1394 lines
36 KiB
C
1394 lines
36 KiB
C
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <complex.h>
|
|
#ifdef complex
|
|
#undef complex
|
|
#endif
|
|
#ifdef I
|
|
#undef I
|
|
#endif
|
|
|
|
#if defined(_WIN64)
|
|
typedef long long BLASLONG;
|
|
typedef unsigned long long BLASULONG;
|
|
#else
|
|
typedef long BLASLONG;
|
|
typedef unsigned long BLASULONG;
|
|
#endif
|
|
|
|
#ifdef LAPACK_ILP64
|
|
typedef BLASLONG blasint;
|
|
#if defined(_WIN64)
|
|
#define blasabs(x) llabs(x)
|
|
#else
|
|
#define blasabs(x) labs(x)
|
|
#endif
|
|
#else
|
|
typedef int blasint;
|
|
#define blasabs(x) abs(x)
|
|
#endif
|
|
|
|
typedef blasint integer;
|
|
|
|
typedef unsigned int uinteger;
|
|
typedef char *address;
|
|
typedef short int shortint;
|
|
typedef float real;
|
|
typedef double doublereal;
|
|
typedef struct { real r, i; } complex;
|
|
typedef struct { doublereal r, i; } doublecomplex;
|
|
#ifdef _MSC_VER
|
|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
|
|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
|
|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
|
|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
|
|
#else
|
|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
|
|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
|
|
#endif
|
|
#define pCf(z) (*_pCf(z))
|
|
#define pCd(z) (*_pCd(z))
|
|
typedef blasint logical;
|
|
|
|
typedef char logical1;
|
|
typedef char integer1;
|
|
|
|
#define TRUE_ (1)
|
|
#define FALSE_ (0)
|
|
|
|
/* Extern is for use with -E */
|
|
#ifndef Extern
|
|
#define Extern extern
|
|
#endif
|
|
|
|
/* I/O stuff */
|
|
|
|
typedef int flag;
|
|
typedef int ftnlen;
|
|
typedef int ftnint;
|
|
|
|
/*external read, write*/
|
|
typedef struct
|
|
{ flag cierr;
|
|
ftnint ciunit;
|
|
flag ciend;
|
|
char *cifmt;
|
|
ftnint cirec;
|
|
} cilist;
|
|
|
|
/*internal read, write*/
|
|
typedef struct
|
|
{ flag icierr;
|
|
char *iciunit;
|
|
flag iciend;
|
|
char *icifmt;
|
|
ftnint icirlen;
|
|
ftnint icirnum;
|
|
} icilist;
|
|
|
|
/*open*/
|
|
typedef struct
|
|
{ flag oerr;
|
|
ftnint ounit;
|
|
char *ofnm;
|
|
ftnlen ofnmlen;
|
|
char *osta;
|
|
char *oacc;
|
|
char *ofm;
|
|
ftnint orl;
|
|
char *oblnk;
|
|
} olist;
|
|
|
|
/*close*/
|
|
typedef struct
|
|
{ flag cerr;
|
|
ftnint cunit;
|
|
char *csta;
|
|
} cllist;
|
|
|
|
/*rewind, backspace, endfile*/
|
|
typedef struct
|
|
{ flag aerr;
|
|
ftnint aunit;
|
|
} alist;
|
|
|
|
/* inquire */
|
|
typedef struct
|
|
{ flag inerr;
|
|
ftnint inunit;
|
|
char *infile;
|
|
ftnlen infilen;
|
|
ftnint *inex; /*parameters in standard's order*/
|
|
ftnint *inopen;
|
|
ftnint *innum;
|
|
ftnint *innamed;
|
|
char *inname;
|
|
ftnlen innamlen;
|
|
char *inacc;
|
|
ftnlen inacclen;
|
|
char *inseq;
|
|
ftnlen inseqlen;
|
|
char *indir;
|
|
ftnlen indirlen;
|
|
char *infmt;
|
|
ftnlen infmtlen;
|
|
char *inform;
|
|
ftnint informlen;
|
|
char *inunf;
|
|
ftnlen inunflen;
|
|
ftnint *inrecl;
|
|
ftnint *innrec;
|
|
char *inblank;
|
|
ftnlen inblanklen;
|
|
} inlist;
|
|
|
|
#define VOID void
|
|
|
|
union Multitype { /* for multiple entry points */
|
|
integer1 g;
|
|
shortint h;
|
|
integer i;
|
|
/* longint j; */
|
|
real r;
|
|
doublereal d;
|
|
complex c;
|
|
doublecomplex z;
|
|
};
|
|
|
|
typedef union Multitype Multitype;
|
|
|
|
struct Vardesc { /* for Namelist */
|
|
char *name;
|
|
char *addr;
|
|
ftnlen *dims;
|
|
int type;
|
|
};
|
|
typedef struct Vardesc Vardesc;
|
|
|
|
struct Namelist {
|
|
char *name;
|
|
Vardesc **vars;
|
|
int nvars;
|
|
};
|
|
typedef struct Namelist Namelist;
|
|
|
|
#define abs(x) ((x) >= 0 ? (x) : -(x))
|
|
#define dabs(x) (fabs(x))
|
|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
|
|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
|
|
#define dmin(a,b) (f2cmin(a,b))
|
|
#define dmax(a,b) (f2cmax(a,b))
|
|
#define bit_test(a,b) ((a) >> (b) & 1)
|
|
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
|
|
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
|
|
|
|
#define abort_() { sig_die("Fortran abort routine called", 1); }
|
|
#define c_abs(z) (cabsf(Cf(z)))
|
|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
|
|
#ifdef _MSC_VER
|
|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
|
|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
|
|
#else
|
|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
|
|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
|
|
#endif
|
|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
|
|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
|
|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
|
|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
|
|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
|
|
#define d_abs(x) (fabs(*(x)))
|
|
#define d_acos(x) (acos(*(x)))
|
|
#define d_asin(x) (asin(*(x)))
|
|
#define d_atan(x) (atan(*(x)))
|
|
#define d_atn2(x, y) (atan2(*(x),*(y)))
|
|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
|
|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
|
|
