1213 lines
34 KiB
C
1213 lines
34 KiB
C
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <complex.h>
|
|
#ifdef complex
|
|
#undef complex
|
|
#endif
|
|
#ifdef I
|
|
#undef I
|
|
#endif
|
|
|
|
#if defined(_WIN64)
|
|
typedef long long BLASLONG;
|
|
typedef unsigned long long BLASULONG;
|
|
#else
|
|
typedef long BLASLONG;
|
|
typedef unsigned long BLASULONG;
|
|
#endif
|
|
|
|
#ifdef LAPACK_ILP64
|
|
typedef BLASLONG blasint;
|
|
#if defined(_WIN64)
|
|
#define blasabs(x) llabs(x)
|
|
#else
|
|
#define blasabs(x) labs(x)
|
|
#endif
|
|
#else
|
|
typedef int blasint;
|
|
#define blasabs(x) abs(x)
|
|
#endif
|
|
|
|
typedef blasint integer;
|
|
|
|
typedef unsigned int uinteger;
|
|
typedef char *address;
|
|
typedef short int shortint;
|
|
typedef float real;
|
|
typedef double doublereal;
|
|
typedef struct { real r, i; } complex;
|
|
typedef struct { doublereal r, i; } doublecomplex;
|
|
#ifdef _MSC_VER
|
|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
|
|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
|
|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
|
|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
|
|
#else
|
|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
|
|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
|
|
#endif
|
|
#define pCf(z) (*_pCf(z))
|
|
#define pCd(z) (*_pCd(z))
|
|
typedef blasint logical;
|
|
|
|
typedef char logical1;
|
|
typedef char integer1;
|
|
|
|
#define TRUE_ (1)
|
|
#define FALSE_ (0)
|
|
|
|
/* Extern is for use with -E */
|
|
#ifndef Extern
|
|
#define Extern extern
|
|
#endif
|
|
|
|
/* I/O stuff */
|
|
|
|
typedef int flag;
|
|
typedef int ftnlen;
|
|
typedef int ftnint;
|
|
|
|
/*external read, write*/
|
|
typedef struct
|
|
{ flag cierr;
|
|
ftnint ciunit;
|
|
flag ciend;
|
|
char *cifmt;
|
|
ftnint cirec;
|
|
} cilist;
|
|
|
|
/*internal read, write*/
|
|
typedef struct
|
|
{ flag icierr;
|
|
char *iciunit;
|
|
flag iciend;
|
|
char *icifmt;
|
|
ftnint icirlen;
|
|
ftnint icirnum;
|
|
} icilist;
|
|
|
|
/*open*/
|
|
typedef struct
|
|
{ flag oerr;
|
|
ftnint ounit;
|
|
char *ofnm;
|
|
ftnlen ofnmlen;
|
|
char *osta;
|
|
char *oacc;
|
|
char *ofm;
|
|
ftnint orl;
|
|
char *oblnk;
|
|
} olist;
|
|
|
|
/*close*/
|
|
typedef struct
|
|
{ flag cerr;
|
|
ftnint cunit;
|
|
char *csta;
|
|
} cllist;
|
|
|
|
/*rewind, backspace, endfile*/
|
|
typedef struct
|
|
{ flag aerr;
|
|
ftnint aunit;
|
|
} alist;
|
|
|
|
/* inquire */
|
|
typedef struct
|
|
{ flag inerr;
|
|
ftnint inunit;
|
|
char *infile;
|
|
ftnlen infilen;
|
|
ftnint *inex; /*parameters in standard's order*/
|
|
ftnint *inopen;
|
|
ftnint *innum;
|
|
ftnint *innamed;
|
|
char *inname;
|
|
ftnlen innamlen;
|
|
char *inacc;
|
|
ftnlen inacclen;
|
|
char *inseq;
|
|
ftnlen inseqlen;
|
|
char *indir;
|
|
ftnlen indirlen;
|
|
char *infmt;
|
|
ftnlen infmtlen;
|
|
char *inform;
|
|
ftnint informlen;
|
|
char *inunf;
|
|
ftnlen inunflen;
|
|
ftnint *inrecl;
|
|
ftnint *innrec;
|
|
char *inblank;
|
|
ftnlen inblanklen;
|
|
} inlist;
|
|
|
|
#define VOID void
|
|
|
|
union Multitype { /* for multiple entry points */
|
|
integer1 g;
|
|
shortint h;
|
|
integer i;
|
|
/* longint j; */
|
|
real r;
|
|
doublereal d;
|
|
complex c;
|
|
doublecomplex z;
|
|
};
|
|
|
|
typedef union Multitype Multitype;
|
|
|
|
struct Vardesc { /* for Namelist */
|
|
char *name;
|
|
char *addr;
|
|
ftnlen *dims;
|
|
int type;
|
|
};
|
|
typedef struct Vardesc Vardesc;
|
|
|
|
struct Namelist {
|
|
char *name;
|
|
Vardesc **vars;
|
|
int nvars;
|
|
};
|
|
typedef struct Namelist Namelist;
|
|
|
|
#define abs(x) ((x) >= 0 ? (x) : -(x))
|
|
#define dabs(x) (fabs(x))
|
|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
|
|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
|
|
#define dmin(a,b) (f2cmin(a,b))
|
|
#define dmax(a,b) (f2cmax(a,b))
|
|
#define bit_test(a,b) ((a) >> (b) & 1)
|
|
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
|
|
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
|
|
|
|
#define abort_() { sig_die("Fortran abort routine called", 1); }
|
|
#define c_abs(z) (cabsf(Cf(z)))
|
|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
|
|
#ifdef _MSC_VER
|
|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
|
|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
|
|
#else
|
|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
|
|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
|
|
#endif
|
|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
|
|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
|
|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
|
|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
|
|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
|
|
#define d_abs(x) (fabs(*(x)))
|
|
#define d_acos(x) (acos(*(x)))
|
|
#define d_asin(x) (asin(*(x)))
|
|
#define d_atan(x) (atan(*(x)))
|
|
#define d_atn2(x, y) (atan2(*(x),*(y)))
|
|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
|
|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
|
|
