/* > */
/* > \param[in] SQRE */
/* > \verbatim */
/* > SQRE is INTEGER */
/* > Specifies the column dimension of the bidiagonal matrix. */
/* > = 0: The bidiagonal matrix has column dimension M = N; */
/* > = 1: The bidiagonal matrix has column dimension M = N + 1. */
/* > \endverbatim */
/* > */
/* > \param[in,out] D */
/* > \verbatim */
/* > D is REAL array, dimension ( N ) */
/* > On entry D contains the main diagonal of the bidiagonal */
/* > matrix. On exit D, if INFO = 0, contains its singular values. */
/* > \endverbatim */
/* > */
/* > \param[in] E */
/* > \verbatim */
/* > E is REAL array, dimension ( M-1 ) */
/* > Contains the subdiagonal entries of the bidiagonal matrix. */
/* > On exit, E has been destroyed. */
/* > \endverbatim */
/* > */
/* > \param[out] U */
/* > \verbatim */
/* > U is REAL array, */
/* > dimension ( LDU, SMLSIZ ) if ICOMPQ = 1, and not referenced */
/* > if ICOMPQ = 0. If ICOMPQ = 1, on exit, U contains the left */
/* > singular vector matrices of all subproblems at the bottom */
/* > level. */
/* > \endverbatim */
/* > */
/* > \param[in] LDU */
/* > \verbatim */
/* > LDU is INTEGER, LDU = > N. */
/* > The leading dimension of arrays U, VT, DIFL, DIFR, POLES, */
/* > GIVNUM, and Z. */
/* > \endverbatim */
/* > */
/* > \param[out] VT */
/* > \verbatim */
/* > VT is REAL array, */
/* > dimension ( LDU, SMLSIZ+1 ) if ICOMPQ = 1, and not referenced */
/* > if ICOMPQ = 0. If ICOMPQ = 1, on exit, VT**T contains the right */
/* > singular vector matrices of all subproblems at the bottom */
/* > level. */
/* > \endverbatim */
/* > */
/* > \param[out] K */
/* > \verbatim */
/* > K is INTEGER array, dimension ( N ) */
/* > if ICOMPQ = 1 and dimension 1 if ICOMPQ = 0. */
/* > If ICOMPQ = 1, on exit, K(I) is the dimension of the I-th */
/* > secular equation on the computation tree. */
/* > \endverbatim */
/* > */
/* > \param[out] DIFL */
/* > \verbatim */
/* > DIFL is REAL array, dimension ( LDU, NLVL ), */
/* > where NLVL = floor(log_2 (N/SMLSIZ))). */
/* > \endverbatim */
/* > */
/* > \param[out] DIFR */
/* > \verbatim */
/* > DIFR is REAL array, */
/* > dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1 and */
/* > dimension ( N ) if ICOMPQ = 0. */
/* > If ICOMPQ = 1, on exit, DIFL(1:N, I) and DIFR(1:N, 2 * I - 1) */
/* > record distances between singular values on the I-th */
/* > level and singular values on the (I -1)-th level, and */
/* > DIFR(1:N, 2 * I ) contains the normalizing factors for */
/* > the right singular vector matrix. See SLASD8 for details. */
/* > \endverbatim */
/* > */
/* > \param[out] Z */
/* > \verbatim */
/* > Z is REAL array, */
/* > dimension ( LDU, NLVL ) if ICOMPQ = 1 and */
/* > dimension ( N ) if ICOMPQ = 0. */
/* > The first K elements of Z(1, I) contain the components of */
/* > the deflation-adjusted updating row vector for subproblems */
/* > on the I-th level. */
/* > \endverbatim */
/* > */
/* > \param[out] POLES */
/* > \verbatim */
/* > POLES is REAL array, */
/* > dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not referenced */
/* > if ICOMPQ = 0. If ICOMPQ = 1, on exit, POLES(1, 2*I - 1) and */
/* > POLES(1, 2*I) contain the new and old singular values */
/* > involved in the secular equations on the I-th level. */
/* > \endverbatim */
/* > */
/* > \param[out] GIVPTR */
/* > \verbatim */
/* > GIVPTR is INTEGER array, */
/* > dimension ( N ) if ICOMPQ = 1, and not referenced if */
/* > ICOMPQ = 0. If ICOMPQ = 1, on exit, GIVPTR( I ) records */
/* > the number of Givens rotations performed on the I-th */