#define d_cos(x) (cos(*(x)))
|
|
#define d_cosh(x) (cosh(*(x)))
|
|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
|
|
#define d_exp(x) (exp(*(x)))
|
|
#define d_imag(z) (cimag(Cd(z)))
|
|
#define r_imag(z) (cimagf(Cf(z)))
|
|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define d_log(x) (log(*(x)))
|
|
#define d_mod(x, y) (fmod(*(x), *(y)))
|
|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
|
|
#define d_nint(x) u_nint(*(x))
|
|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
|
|
#define d_sign(a,b) u_sign(*(a),*(b))
|
|
#define r_sign(a,b) u_sign(*(a),*(b))
|
|
#define d_sin(x) (sin(*(x)))
|
|
#define d_sinh(x) (sinh(*(x)))
|
|
#define d_sqrt(x) (sqrt(*(x)))
|
|
#define d_tan(x) (tan(*(x)))
|
|
#define d_tanh(x) (tanh(*(x)))
|
|
#define i_abs(x) abs(*(x))
|
|
#define i_dnnt(x) ((integer)u_nint(*(x)))
|
|
#define i_len(s, n) (n)
|
|
#define i_nint(x) ((integer)u_nint(*(x)))
|
|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
|
|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
|
|
#define pow_si(B,E) spow_ui(*(B),*(E))
|
|
#define pow_ri(B,E) spow_ui(*(B),*(E))
|
|
#define pow_di(B,E) dpow_ui(*(B),*(E))
|
|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
|
|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
|
|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
|
|
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
|
|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
|
|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
|
|
#define sig_die(s, kill) { exit(1); }
|
|
#define s_stop(s, n) {exit(0);}
|
|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
|
|
#define z_abs(z) (cabs(Cd(z)))
|
|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
|
|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
|
|
#define myexit_() break;
|
|
#define mycycle() continue;
|
|
#define myceiling(w) {ceil(w)}
|
|
#define myhuge(w) {HUGE_VAL}
|
|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
|
|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
|
|
|
|
/* procedure parameter types for -A and -C++ */
|
|
|
|
|
|
#ifdef __cplusplus
|
|
typedef logical (*L_fp)(...);
|
|
#else
|
|
typedef logical (*L_fp)();
|
|
#endif
|
|
|
|
static float spow_ui(float x, integer n) {
|
|
float pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
static double dpow_ui(double x, integer n) {
|
|
double pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#ifdef _MSC_VER
|
|
static _Fcomplex cpow_ui(complex x, integer n) {
|
|
complex pow={1.0,0.0}; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow.r *= x.r, pow.i *= x.i;
|
|
if(u >>= 1) x.r *= x.r, x.i *= x.i;
|
|
else break;
|
|
}
|
|
}
|
|
_Fcomplex p={pow.r, pow.i};
|
|
return p;
|
|
}
|
|
#else
|
|
static _Complex float cpow_ui(_Complex float x, integer n) {
|
|
_Complex float pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#endif
|
|
#ifdef _MSC_VER
|
|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
|
|
_Dcomplex pow={1.0,0.0}; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
|
|
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
|
|
else break;
|
|
}
|
|
}
|
|
_Dcomplex p = {pow._Val[0], pow._Val[1]};
|
|
return p;
|
|
}
|
|
#else
|
|
static _Complex double zpow_ui(_Complex double x, integer n) {
|
|
_Complex double pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#endif
|
|
static integer pow_ii(integer x, integer n) {
|
|
integer pow; unsigned long int u;
|
|
if (n <= 0) {
|
|
if (n == 0 || x == 1) pow = 1;
|
|
else if (x != -1) pow = x == 0 ? 1/x : 0;
|
|
else n = -n;
|
|
}
|
|
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
|
|
u = n;
|
|
for(pow = 1; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
|
|
{
|
|
double m; integer i, mi;
|
|
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
|
if (w[i-1]>m) mi=i ,m=w[i-1];
|
|
return mi-s+1;
|
|
}
|
|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
|
|
{
|
|
float m; integer i, mi;
|
|
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
|
if (w[i-1]>m) mi=i ,m=w[i-1];
|
|
return mi-s+1;
|
|
}
|
|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Fcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
|
|
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex float zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Dcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
|
|
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex double zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Fcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
|
|
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex float zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cf(&x[i]) * Cf(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Dcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
|
|
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex double zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cd(&x[i]) * Cd(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#endif
|
|
/* -- translated by f2c (version 20000121).