#define d_cos(x) (cos(*(x)))
|
|
#define d_cosh(x) (cosh(*(x)))
|
|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
|
|
#define d_exp(x) (exp(*(x)))
|
|
#define d_imag(z) (cimag(Cd(z)))
|
|
#define r_imag(z) (cimagf(Cf(z)))
|
|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define d_log(x) (log(*(x)))
|
|
#define d_mod(x, y) (fmod(*(x), *(y)))
|
|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
|
|
#define d_nint(x) u_nint(*(x))
|
|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
|
|
#define d_sign(a,b) u_sign(*(a),*(b))
|
|
#define r_sign(a,b) u_sign(*(a),*(b))
|
|
#define d_sin(x) (sin(*(x)))
|
|
#define d_sinh(x) (sinh(*(x)))
|
|
#define d_sqrt(x) (sqrt(*(x)))
|
|
#define d_tan(x) (tan(*(x)))
|
|
#define d_tanh(x) (tanh(*(x)))
|
|
#define i_abs(x) abs(*(x))
|
|
#define i_dnnt(x) ((integer)u_nint(*(x)))
|
|
#define i_len(s, n) (n)
|
|
#define i_nint(x) ((integer)u_nint(*(x)))
|
|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
|
|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
|
|
#define pow_si(B,E) spow_ui(*(B),*(E))
|
|
#define pow_ri(B,E) spow_ui(*(B),*(E))
|
|
#define pow_di(B,E) dpow_ui(*(B),*(E))
|
|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
|
|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
|
|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
|
|
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
|
|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
|
|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
|
|
#define sig_die(s, kill) { exit(1); }
|
|
#define s_stop(s, n) {exit(0);}
|
|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
|
|
#define z_abs(z) (cabs(Cd(z)))
|
|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
|
|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
|
|
#define myexit_() break;
|
|
#define mycycle() continue;
|
|
#define myceiling(w) {ceil(w)}
|
|
#define myhuge(w) {HUGE_VAL}
|
|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
|
|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
|
|
|
|
/* procedure parameter types for -A and -C++ */
|
|
|
|
|
|
#ifdef __cplusplus
|
|
typedef logical (*L_fp)(...);
|
|
#else
|
|
typedef logical (*L_fp)();
|
|
#endif
|
|
|
|
static float spow_ui(float x, integer n) {
|
|
float pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
static double dpow_ui(double x, integer n) {
|
|
double pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#ifdef _MSC_VER
|
|
static _Fcomplex cpow_ui(complex x, integer n) {
|
|
complex pow={1.0,0.0}; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow.r *= x.r, pow.i *= x.i;
|
|
if(u >>= 1) x.r *= x.r, x.i *= x.i;
|
|
else break;
|
|
}
|
|
}
|
|
_Fcomplex p={pow.r, pow.i};
|
|
return p;
|
|
}
|
|
#else
|
|
static _Complex float cpow_ui(_Complex float x, integer n) {
|
|
_Complex float pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#endif
|
|
#ifdef _MSC_VER
|
|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
|
|
_Dcomplex pow={1.0,0.0}; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
|
|
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
|
|
else break;
|
|
}
|
|
}
|
|
_Dcomplex p = {pow._Val[0], pow._Val[1]};
|
|
return p;
|
|
}
|
|
#else
|
|
static _Complex double zpow_ui(_Complex double x, integer n) {
|
|
_Complex double pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#endif
|
|
static integer pow_ii(integer x, integer n) {
|
|
integer pow; unsigned long int u;
|
|
if (n <= 0) {
|
|
if (n == 0 || x == 1) pow = 1;
|
|
else if (x != -1) pow = x == 0 ? 1/x : 0;
|
|
else n = -n;
|
|
}
|
|
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
|
|
u = n;
|
|
for(pow = 1; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
|
|
{
|
|
double m; integer i, mi;
|
|
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
|
if (w[i-1]>m) mi=i ,m=w[i-1];
|
|
return mi-s+1;
|
|
}
|
|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
|
|
{
|
|
float m; integer i, mi;
|
|
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
|
if (w[i-1]>m) mi=i ,m=w[i-1];
|
|
return mi-s+1;
|
|
}
|
|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Fcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
|
|
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex float zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Dcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
|
|
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex double zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Fcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
|
|
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex float zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cf(&x[i]) * Cf(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Dcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
|
|
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex double zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cd(&x[i]) * Cd(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#endif
|
|
/* -- translated by f2c (version 20000121).