/* > problem on the computation tree. */
/* > \endverbatim */
/* > */
/* > \param[out] GIVCOL */
/* > \verbatim */
/* > GIVCOL is INTEGER array, */
/* > dimension ( LDGCOL, 2 * NLVL ) if ICOMPQ = 1, and not */
/* > referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I, */
/* > GIVCOL(1, 2 *I - 1) and GIVCOL(1, 2 *I) record the locations */
/* > of Givens rotations performed on the I-th level on the */
/* > computation tree. */
/* > \endverbatim */
/* > */
/* > \param[in] LDGCOL */
/* > \verbatim */
/* > LDGCOL is INTEGER, LDGCOL = > N. */
/* > The leading dimension of arrays GIVCOL and PERM. */
/* > \endverbatim */
/* > */
/* > \param[out] PERM */
/* > \verbatim */
/* > PERM is INTEGER array, dimension ( LDGCOL, NLVL ) */
/* > if ICOMPQ = 1, and not referenced */
/* > if ICOMPQ = 0. If ICOMPQ = 1, on exit, PERM(1, I) records */
/* > permutations done on the I-th level of the computation tree. */
/* > \endverbatim */
/* > */
/* > \param[out] GIVNUM */
/* > \verbatim */
/* > GIVNUM is REAL array, */
/* > dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not */
/* > referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I, */
/* > GIVNUM(1, 2 *I - 1) and GIVNUM(1, 2 *I) record the C- and S- */
/* > values of Givens rotations performed on the I-th level on */
/* > the computation tree. */
/* > \endverbatim */
/* > */
/* > \param[out] C */
/* > \verbatim */
/* > C is REAL array, */
/* > dimension ( N ) if ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. */
/* > If ICOMPQ = 1 and the I-th subproblem is not square, on exit, */
/* > C( I ) contains the C-value of a Givens rotation related to */
/* > the right null space of the I-th subproblem. */
/* > \endverbatim */
/* > */
/* > \param[out] S */
/* > \verbatim */
/* > S is REAL array, dimension ( N ) if */
/* > ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. If ICOMPQ = 1 */
/* > and the I-th subproblem is not square, on exit, S( I ) */
/* > contains the S-value of a Givens rotation related to */
/* > the right null space of the I-th subproblem. */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is REAL array, dimension */
/* > (6 * N + (SMLSIZ + 1)*(SMLSIZ + 1)). */
/* > \endverbatim */
/* > */
/* > \param[out] IWORK */
/* > \verbatim */
/* > IWORK is INTEGER array, dimension (7*N). */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit. */
/* > < 0: if INFO = -i, the i-th argument had an illegal value. */
/* > > 0: if INFO = 1, a singular value did not converge */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date December 2016 */
/* > \ingroup OTHERauxiliary */
/* > \par Contributors: */
/* ================== */
/* > */
/* > Ming Gu and Huan Ren, Computer Science Division, University of */
/* > California at Berkeley, USA */
/* > */
/* ===================================================================== */
/* Subroutine */ void slasda_(integer *icompq, integer *smlsiz, integer *n,
integer *sqre, real *d__, real *e, real *u, integer *ldu, real *vt,
integer *k, real *difl, real *difr, real *z__, real *poles, integer *
givptr, integer *givcol, integer *ldgcol, integer *perm, real *givnum,
real *c__, real *s, real *work, integer *iwork, integer *info)
{
/* System generated locals */
integer givcol_dim1, givcol_offset, perm_dim1, perm_offset, difl_dim1,
difl_offset, difr_dim1, difr_offset, givnum_dim1, givnum_offset,
poles_dim1, poles_offset, u_dim1, u_offset, vt_dim1, vt_offset,
z_dim1, z_offset, i__1, i__2;
/* Local variables */
real beta;