|
|
You must link the resulting object file with the libraries:
|
|
-lf2c -lm (in that order)
|
|
*/
|
|
|
|
|
|
|
|
|
|
/* Table of constant values */
|
|
|
|
static integer c__1 = 1;
|
|
static logical c_false = FALSE_;
|
|
static integer c__2 = 2;
|
|
static real c_b21 = 1.f;
|
|
static real c_b25 = 0.f;
|
|
static logical c_true = TRUE_;
|
|
|
|
/* > \brief \b SLAQTR solves a real quasi-triangular system of equations, or a complex quasi-triangular system
|
|
of special form, in real arithmetic. */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* > \htmlonly */
|
|
/* > Download SLAQTR + dependencies */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaqtr.
|
|
f"> */
|
|
/* > [TGZ]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaqtr.
|
|
f"> */
|
|
/* > [ZIP]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaqtr.
|
|
f"> */
|
|
/* > [TXT]</a> */
|
|
/* > \endhtmlonly */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* SUBROUTINE SLAQTR( LTRAN, LREAL, N, T, LDT, B, W, SCALE, X, WORK, */
|
|
/* INFO ) */
|
|
|
|
/* LOGICAL LREAL, LTRAN */
|
|
/* INTEGER INFO, LDT, N */
|
|
/* REAL SCALE, W */
|
|
/* REAL B( * ), T( LDT, * ), WORK( * ), X( * ) */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > SLAQTR solves the real quasi-triangular system */
|
|
/* > */
|
|
/* > op(T)*p = scale*c, if LREAL = .TRUE. */
|
|
/* > */
|
|
/* > or the complex quasi-triangular systems */
|
|
/* > */
|
|
/* > op(T + iB)*(p+iq) = scale*(c+id), if LREAL = .FALSE. */
|
|
/* > */
|
|
/* > in real arithmetic, where T is upper quasi-triangular. */
|
|
/* > If LREAL = .FALSE., then the first diagonal block of T must be */
|
|
/* > 1 by 1, B is the specially structured matrix */
|
|
/* > */
|
|
/* > B = [ b(1) b(2) ... b(n) ] */
|
|
/* > [ w ] */
|
|
/* > [ w ] */
|
|
/* > [ . ] */
|
|
/* > [ w ] */
|
|
/* > */
|
|
/* > op(A) = A or A**T, A**T denotes the transpose of */
|
|
/* > matrix A. */
|
|
/* > */
|
|
/* > On input, X = [ c ]. On output, X = [ p ]. */
|
|
/* > [ d ] [ q ] */
|
|
/* > */
|
|
/* > This subroutine is designed for the condition number estimation */
|
|
/* > in routine STRSNA. */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] LTRAN */
|
|
/* > \verbatim */
|
|
/* > LTRAN is LOGICAL */
|
|
/* > On entry, LTRAN specifies the option of conjugate transpose: */
|
|
/* > = .FALSE., op(T+i*B) = T+i*B, */
|
|
/* > = .TRUE., op(T+i*B) = (T+i*B)**T. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LREAL */
|
|
/* > \verbatim */
|
|
/* > LREAL is LOGICAL */
|
|
/* > On entry, LREAL specifies the input matrix structure: */
|
|
/* > = .FALSE., the input is complex */
|
|
/* > = .TRUE., the input is real */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > On entry, N specifies the order of T+i*B. N >= 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] T */
|
|
/* > \verbatim */
|
|
/* > T is REAL array, dimension (LDT,N) */
|
|
/* > On entry, T contains a matrix in Schur canonical form. */
|
|
/* > If LREAL = .FALSE., then the first diagonal block of T must */
|
|
/* > be 1 by 1. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDT */
|
|
/* > \verbatim */
|
|