|
|
You must link the resulting object file with the libraries:
|
|
-lf2c -lm (in that order)
|
|
*/
|
|
|
|
|
|
|
|
|
|
/* Table of constant values */
|
|
|
|
static integer c__1 = 1;
|
|
static real c_b30 = 0.f;
|
|
|
|
/* > \brief \b SLASD2 merges the two sets of singular values together into a single sorted set. Used by sbdsdc
|
|
. */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* > \htmlonly */
|
|
/* > Download SLASD2 + dependencies */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasd2.
|
|
f"> */
|
|
/* > [TGZ]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasd2.
|
|
f"> */
|
|
/* > [ZIP]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasd2.
|
|
f"> */
|
|
/* > [TXT]</a> */
|
|
/* > \endhtmlonly */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* SUBROUTINE SLASD2( NL, NR, SQRE, K, D, Z, ALPHA, BETA, U, LDU, VT, */
|
|
/* LDVT, DSIGMA, U2, LDU2, VT2, LDVT2, IDXP, IDX, */
|
|
/* IDXC, IDXQ, COLTYP, INFO ) */
|
|
|
|
/* INTEGER INFO, K, LDU, LDU2, LDVT, LDVT2, NL, NR, SQRE */
|
|
/* REAL ALPHA, BETA */
|
|
/* INTEGER COLTYP( * ), IDX( * ), IDXC( * ), IDXP( * ), */
|
|
/* $ IDXQ( * ) */
|
|
/* REAL D( * ), DSIGMA( * ), U( LDU, * ), */
|
|
/* $ U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ), */
|
|
/* $ Z( * ) */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > SLASD2 merges the two sets of singular values together into a single */
|
|
/* > sorted set. Then it tries to deflate the size of the problem. */
|
|
/* > There are two ways in which deflation can occur: when two or more */
|
|
/* > singular values are close together or if there is a tiny entry in the */
|
|
/* > Z vector. For each such occurrence the order of the related secular */
|
|
/* > equation problem is reduced by one. */
|
|
/* > */
|
|
/* > SLASD2 is called from SLASD1. */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] NL */
|
|
/* > \verbatim */
|
|
/* > NL is INTEGER */
|
|
/* > The row dimension of the upper block. NL >= 1. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] NR */
|
|
/* > \verbatim */
|
|
/* > NR is INTEGER */
|
|
/* > The row dimension of the lower block. NR >= 1. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] SQRE */
|
|
/* > \verbatim */
|
|
/* > SQRE is INTEGER */
|
|
/* > = 0: the lower block is an NR-by-NR square matrix. */
|
|
/* > = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */
|
|
/* > */
|
|
/* > The bidiagonal matrix has N = NL + NR + 1 rows and */
|
|
/* > M = N + SQRE >= N columns. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] K */
|
|
/* > \verbatim */
|
|
/* > K is INTEGER */
|
|
/* > Contains the dimension of the non-deflated matrix, */
|
|
/* > This is the order of the related secular equation. 1 <= K <=N. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] D */
|
|
/* > \verbatim */
|
|
/* > D is REAL array, dimension (N) */
|
|
/* > On entry D contains the singular values of the two submatrices */
|
|
/* > to be combined. On exit D contains the trailing (N-K) updated */
|
|
/* > singular values (those which were deflated) sorted into */
|
|
/* > increasing order. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] Z */
|
|
/* > \verbatim */
|
|
/* > Z is REAL array, dimension (N) */
|
|
/* > On exit Z contains the updating row vector in the secular */
|
|
/* > equation. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] ALPHA */
|
|
/* > \verbatim */
|
|
/* > ALPHA is REAL */
|
|