integer idxq, nlvl, i__, j, m;
real alpha;
integer inode, ndiml, ndimr, idxqi, itemp, sqrei, i1;
extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *,
integer *), slasd6_(integer *, integer *, integer *, integer *,
real *, real *, real *, real *, real *, integer *, integer *,
integer *, integer *, integer *, real *, integer *, real *, real *
, real *, real *, integer *, real *, real *, real *, integer *,
integer *);
integer ic, nwork1, lf, nd, nwork2, ll, nl, vf, nr, vl;
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
extern void slasdq_(
char *, integer *, integer *, integer *, integer *, integer *,
real *, real *, real *, integer *, real *, integer *, real *,
integer *, real *, integer *), slasdt_(integer *, integer
*, integer *, integer *, integer *, integer *, integer *),
slaset_(char *, integer *, integer *, real *, real *, real *,
integer *);
integer im1, smlszp, ncc, nlf, nrf, vfi, iwk, vli, lvl, nru, ndb1, nlp1,
lvl2, nrp1;
/* -- LAPACK auxiliary routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */
/* ===================================================================== */
/* Test the input parameters. */
/* Parameter adjustments */
--d__;
--e;
givnum_dim1 = *ldu;
givnum_offset = 1 + givnum_dim1 * 1;
givnum -= givnum_offset;
poles_dim1 = *ldu;
poles_offset = 1 + poles_dim1 * 1;
poles -= poles_offset;
z_dim1 = *ldu;
z_offset = 1 + z_dim1 * 1;
z__ -= z_offset;
difr_dim1 = *ldu;
difr_offset = 1 + difr_dim1 * 1;
difr -= difr_offset;
difl_dim1 = *ldu;
difl_offset = 1 + difl_dim1 * 1;
difl -= difl_offset;
vt_dim1 = *ldu;
vt_offset = 1 + vt_dim1 * 1;
vt -= vt_offset;
u_dim1 = *ldu;
u_offset = 1 + u_dim1 * 1;
u -= u_offset;
--k;
--givptr;
perm_dim1 = *ldgcol;
perm_offset = 1 + perm_dim1 * 1;
perm -= perm_offset;
givcol_dim1 = *ldgcol;
givcol_offset = 1 + givcol_dim1 * 1;
givcol -= givcol_offset;
--c__;
--s;
--work;
--iwork;
/* Function Body */
*info = 0;
if (*icompq < 0 || *icompq > 1) {
*info = -1;
} else if (*smlsiz < 3) {
*info = -2;
} else if (*n < 0) {
*info = -3;
} else if (*sqre < 0 || *sqre > 1) {
*info = -4;
} else if (*ldu < *n + *sqre) {
*info = -8;
} else if (*ldgcol < *n) {
*info = -17;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("SLASDA", &i__1, (ftnlen)6);
return;
}
m = *n + *sqre;
/* If the input matrix is too small, call SLASDQ to find the SVD. */
if (*n <= *smlsiz) {
if (*icompq == 0) {
slasdq_("U", sqre, n, &c__0, &c__0, &c__0, &d__[1], &e[1], &vt[
vt_offset], ldu, &u[u_offset], ldu, &u[u_offset], ldu, &
work[1], info);
} else {
slasdq_("U", sqre, n, &m, n, &c__0, &d__[1], &e[1], &vt[vt_offset]
, ldu, &u[u_offset], ldu, &u[u_offset], ldu, &work[1],
info);
}
return;
}
/* Book-keeping and set up the computation tree. */
inode = 1;
ndiml = inode + *n;
ndimr = ndiml + *n;
idxq = ndimr + *n;
iwk = idxq + *n;
ncc = 0;
nru = 0;
smlszp = *smlsiz + 1;
vf = 1;
vl = vf + m;
nwork1 = vl + m;
nwork2 = nwork1 + smlszp * smlszp;
slasdt_(n, &nlvl, &nd, &iwork[inode], &iwork[ndiml], &iwork[ndimr],
smlsiz);
/* for the nodes on bottom level of the tree, solve */
/* their subproblems by SLASDQ. */
ndb1 = (nd + 1) / 2;
i__1 = nd;
for (i__ = ndb1; i__ <= i__1; ++i__) {
/* IC : center row of each node */
/* NL : number of rows of left subproblem */
/* NR : number of rows of right subproblem */
/* NLF: starting row of the left subproblem */
/* NRF: starting row of the right subproblem */
i1 = i__ - 1;
ic = iwork[inode + i1];
nl = iwork[ndiml + i1];
nlp1 = nl + 1;
nr = iwork[ndimr + i1];
nlf = ic - nl;
nrf = ic + 1;
idxqi = idxq + nlf - 2;