/* > LDT is INTEGER */
|
|
/* > The leading dimension of the matrix T. LDT >= f2cmax(1,N). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] B */
|
|
/* > \verbatim */
|
|
/* > B is REAL array, dimension (N) */
|
|
/* > On entry, B contains the elements to form the matrix */
|
|
/* > B as described above. */
|
|
/* > If LREAL = .TRUE., B is not referenced. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] W */
|
|
/* > \verbatim */
|
|
/* > W is REAL */
|
|
/* > On entry, W is the diagonal element of the matrix B. */
|
|
/* > If LREAL = .TRUE., W is not referenced. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] SCALE */
|
|
/* > \verbatim */
|
|
/* > SCALE is REAL */
|
|
/* > On exit, SCALE is the scale factor. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] X */
|
|
/* > \verbatim */
|
|
/* > X is REAL array, dimension (2*N) */
|
|
/* > On entry, X contains the right hand side of the system. */
|
|
/* > On exit, X is overwritten by the solution. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] WORK */
|
|
/* > \verbatim */
|
|
/* > WORK is REAL array, dimension (N) */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] INFO */
|
|
/* > \verbatim */
|
|
/* > INFO is INTEGER */
|
|
/* > On exit, INFO is set to */
|
|
/* > 0: successful exit. */
|
|
/* > 1: the some diagonal 1 by 1 block has been perturbed by */
|
|
/* > a small number SMIN to keep nonsingularity. */
|
|
/* > 2: the some diagonal 2 by 2 block has been perturbed by */
|
|
/* > a small number in SLALN2 to keep nonsingularity. */
|
|
/* > NOTE: In the interests of speed, this routine does not */
|
|
/* > check the inputs for errors. */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \date December 2016 */
|
|
|
|
/* > \ingroup realOTHERauxiliary */
|
|
|
|
/* ===================================================================== */
|
|
/* Subroutine */ void slaqtr_(logical *ltran, logical *lreal, integer *n, real
|
|
*t, integer *ldt, real *b, real *w, real *scale, real *x, real *work,
|
|
integer *info)
|
|
{
|
|
/* System generated locals */
|
|
integer t_dim1, t_offset, i__1, i__2;
|
|
real r__1, r__2, r__3, r__4, r__5, r__6;
|
|
|
|
/* Local variables */
|
|
integer ierr;
|
|
real smin;
|
|
extern real sdot_(integer *, real *, integer *, real *, integer *);
|
|
real xmax, d__[4] /* was [2][2] */;
|
|
integer i__, j, k;
|
|
real v[4] /* was [2][2] */, z__;
|
|
extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *);
|
|
integer jnext;
|
|
extern real sasum_(integer *, real *, integer *);
|
|
integer j1, j2;
|
|
real sminw;
|
|
integer n1, n2;
|
|
real xnorm;
|
|
extern /* Subroutine */ void saxpy_(integer *, real *, real *, integer *,
|
|
real *, integer *), slaln2_(logical *, integer *, integer *, real
|
|
*, real *, real *, integer *, real *, real *, real *, integer *,
|
|
real *, real *, real *, integer *, real *, real *, integer *);
|
|
real si, xj, scaloc, sr;
|
|
extern real slamch_(char *), slange_(char *, integer *, integer *,
|
|
real *, integer *, real *);
|
|
real bignum;
|
|
extern integer isamax_(integer *, real *, integer *);
|
|
extern /* Subroutine */ void sladiv_(real *, real *, real *, real *, real *