/* > Contains the diagonal element associated with the added row. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] BETA */
|
|
/* > \verbatim */
|
|
/* > BETA is REAL */
|
|
/* > Contains the off-diagonal element associated with the added */
|
|
/* > row. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] U */
|
|
/* > \verbatim */
|
|
/* > U is REAL array, dimension (LDU,N) */
|
|
/* > On entry U contains the left singular vectors of two */
|
|
/* > submatrices in the two square blocks with corners at (1,1), */
|
|
/* > (NL, NL), and (NL+2, NL+2), (N,N). */
|
|
/* > On exit U contains the trailing (N-K) updated left singular */
|
|
/* > vectors (those which were deflated) in its last N-K columns. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDU */
|
|
/* > \verbatim */
|
|
/* > LDU is INTEGER */
|
|
/* > The leading dimension of the array U. LDU >= N. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] VT */
|
|
/* > \verbatim */
|
|
/* > VT is REAL array, dimension (LDVT,M) */
|
|
/* > On entry VT**T contains the right singular vectors of two */
|
|
/* > submatrices in the two square blocks with corners at (1,1), */
|
|
/* > (NL+1, NL+1), and (NL+2, NL+2), (M,M). */
|
|
/* > On exit VT**T contains the trailing (N-K) updated right singular */
|
|
/* > vectors (those which were deflated) in its last N-K columns. */
|
|
/* > In case SQRE =1, the last row of VT spans the right null */
|
|
/* > space. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDVT */
|
|
/* > \verbatim */
|
|
/* > LDVT is INTEGER */
|
|
/* > The leading dimension of the array VT. LDVT >= M. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] DSIGMA */
|
|
/* > \verbatim */
|
|
/* > DSIGMA is REAL array, dimension (N) */
|
|
/* > Contains a copy of the diagonal elements (K-1 singular values */
|
|
/* > and one zero) in the secular equation. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] U2 */
|
|
/* > \verbatim */
|
|
/* > U2 is REAL array, dimension (LDU2,N) */
|
|
/* > Contains a copy of the first K-1 left singular vectors which */
|
|
/* > will be used by SLASD3 in a matrix multiply (SGEMM) to solve */
|
|
/* > for the new left singular vectors. U2 is arranged into four */
|
|
/* > blocks. The first block contains a column with 1 at NL+1 and */
|
|
/* > zero everywhere else; the second block contains non-zero */
|
|
/* > entries only at and above NL; the third contains non-zero */
|
|
/* > entries only below NL+1; and the fourth is dense. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDU2 */
|
|
/* > \verbatim */
|
|
/* > LDU2 is INTEGER */
|
|
/* > The leading dimension of the array U2. LDU2 >= N. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] VT2 */
|
|
/* > \verbatim */
|
|
/* > VT2 is REAL array, dimension (LDVT2,N) */
|
|
/* > VT2**T contains a copy of the first K right singular vectors */
|
|
/* > which will be used by SLASD3 in a matrix multiply (SGEMM) to */
|
|
/* > solve for the new right singular vectors. VT2 is arranged into */
|
|
/* > three blocks. The first block contains a row that corresponds */
|
|
/* > to the special 0 diagonal element in SIGMA; the second block */
|
|
/* > contains non-zeros only at and before NL +1; the third block */
|
|
/* > contains non-zeros only at and after NL +2. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDVT2 */
|
|
/* > \verbatim */
|
|
/* > LDVT2 is INTEGER */
|
|
/* > The leading dimension of the array VT2. LDVT2 >= M. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] IDXP */
|
|