vfi = vf + nlf - 1;
vli = vl + nlf - 1;
sqrei = 1;
if (*icompq == 0) {
slaset_("A", &nlp1, &nlp1, &c_b11, &c_b12, &work[nwork1], &smlszp);
slasdq_("U", &sqrei, &nl, &nlp1, &nru, &ncc, &d__[nlf], &e[nlf], &
work[nwork1], &smlszp, &work[nwork2], &nl, &work[nwork2],
&nl, &work[nwork2], info);
itemp = nwork1 + nl * smlszp;
scopy_(&nlp1, &work[nwork1], &c__1, &work[vfi], &c__1);
scopy_(&nlp1, &work[itemp], &c__1, &work[vli], &c__1);
} else {
slaset_("A", &nl, &nl, &c_b11, &c_b12, &u[nlf + u_dim1], ldu);
slaset_("A", &nlp1, &nlp1, &c_b11, &c_b12, &vt[nlf + vt_dim1],
ldu);
slasdq_("U", &sqrei, &nl, &nlp1, &nl, &ncc, &d__[nlf], &e[nlf], &
vt[nlf + vt_dim1], ldu, &u[nlf + u_dim1], ldu, &u[nlf +
u_dim1], ldu, &work[nwork1], info);
scopy_(&nlp1, &vt[nlf + vt_dim1], &c__1, &work[vfi], &c__1);
scopy_(&nlp1, &vt[nlf + nlp1 * vt_dim1], &c__1, &work[vli], &c__1)
;
}
if (*info != 0) {
return;
}
i__2 = nl;
for (j = 1; j <= i__2; ++j) {
iwork[idxqi + j] = j;
/* L10: */
}
if (i__ == nd && *sqre == 0) {
sqrei = 0;
} else {
sqrei = 1;
}
idxqi += nlp1;
vfi += nlp1;
vli += nlp1;
nrp1 = nr + sqrei;
if (*icompq == 0) {
slaset_("A", &nrp1, &nrp1, &c_b11, &c_b12, &work[nwork1], &smlszp);
slasdq_("U", &sqrei, &nr, &nrp1, &nru, &ncc, &d__[nrf], &e[nrf], &
work[nwork1], &smlszp, &work[nwork2], &nr, &work[nwork2],
&nr, &work[nwork2], info);
itemp = nwork1 + (nrp1 - 1) * smlszp;
scopy_(&nrp1, &work[nwork1], &c__1, &work[vfi], &c__1);
scopy_(&nrp1, &work[itemp], &c__1, &work[vli], &c__1);
} else {
slaset_("A", &nr, &nr, &c_b11, &c_b12, &u[nrf + u_dim1], ldu);
slaset_("A", &nrp1, &nrp1, &c_b11, &c_b12, &vt[nrf + vt_dim1],
ldu);
slasdq_("U", &sqrei, &nr, &nrp1, &nr, &ncc, &d__[nrf], &e[nrf], &
vt[nrf + vt_dim1], ldu, &u[nrf + u_dim1], ldu, &u[nrf +
u_dim1], ldu, &work[nwork1], info);
scopy_(&nrp1, &vt[nrf + vt_dim1], &c__1, &work[vfi], &c__1);
scopy_(&nrp1, &vt[nrf + nrp1 * vt_dim1], &c__1, &work[vli], &c__1)
;
}
if (*info != 0) {
return;
}
i__2 = nr;
for (j = 1; j <= i__2; ++j) {
iwork[idxqi + j] = j;
/* L20: */
}
/* L30: */
}
/* Now conquer each subproblem bottom-up. */
j = pow_ii(c__2, nlvl);
for (lvl = nlvl; lvl >= 1; --lvl) {
lvl2 = (lvl << 1) - 1;
/* Find the first node LF and last node LL on */
/* the current level LVL. */
if (lvl == 1) {
lf = 1;
ll = 1;
} else {
i__1 = lvl - 1;
lf = pow_ii(c__2, i__1);
ll = (lf << 1) - 1;
}
i__1 = ll;
for (i__ = lf; i__ <= i__1; ++i__) {
im1 = i__ - 1;
ic = iwork[inode + im1];
nl = iwork[ndiml + im1];
nr = iwork[ndimr + im1];
nlf = ic - nl;
nrf = ic + 1;
if (i__ == ll) {
sqrei = *sqre;
} else {
sqrei = 1;
}
vfi = vf + nlf - 1;
vli = vl + nlf - 1;
idxqi = idxq + nlf - 1;
alpha = d__[ic];
beta = e[ic];
if (*icompq == 0) {
slasd6_(icompq, &nl, &nr, &sqrei, &d__[nlf], &work[vfi], &
work[vli], &alpha, &beta, &iwork[idxqi], &perm[
perm_offset], &givptr[1], &givcol[givcol_offset],
ldgcol, &givnum[givnum_offset], ldu, &poles[
poles_offset], &difl[difl_offset], &difr[difr_offset],
&z__[z_offset], &k[1], &c__[1], &s[1], &work[nwork1],
&iwork[iwk], info);
} else {
--j;
slasd6_(icompq, &nl, &nr, &sqrei, &d__[nlf], &work[vfi], &
work[vli], &alpha, &beta, &iwork[idxqi], &perm[nlf +
lvl * perm_dim1], &givptr[j], &givcol[nlf + lvl2 *
givcol_dim1], ldgcol, &givnum[nlf + lvl2 *
givnum_dim1], ldu, &poles[nlf + lvl2 * poles_dim1], &
difl[nlf + lvl * difl_dim1], &difr[nlf + lvl2 *
difr_dim1], &z__[nlf + lvl * z_dim1], &k[j], &c__[j],
&s[j], &work[nwork1], &iwork[iwk], info);
}
if (*info != 0) {
return;
}
/* L40: */
}
/* L50: */
}
return;
/* End of SLASDA */
} /* slasda_ */