|
|
, real *);
|
|
logical notran;
|
|
real smlnum, rec, eps, tjj, tmp;
|
|
|
|
|
|
/* -- LAPACK auxiliary routine (version 3.7.0) -- */
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
/* December 2016 */
|
|
|
|
|
|
/* ===================================================================== */
|
|
|
|
|
|
/* Do not test the input parameters for errors */
|
|
|
|
/* Parameter adjustments */
|
|
t_dim1 = *ldt;
|
|
t_offset = 1 + t_dim1 * 1;
|
|
t -= t_offset;
|
|
--b;
|
|
--x;
|
|
--work;
|
|
|
|
/* Function Body */
|
|
notran = ! (*ltran);
|
|
*info = 0;
|
|
|
|
/* Quick return if possible */
|
|
|
|
if (*n == 0) {
|
|
return;
|
|
}
|
|
|
|
/* Set constants to control overflow */
|
|
|
|
eps = slamch_("P");
|
|
smlnum = slamch_("S") / eps;
|
|
bignum = 1.f / smlnum;
|
|
|
|
xnorm = slange_("M", n, n, &t[t_offset], ldt, d__);
|
|
if (! (*lreal)) {
|
|
/* Computing MAX */
|
|
r__1 = xnorm, r__2 = abs(*w), r__1 = f2cmax(r__1,r__2), r__2 = slange_(
|
|
"M", n, &c__1, &b[1], n, d__);
|
|
xnorm = f2cmax(r__1,r__2);
|
|
}
|
|
/* Computing MAX */
|
|
r__1 = smlnum, r__2 = eps * xnorm;
|
|
smin = f2cmax(r__1,r__2);
|
|
|
|
/* Compute 1-norm of each column of strictly upper triangular */
|
|
/* part of T to control overflow in triangular solver. */
|
|
|
|
work[1] = 0.f;
|
|
i__1 = *n;
|
|
for (j = 2; j <= i__1; ++j) {
|
|
i__2 = j - 1;
|
|
work[j] = sasum_(&i__2, &t[j * t_dim1 + 1], &c__1);
|
|
/* L10: */
|
|
}
|
|
|
|
if (! (*lreal)) {
|
|
i__1 = *n;
|
|
for (i__ = 2; i__ <= i__1; ++i__) {
|
|
work[i__] += (r__1 = b[i__], abs(r__1));
|
|
/* L20: */
|
|
}
|
|
}
|
|
|
|
n2 = *n << 1;
|
|
n1 = *n;
|
|
if (! (*lreal)) {
|
|
n1 = n2;
|
|
}
|
|
k = isamax_(&n1, &x[1], &c__1);
|
|
xmax = (r__1 = x[k], abs(r__1));
|
|
*scale = 1.f;
|
|
|
|
if (xmax > bignum) {
|
|
*scale = bignum / xmax;
|
|
sscal_(&n1, scale, &x[1], &c__1);
|
|
xmax = bignum;
|
|
}
|
|
|
|
if (*lreal) {
|
|
|
|
if (notran) {
|
|
|
|
/* Solve T*p = scale*c */
|
|
|
|
jnext = *n;
|
|
for (j = *n; j >= 1; --j) {
|
|
if (j > jnext) {
|
|
goto L30;
|
|
}
|
|
j1 = j;
|
|
j2 = j;
|
|
jnext = j - 1;
|
|
if (j > 1) {
|
|
if (t[j + (j - 1) * t_dim1] != 0.f) {
|
|
j1 = j - 1;
|
|
jnext = j - 2;
|
|
}
|
|
}
|
|
|
|
if (j1 == j2) {
|
|
|
|
/* Meet 1 by 1 diagonal block */
|
|
|
|
/* Scale to avoid overflow when computing */
|
|
/* x(j) = b(j)/T(j,j) */
|
|
|
|
xj = (r__1 = x[j1], abs(r__1));
|
|
tjj = (r__1 = t[j1 + j1 * t_dim1], abs(r__1));
|
|
tmp = t[j1 + j1 * t_dim1];
|
|
if (tjj < smin) {
|
|
tmp = smin;
|
|
tjj = smin;
|
|
*info = 1;
|
|
}
|
|
|
|
if (xj == 0.f) {
|
|
goto L30;
|
|
}
|
|
|
|
if (tjj < 1.f) {
|
|
if (xj > bignum * tjj) {
|
|
rec = 1.f / xj;
|
|
sscal_(n, &rec, &x[1], &c__1);
|
|
*scale *= rec;
|
|
xmax *= rec;
|
|
}
|
|
}
|
|
x[j1] /= tmp;
|
|
xj = (r__1 = x[j1], abs(r__1));
|
|
|
|
/* Scale x if necessary to avoid overflow when adding a */
|
|
/* multiple of column j1 of T. */
|
|
|
|
if (xj > 1.f) {
|
|
rec = 1.f / xj;
|
|
if (work[j1] > (bignum - xmax) * rec) {
|
|
sscal_(n, &rec, &x[1], &c__1);
|
|
*scale *= rec;
|
|
}
|
|
}
|
|
if (j1 > 1) {
|
|
i__1 = j1 - 1;
|
|
r__1 = -x[j1];
|
|