/* > \verbatim */
|
|
/* > IDXP is INTEGER array, dimension (N) */
|
|
/* > This will contain the permutation used to place deflated */
|
|
/* > values of D at the end of the array. On output IDXP(2:K) */
|
|
/* > points to the nondeflated D-values and IDXP(K+1:N) */
|
|
/* > points to the deflated singular values. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] IDX */
|
|
/* > \verbatim */
|
|
/* > IDX is INTEGER array, dimension (N) */
|
|
/* > This will contain the permutation used to sort the contents of */
|
|
/* > D into ascending order. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] IDXC */
|
|
/* > \verbatim */
|
|
/* > IDXC is INTEGER array, dimension (N) */
|
|
/* > This will contain the permutation used to arrange the columns */
|
|
/* > of the deflated U matrix into three groups: the first group */
|
|
/* > contains non-zero entries only at and above NL, the second */
|
|
/* > contains non-zero entries only below NL+2, and the third is */
|
|
/* > dense. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] IDXQ */
|
|
/* > \verbatim */
|
|
/* > IDXQ is INTEGER array, dimension (N) */
|
|
/* > This contains the permutation which separately sorts the two */
|
|
/* > sub-problems in D into ascending order. Note that entries in */
|
|
/* > the first hlaf of this permutation must first be moved one */
|
|
/* > position backward; and entries in the second half */
|
|
/* > must first have NL+1 added to their values. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] COLTYP */
|
|
/* > \verbatim */
|
|
/* > COLTYP is INTEGER array, dimension (N) */
|
|
/* > As workspace, this will contain a label which will indicate */
|
|
/* > which of the following types a column in the U2 matrix or a */
|
|
/* > row in the VT2 matrix is: */
|
|
/* > 1 : non-zero in the upper half only */
|
|
/* > 2 : non-zero in the lower half only */
|
|
/* > 3 : dense */
|
|
/* > 4 : deflated */
|
|
/* > */
|
|
/* > On exit, it is an array of dimension 4, with COLTYP(I) being */
|
|
/* > the dimension of the I-th type columns. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] INFO */
|
|
/* > \verbatim */
|
|
/* > INFO is INTEGER */
|
|
/* > = 0: successful exit. */
|
|
/* > < 0: if INFO = -i, the i-th argument had an illegal value. */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \date December 2016 */
|
|
|
|
/* > \ingroup OTHERauxiliary */
|
|
|
|
/* > \par Contributors: */
|
|
/* ================== */
|
|
/* > */
|
|
/* > Ming Gu and Huan Ren, Computer Science Division, University of */
|
|
/* > California at Berkeley, USA */
|
|
/* > */
|
|
/* ===================================================================== */
|
|
/* Subroutine */ void slasd2_(integer *nl, integer *nr, integer *sqre, integer
|
|
*k, real *d__, real *z__, real *alpha, real *beta, real *u, integer *
|
|
ldu, real *vt, integer *ldvt, real *dsigma, real *u2, integer *ldu2,
|
|
real *vt2, integer *ldvt2, integer *idxp, integer *idx, integer *idxc,
|
|
integer *idxq, integer *coltyp, integer *info)
|
|
{
|
|
/* System generated locals */
|
|
integer u_dim1, u_offset, u2_dim1, u2_offset, vt_dim1, vt_offset,
|
|
vt2_dim1, vt2_offset, i__1;
|
|
real r__1, r__2;
|
|
|
|
/* Local variables */
|
|
integer idxi, idxj, ctot[4];
|
|
extern /* Subroutine */ void srot_(integer *, real *, integer *, real *,
|
|
integer *, real *, real *);
|
|
real c__;
|
|
integer i__, j, m, n;
|
|
real s;
|
|
integer idxjp, jprev, k2;
|
|
extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *,
|
|
integer *);
|
|
real z1;
|
|
extern real slapy2_(real *, real *);
|
|
integer ct, jp;
|
|
extern real slamch_(char *);
|
|
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
|
|
extern void slamrg_(
|
|
integer *, integer *, real *, integer *, integer *, integer *);
|
|
real hlftol;
|
|
extern /* Subroutine */ void slacpy_(char *, integer *, integer *, real *,
|
|
integer *, real *, integer *), slaset_(char *, integer *,
|
|
integer *, real *, real *, real *, integer *);
|
|
real eps, tau, tol;
|
|
integer psm[4], nlp1, nlp2;
|
|
|
|
|
|
/* -- LAPACK auxiliary routine (version 3.7.0) -- */
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
/* December 2016 */
|
|
|
|
|
|
/* ===================================================================== */
|
|
|
|
|
|
/* Test the input parameters. */
|
|
|
|
/* Parameter adjustments */
|
|
--d__;
|
|
--z__;
|
|
u_dim1 = *ldu;
|
|
u_offset = 1 + u_dim1 * 1;
|
|
u -= u_offset;
|
|
vt_dim1 = *ldvt;
|
|
vt_offset = 1 + vt_dim1 * 1;
|
|
vt -= vt_offset;
|
|
--dsigma;
|
|
u2_dim1 = *ldu2;
|
|
u2_offset = 1 + u2_dim1 * 1;
|
|
u2 -= u2_offset;
|
|
vt2_dim1 = *ldvt2;
|
|
vt2_offset = 1 + vt2_dim1 * 1;
|
|
vt2 -= vt2_offset;
|
|
--idxp;
|
|
--idx;
|
|
--idxc;
|
|
--idxq;
|
|
--coltyp;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
|
|
if (*nl < 1) {
|
|
*info = -1;
|
|
} else if (*nr < 1) {
|
|
*info = -2;
|
|
} else if (*sqre != 1 && *sqre != 0) {
|
|
*info = -3;
|
|
}
|
|
|
|
n = *nl + *nr + 1;
|
|
m = n + *sqre;
|
|
|
|
if (*ldu < n) {
|
|
*info = -10;
|
|
} else if (*ldvt < m) {
|
|
*info = -12;
|
|
} else if (*ldu2 < n) {
|
|
*info = -15;
|
|
} else if (*ldvt2 < m) {
|
|
*info = -17;
|
|
}
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_("SLASD2", &i__1, (ftnlen)6);
|
|
return;
|
|
}
|
|
|
|
nlp1 = *nl + 1;
|
|
nlp2 = *nl + 2;
|
|
|
|
/* Generate the first part of the vector Z; and move the singular */
|
|
/* values in the first part of D one position backward. */
|
|
|
|
z1 = *alpha * vt[nlp1 + nlp1 * vt_dim1];
|
|
z__[1] = z1;
|
|
for (i__ = *nl; i__ >= 1; --i__) {
|
|
z__[i__ + 1] = *alpha * vt[i__ + nlp1 * vt_dim1];
|
|
d__[i__ + 1] = d__[i__];
|
|
idxq[i__ + 1] = idxq[i__] + 1;
|
|
/* L10: */
|
|
}
|
|
|
|
/* Generate the second part of the vector Z. */
|
|
|
|
i__1 = m;
|
|
for (i__ = nlp2; i__ <= i__1; ++i__) {
|
|
z__[i__] = *beta * vt[i__ + nlp2 * vt_dim1];
|
|
/* L20: */
|
|
}
|
|
|
|
/* Initialize some reference arrays. */
|
|
|
|
i__1 = nlp1;
|
|
for (i__ = 2; i__ <= i__1; ++i__) {
|
|
coltyp[i__] = 1;
|
|
/* L30: */
|
|
}
|
|
i__1 = n;
|
|
for (i__ = nlp2; i__ <= i__1; ++i__) {
|
|
coltyp[i__] = 2;
|
|
/* L40: */
|
|
}
|
|
|
|
/* Sort the singular values into increasing order */
|
|
|
|
i__1 = n;
|
|
for (i__ = nlp2; i__ <= i__1; ++i__) {
|
|
idxq[i__] += nlp1;
|
|
/* L50: */
|
|
}
|
|
|
|
/* DSIGMA, IDXC, IDXC, and the first column of U2 */
|
|
/* are used as storage space. */
|
|
|
|
i__1 = n;
|
|
for (i__ = 2; i__ <= i__1; ++i__) {
|
|
dsigma[i__] = d__[idxq[i__]];
|
|
u2[i__ + u2_dim1] = z__[idxq[i__]];
|
|
idxc[i__] = coltyp[idxq[i__]];
|
|
/* L60: */
|
|
}
|
|
|
|
slamrg_(nl, nr, &dsigma[2], &c__1, &c__1, &idx[2]);
|
|
|
|
i__1 = n;
|
|
for (i__ = 2; i__ <= i__1; ++i__) {
|
|
idxi = idx[i__] + 1;
|
|
d__[i__] = dsigma[idxi];
|
|
z__[i__] = u2[idxi + u2_dim1];
|
|
coltyp[i__] = idxc[idxi];
|
|
/* L70: */
|
|
}
|
|
|
|
/* Calculate the allowable deflation tolerance */
|
|
|
|
eps = slamch_("Epsilon");
|
|
/* Computing MAX */