saxpy_(&i__1, &r__1, &t[j1 * t_dim1 + 1], &c__1, &x[1]
|
|
, &c__1);
|
|
i__1 = j1 - 1;
|
|
k = isamax_(&i__1, &x[1], &c__1);
|
|
xmax = (r__1 = x[k], abs(r__1));
|
|
}
|
|
|
|
} else {
|
|
|
|
/* Meet 2 by 2 diagonal block */
|
|
|
|
/* Call 2 by 2 linear system solve, to take */
|
|
/* care of possible overflow by scaling factor. */
|
|
|
|
d__[0] = x[j1];
|
|
d__[1] = x[j2];
|
|
slaln2_(&c_false, &c__2, &c__1, &smin, &c_b21, &t[j1 + j1
|
|
* t_dim1], ldt, &c_b21, &c_b21, d__, &c__2, &
|
|
c_b25, &c_b25, v, &c__2, &scaloc, &xnorm, &ierr);
|
|
if (ierr != 0) {
|
|
*info = 2;
|
|
}
|
|
|
|
if (scaloc != 1.f) {
|
|
sscal_(n, &scaloc, &x[1], &c__1);
|
|
*scale *= scaloc;
|
|
}
|
|
x[j1] = v[0];
|
|
x[j2] = v[1];
|
|
|
|
/* Scale V(1,1) (= X(J1)) and/or V(2,1) (=X(J2)) */
|
|
/* to avoid overflow in updating right-hand side. */
|
|
|
|
/* Computing MAX */
|
|
r__1 = abs(v[0]), r__2 = abs(v[1]);
|
|
xj = f2cmax(r__1,r__2);
|
|
if (xj > 1.f) {
|
|
rec = 1.f / xj;
|
|
/* Computing MAX */
|
|
r__1 = work[j1], r__2 = work[j2];
|
|
if (f2cmax(r__1,r__2) > (bignum - xmax) * rec) {
|
|
sscal_(n, &rec, &x[1], &c__1);
|
|
*scale *= rec;
|
|
}
|
|
}
|
|
|
|
/* Update right-hand side */
|
|
|
|
if (j1 > 1) {
|
|
i__1 = j1 - 1;
|
|
r__1 = -x[j1];
|
|
saxpy_(&i__1, &r__1, &t[j1 * t_dim1 + 1], &c__1, &x[1]
|
|
, &c__1);
|
|
i__1 = j1 - 1;
|
|
r__1 = -x[j2];
|
|
saxpy_(&i__1, &r__1, &t[j2 * t_dim1 + 1], &c__1, &x[1]
|
|
, &c__1);
|
|
i__1 = j1 - 1;
|
|
k = isamax_(&i__1, &x[1], &c__1);
|
|
xmax = (r__1 = x[k], abs(r__1));
|
|
}
|
|
|
|
}
|
|
|
|
L30:
|
|
;
|
|
}
|
|
|
|
} else {
|
|
|
|
/* Solve T**T*p = scale*c */
|
|
|
|
jnext = 1;
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
if (j < jnext) {
|
|
goto L40;
|
|
}
|
|
j1 = j;
|
|
j2 = j;
|
|
jnext = j + 1;
|
|
if (j < *n) {
|
|
if (t[j + 1 + j * t_dim1] != 0.f) {
|
|
j2 = j + 1;
|
|
jnext = j + 2;
|
|
}
|
|
}
|
|
|
|
if (j1 == j2) {
|
|
|
|
/* 1 by 1 diagonal block */
|
|
|
|
/* Scale if necessary to avoid overflow in forming the */
|
|
/* right-hand side element by inner product. */
|
|
|
|
xj = (r__1 = x[j1], abs(r__1));
|
|
if (xmax > 1.f) {
|
|
rec = 1.f / xmax;
|
|
if (work[j1] > (bignum - xj) * rec) {
|
|
sscal_(n, &rec, &x[1], &c__1);
|
|
*scale *= rec;
|
|
xmax *= rec;
|
|
}
|
|
}
|
|
|
|
i__2 = j1 - 1;
|
|
x[j1] -= sdot_(&i__2, &t[j1 * t_dim1 + 1], &c__1, &x[1], &
|
|
c__1);
|
|
|
|
xj = (r__1 = x[j1], abs(r__1));
|
|
tjj = (r__1 = t[j1 + j1 * t_dim1], abs(r__1));
|
|
tmp = t[j1 + j1 * t_dim1];
|
|
if (tjj < smin) {
|
|
tmp = smin;
|
|
tjj = smin;
|
|
*info = 1;
|
|
}
|
|
|
|
if (tjj < 1.f) {
|
|
if (xj > bignum * tjj) {
|
|
rec = 1.f / xj;
|
|
sscal_(n, &rec, &x[1], &c__1);
|
|
*scale *= rec;
|
|
xmax *= rec;
|
|
}
|
|
}
|
|
x[j1] /= tmp;
|
|
/* Computing MAX */
|
|
r__2 = xmax, r__3 = (r__1 = x[j1], abs(r__1));
|
|
xmax = f2cmax(r__2,r__3);
|
|
|
|
} else {
|
|
|
|
/* 2 by 2 diagonal block */
|
|
|
|
/* Scale if necessary to avoid overflow in forming the */
|
|
/* right-hand side elements by inner product. */
|
|
|
|
/* Computing MAX */
|
|
r__3 = (r__1 = x[j1], abs(r__1)), r__4 = (r__2 = x[j2],
|
|
abs(r__2));
|
|
xj = f2cmax(r__3,r__4);
|
|
if (xmax > 1.f) {