|
|
r__1 = abs(*alpha), r__2 = abs(*beta);
|
|
tol = f2cmax(r__1,r__2);
|
|
/* Computing MAX */
|
|
r__2 = (r__1 = d__[n], abs(r__1));
|
|
tol = eps * 8.f * f2cmax(r__2,tol);
|
|
|
|
/* There are 2 kinds of deflation -- first a value in the z-vector */
|
|
/* is small, second two (or more) singular values are very close */
|
|
/* together (their difference is small). */
|
|
|
|
/* If the value in the z-vector is small, we simply permute the */
|
|
/* array so that the corresponding singular value is moved to the */
|
|
/* end. */
|
|
|
|
/* If two values in the D-vector are close, we perform a two-sided */
|
|
/* rotation designed to make one of the corresponding z-vector */
|
|
/* entries zero, and then permute the array so that the deflated */
|
|
/* singular value is moved to the end. */
|
|
|
|
/* If there are multiple singular values then the problem deflates. */
|
|
/* Here the number of equal singular values are found. As each equal */
|
|
/* singular value is found, an elementary reflector is computed to */
|
|
/* rotate the corresponding singular subspace so that the */
|
|
/* corresponding components of Z are zero in this new basis. */
|
|
|
|
*k = 1;
|
|
k2 = n + 1;
|
|
i__1 = n;
|
|
for (j = 2; j <= i__1; ++j) {
|
|
if ((r__1 = z__[j], abs(r__1)) <= tol) {
|
|
|
|
/* Deflate due to small z component. */
|
|
|
|
--k2;
|
|
idxp[k2] = j;
|
|
coltyp[j] = 4;
|
|
if (j == n) {
|
|
goto L120;
|
|
}
|
|
} else {
|
|
jprev = j;
|
|
goto L90;
|
|
}
|
|
/* L80: */
|
|
}
|
|
L90:
|
|
j = jprev;
|
|
L100:
|
|
++j;
|
|
if (j > n) {
|
|
goto L110;
|
|
}
|
|
if ((r__1 = z__[j], abs(r__1)) <= tol) {
|
|
|
|
/* Deflate due to small z component. */
|
|
|
|
--k2;
|
|
idxp[k2] = j;
|
|
coltyp[j] = 4;
|
|
} else {
|
|
|
|
/* Check if singular values are close enough to allow deflation. */
|
|
|
|
if ((r__1 = d__[j] - d__[jprev], abs(r__1)) <= tol) {
|
|
|
|
/* Deflation is possible. */
|
|
|
|
s = z__[jprev];
|
|
c__ = z__[j];
|
|
|
|
/* Find sqrt(a**2+b**2) without overflow or */
|
|
/* destructive underflow. */
|
|
|
|
tau = slapy2_(&c__, &s);
|
|
c__ /= tau;
|
|
s = -s / tau;
|
|
z__[j] = tau;
|
|
z__[jprev] = 0.f;
|
|
|
|
/* Apply back the Givens rotation to the left and right */
|
|
/* singular vector matrices. */
|
|
|
|
idxjp = idxq[idx[jprev] + 1];
|
|
idxj = idxq[idx[j] + 1];
|
|
if (idxjp <= nlp1) {
|
|
--idxjp;
|
|
}
|
|
if (idxj <= nlp1) {
|
|
--idxj;
|
|
}
|
|
srot_(&n, &u[idxjp * u_dim1 + 1], &c__1, &u[idxj * u_dim1 + 1], &
|
|
c__1, &c__, &s);
|
|
srot_(&m, &vt[idxjp + vt_dim1], ldvt, &vt[idxj + vt_dim1], ldvt, &
|
|
c__, &s);
|
|
if (coltyp[j] != coltyp[jprev]) {
|
|
coltyp[j] = 3;
|
|
}
|
|
coltyp[jprev] = 4;
|
|
--k2;
|
|
idxp[k2] = jprev;
|
|
jprev = j;
|
|
} else {
|
|
++(*k);
|
|
u2[*k + u2_dim1] = z__[jprev];
|
|
dsigma[*k] = d__[jprev];
|
|
idxp[*k] = jprev;
|
|
jprev = j;
|
|
}
|
|
}
|
|
goto L100;
|
|
L110:
|
|
|
|
/* Record the last singular value. */
|
|
|
|
++(*k);
|
|
u2[*k + u2_dim1] = z__[jprev];
|
|
dsigma[*k] = d__[jprev];
|
|
idxp[*k] = jprev;
|
|
|
|
L120:
|
|
|
|
/* Count up the total number of the various types of columns, then */
|
|
/* form a permutation which positions the four column types into */
|
|
/* four groups of uniform structure (although one or more of these */
|
|
/* groups may be empty). */
|
|
|
|
for (j = 1; j <= 4; ++j) {
|
|
ctot[j - 1] = 0;
|
|
/* L130: */
|
|
}
|
|
i__1 = n;
|
|
for (j = 2; j <= i__1; ++j) {
|
|
ct = coltyp[j];
|
|
++ctot[ct - 1];
|
|
/* L140: */