|
|
rec = 1.f / xmax;
|
|
/* Computing MAX */
|
|
r__1 = work[j2], r__2 = work[j1];
|
|
if (f2cmax(r__1,r__2) > (bignum - xj) * rec) {
|
|
sscal_(n, &rec, &x[1], &c__1);
|
|
*scale *= rec;
|
|
xmax *= rec;
|
|
}
|
|
}
|
|
|
|
i__2 = j1 - 1;
|
|
d__[0] = x[j1] - sdot_(&i__2, &t[j1 * t_dim1 + 1], &c__1,
|
|
&x[1], &c__1);
|
|
i__2 = j1 - 1;
|
|
d__[1] = x[j2] - sdot_(&i__2, &t[j2 * t_dim1 + 1], &c__1,
|
|
&x[1], &c__1);
|
|
|
|
slaln2_(&c_true, &c__2, &c__1, &smin, &c_b21, &t[j1 + j1 *
|
|
t_dim1], ldt, &c_b21, &c_b21, d__, &c__2, &c_b25,
|
|
&c_b25, v, &c__2, &scaloc, &xnorm, &ierr);
|
|
if (ierr != 0) {
|
|
*info = 2;
|
|
}
|
|
|
|
if (scaloc != 1.f) {
|
|
sscal_(n, &scaloc, &x[1], &c__1);
|
|
*scale *= scaloc;
|
|
}
|
|
x[j1] = v[0];
|
|
x[j2] = v[1];
|
|
/* Computing MAX */
|
|
r__3 = (r__1 = x[j1], abs(r__1)), r__4 = (r__2 = x[j2],
|
|
abs(r__2)), r__3 = f2cmax(r__3,r__4);
|
|
xmax = f2cmax(r__3,xmax);
|
|
|
|
}
|
|
L40:
|
|
;
|
|
}
|
|
}
|
|
|
|
} else {
|
|
|
|
/* Computing MAX */
|
|
r__1 = eps * abs(*w);
|
|
sminw = f2cmax(r__1,smin);
|
|
if (notran) {
|
|
|
|
/* Solve (T + iB)*(p+iq) = c+id */
|
|
|
|
jnext = *n;
|
|
for (j = *n; j >= 1; --j) {
|
|
if (j > jnext) {
|
|
goto L70;
|
|
}
|
|
j1 = j;
|
|
j2 = j;
|
|
jnext = j - 1;
|
|
if (j > 1) {
|
|
if (t[j + (j - 1) * t_dim1] != 0.f) {
|
|
j1 = j - 1;
|
|
jnext = j - 2;
|
|
}
|
|
}
|
|
|
|
if (j1 == j2) {
|
|
|
|
/* 1 by 1 diagonal block */
|
|
|
|
/* Scale if necessary to avoid overflow in division */
|
|
|
|
z__ = *w;
|
|
if (j1 == 1) {
|
|
z__ = b[1];
|
|
}
|
|
xj = (r__1 = x[j1], abs(r__1)) + (r__2 = x[*n + j1], abs(
|
|
r__2));
|
|
tjj = (r__1 = t[j1 + j1 * t_dim1], abs(r__1)) + abs(z__);
|
|
tmp = t[j1 + j1 * t_dim1];
|
|
if (tjj < sminw) {
|
|
tmp = sminw;
|
|
tjj = sminw;
|
|
*info = 1;
|
|
}
|
|
|
|
if (xj == 0.f) {
|
|
goto L70;
|
|
}
|
|
|
|
if (tjj < 1.f) {
|
|
if (xj > bignum * tjj) {
|
|
rec = 1.f / xj;
|
|
sscal_(&n2, &rec, &x[1], &c__1);
|
|
*scale *= rec;
|
|
xmax *= rec;
|
|
}
|
|
}
|
|
sladiv_(&x[j1], &x[*n + j1], &tmp, &z__, &sr, &si);
|
|
x[j1] = sr;
|
|
x[*n + j1] = si;
|
|
xj = (r__1 = x[j1], abs(r__1)) + (r__2 = x[*n + j1], abs(
|
|
r__2));
|
|
|
|
/* Scale x if necessary to avoid overflow when adding a */
|
|
/* multiple of column j1 of T. */
|
|
|
|
if (xj > 1.f) {
|
|
rec = 1.f / xj;
|
|
if (work[j1] > (bignum - xmax) * rec) {
|
|
sscal_(&n2, &rec, &x[1], &c__1);
|
|
*scale *= rec;
|
|
}
|
|
}
|
|
|
|
if (j1 > 1) {
|
|
i__1 = j1 - 1;
|
|
r__1 = -x[j1];
|
|
saxpy_(&i__1, &r__1, &t[j1 * t_dim1 + 1], &c__1, &x[1]
|
|
, &c__1);
|
|
i__1 = j1 - 1;
|
|
r__1 = -x[*n + j1];
|
|
saxpy_(&i__1, &r__1, &t[j1 * t_dim1 + 1], &c__1, &x[*
|
|
n + 1], &c__1);
|
|
|
|
x[1] += b[j1] * x[*n + j1];
|
|
x[*n + 1] -= b[j1] * x[j1];
|
|
|
|
xmax = 0.f;
|
|
i__1 = j1 - 1;
|
|
for (k = 1; k <= i__1; ++k) {
|
|
/* Computing MAX */
|
|
r__3 = xmax, r__4 = (r__1 = x[k], abs(r__1)) + (
|
|
r__2 = x[k + *n], abs(r__2));
|
|
xmax = f2cmax(r__3,r__4);
|
|
/* L50: */
|
|
}
|
|
}
|
|
|
|
} else {
|
|
|
|
/* Meet 2 by 2 diagonal block */
|
|
|
|
d__[0] = x[j1];
|
|
d__[1] = x[j2];
|
|
d__[2] = x[*n + j1];
|
|
d__[3] = x[*n + j2];
|
|