|
|
}
|
|
|
|
/* PSM(*) = Position in SubMatrix (of types 1 through 4) */
|
|
|
|
psm[0] = 2;
|
|
psm[1] = ctot[0] + 2;
|
|
psm[2] = psm[1] + ctot[1];
|
|
psm[3] = psm[2] + ctot[2];
|
|
|
|
/* Fill out the IDXC array so that the permutation which it induces */
|
|
/* will place all type-1 columns first, all type-2 columns next, */
|
|
/* then all type-3's, and finally all type-4's, starting from the */
|
|
/* second column. This applies similarly to the rows of VT. */
|
|
|
|
i__1 = n;
|
|
for (j = 2; j <= i__1; ++j) {
|
|
jp = idxp[j];
|
|
ct = coltyp[jp];
|
|
idxc[psm[ct - 1]] = j;
|
|
++psm[ct - 1];
|
|
/* L150: */
|
|
}
|
|
|
|
/* Sort the singular values and corresponding singular vectors into */
|
|
/* DSIGMA, U2, and VT2 respectively. The singular values/vectors */
|
|
/* which were not deflated go into the first K slots of DSIGMA, U2, */
|
|
/* and VT2 respectively, while those which were deflated go into the */
|
|
/* last N - K slots, except that the first column/row will be treated */
|
|
/* separately. */
|
|
|
|
i__1 = n;
|
|
for (j = 2; j <= i__1; ++j) {
|
|
jp = idxp[j];
|
|
dsigma[j] = d__[jp];
|
|
idxj = idxq[idx[idxp[idxc[j]]] + 1];
|
|
if (idxj <= nlp1) {
|
|
--idxj;
|
|
}
|
|
scopy_(&n, &u[idxj * u_dim1 + 1], &c__1, &u2[j * u2_dim1 + 1], &c__1);
|
|
scopy_(&m, &vt[idxj + vt_dim1], ldvt, &vt2[j + vt2_dim1], ldvt2);
|
|
/* L160: */
|
|
}
|
|
|
|
/* Determine DSIGMA(1), DSIGMA(2) and Z(1) */
|
|
|
|
dsigma[1] = 0.f;
|
|
hlftol = tol / 2.f;
|
|
if (abs(dsigma[2]) <= hlftol) {
|
|
dsigma[2] = hlftol;
|
|
}
|
|
if (m > n) {
|
|
z__[1] = slapy2_(&z1, &z__[m]);
|
|
if (z__[1] <= tol) {
|
|
c__ = 1.f;
|
|
s = 0.f;
|
|
z__[1] = tol;
|
|
} else {
|
|
c__ = z1 / z__[1];
|
|
s = z__[m] / z__[1];
|
|
}
|
|
} else {
|
|
if (abs(z1) <= tol) {
|
|
z__[1] = tol;
|
|
} else {
|
|
z__[1] = z1;
|
|
}
|
|
}
|
|
|
|
/* Move the rest of the updating row to Z. */
|
|
|
|
i__1 = *k - 1;
|
|
scopy_(&i__1, &u2[u2_dim1 + 2], &c__1, &z__[2], &c__1);
|
|
|
|
/* Determine the first column of U2, the first row of VT2 and the */
|
|
/* last row of VT. */
|
|
|
|
slaset_("A", &n, &c__1, &c_b30, &c_b30, &u2[u2_offset], ldu2);
|
|
u2[nlp1 + u2_dim1] = 1.f;
|
|
if (m > n) {
|
|
i__1 = nlp1;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
vt[m + i__ * vt_dim1] = -s * vt[nlp1 + i__ * vt_dim1];
|
|
vt2[i__ * vt2_dim1 + 1] = c__ * vt[nlp1 + i__ * vt_dim1];
|
|
/* L170: */
|
|
}
|
|
i__1 = m;
|
|
for (i__ = nlp2; i__ <= i__1; ++i__) {
|
|
vt2[i__ * vt2_dim1 + 1] = s * vt[m + i__ * vt_dim1];
|
|
vt[m + i__ * vt_dim1] = c__ * vt[m + i__ * vt_dim1];
|
|
/* L180: */
|
|
}
|
|
} else {
|
|
scopy_(&m, &vt[nlp1 + vt_dim1], ldvt, &vt2[vt2_dim1 + 1], ldvt2);
|
|
}
|
|
if (m > n) {
|
|
scopy_(&m, &vt[m + vt_dim1], ldvt, &vt2[m + vt2_dim1], ldvt2);
|
|
}
|
|
|
|
/* The deflated singular values and their corresponding vectors go */
|
|
/* into the back of D, U, and V respectively. */
|
|
|
|
if (n > *k) {
|
|
i__1 = n - *k;
|
|
scopy_(&i__1, &dsigma[*k + 1], &c__1, &d__[*k + 1], &c__1);
|
|
i__1 = n - *k;
|
|
slacpy_("A", &n, &i__1, &u2[(*k + 1) * u2_dim1 + 1], ldu2, &u[(*k + 1)
|
|
* u_dim1 + 1], ldu);
|
|
i__1 = n - *k;
|
|
slacpy_("A", &i__1, &m, &vt2[*k + 1 + vt2_dim1], ldvt2, &vt[*k + 1 +
|
|
vt_dim1], ldvt);
|
|
}
|
|
|
|
/* Copy CTOT into COLTYP for referencing in SLASD3. */
|
|
|
|
for (j = 1; j <= 4; ++j) {
|
|
coltyp[j] = ctot[j - 1];
|
|
/* L190: */
|
|
}
|
|
|
|
return;
|
|
|
|
/* End of SLASD2 */
|
|
|
|
} /* slasd2_ */
|
|
|