r__1 = -(*w);
|
|
slaln2_(&c_false, &c__2, &c__2, &sminw, &c_b21, &t[j1 +
|
|
j1 * t_dim1], ldt, &c_b21, &c_b21, d__, &c__2, &
|
|
c_b25, &r__1, v, &c__2, &scaloc, &xnorm, &ierr);
|
|
if (ierr != 0) {
|
|
*info = 2;
|
|
}
|
|
|
|
if (scaloc != 1.f) {
|
|
i__1 = *n << 1;
|
|
sscal_(&i__1, &scaloc, &x[1], &c__1);
|
|
*scale = scaloc * *scale;
|
|
}
|
|
x[j1] = v[0];
|
|
x[j2] = v[1];
|
|
x[*n + j1] = v[2];
|
|
x[*n + j2] = v[3];
|
|
|
|
/* Scale X(J1), .... to avoid overflow in */
|
|
/* updating right hand side. */
|
|
|
|
/* Computing MAX */
|
|
r__1 = abs(v[0]) + abs(v[2]), r__2 = abs(v[1]) + abs(v[3])
|
|
;
|
|
xj = f2cmax(r__1,r__2);
|
|
if (xj > 1.f) {
|
|
rec = 1.f / xj;
|
|
/* Computing MAX */
|
|
r__1 = work[j1], r__2 = work[j2];
|
|
if (f2cmax(r__1,r__2) > (bignum - xmax) * rec) {
|
|
sscal_(&n2, &rec, &x[1], &c__1);
|
|
*scale *= rec;
|
|
}
|
|
}
|
|
|
|
/* Update the right-hand side. */
|
|
|
|
if (j1 > 1) {
|
|
i__1 = j1 - 1;
|
|
r__1 = -x[j1];
|
|
saxpy_(&i__1, &r__1, &t[j1 * t_dim1 + 1], &c__1, &x[1]
|
|
, &c__1);
|
|
i__1 = j1 - 1;
|
|
r__1 = -x[j2];
|
|
saxpy_(&i__1, &r__1, &t[j2 * t_dim1 + 1], &c__1, &x[1]
|
|
, &c__1);
|
|
|
|
i__1 = j1 - 1;
|
|
r__1 = -x[*n + j1];
|
|
saxpy_(&i__1, &r__1, &t[j1 * t_dim1 + 1], &c__1, &x[*
|
|
n + 1], &c__1);
|
|
i__1 = j1 - 1;
|
|
r__1 = -x[*n + j2];
|
|
saxpy_(&i__1, &r__1, &t[j2 * t_dim1 + 1], &c__1, &x[*
|
|
n + 1], &c__1);
|
|
|
|
x[1] = x[1] + b[j1] * x[*n + j1] + b[j2] * x[*n + j2];
|
|
x[*n + 1] = x[*n + 1] - b[j1] * x[j1] - b[j2] * x[j2];
|
|
|
|
xmax = 0.f;
|
|
i__1 = j1 - 1;
|
|
for (k = 1; k <= i__1; ++k) {
|
|
/* Computing MAX */
|
|
r__3 = (r__1 = x[k], abs(r__1)) + (r__2 = x[k + *
|
|
n], abs(r__2));
|
|
xmax = f2cmax(r__3,xmax);
|
|
/* L60: */
|
|
}
|
|
}
|
|
|
|
}
|
|
L70:
|
|
;
|
|
}
|
|
|
|
} else {
|
|
|
|
/* Solve (T + iB)**T*(p+iq) = c+id */
|
|
|
|
jnext = 1;
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
if (j < jnext) {
|
|
goto L80;
|
|
}
|
|
j1 = j;
|
|
j2 = j;
|
|
jnext = j + 1;
|
|
if (j < *n) {
|
|
if (t[j + 1 + j * t_dim1] != 0.f) {
|
|
j2 = j + 1;
|
|
jnext = j + 2;
|
|
}
|
|
}
|
|
|
|
if (j1 == j2) {
|
|
|
|
/* 1 by 1 diagonal block */
|
|
|
|
/* Scale if necessary to avoid overflow in forming the */
|
|
/* right-hand side element by inner product. */
|
|
|
|
xj = (r__1 = x[j1], abs(r__1)) + (r__2 = x[j1 + *n], abs(
|
|
r__2));
|
|
if (xmax > 1.f) {
|
|
rec = 1.f / xmax;
|
|
if (work[j1] > (bignum - xj) * rec) {
|
|
sscal_(&n2, &rec, &x[1], &c__1);
|
|
*scale *= rec;
|
|
xmax *= rec;
|
|
}
|
|
}
|
|
|
|
i__2 = j1 - 1;
|
|
x[j1] -= sdot_(&i__2, &t[j1 * t_dim1 + 1], &c__1, &x[1], &
|
|
c__1);
|
|
i__2 = j1 - 1;
|
|
x[*n + j1] -= sdot_(&i__2, &t[j1 * t_dim1 + 1], &c__1, &x[
|
|
*n + 1], &c__1);
|
|
if (j1 > 1) {
|
|
x[j1] -= b[j1] * x[*n + 1];
|
|
x[*n + j1] += b[j1] * x[1];
|
|
}
|
|
xj = (r__1 = x[j1], abs(r__1)) + (r__2 = x[j1 + *n], abs(
|
|
r__2));
|
|
|
|
z__ = *w;
|
|
if (j1 == 1) {
|
|
z__ = b[1];
|
|
}
|
|
|
|
/* Scale if necessary to avoid overflow in */
|
|
/* complex division */
|
|
|
|
tjj = (r__1 = t[j1 + j1 * t_dim1], abs(r__1)) + abs(z__);
|
|
tmp = t[j1 + j1 * t_dim1];
|
|
if (tjj < sminw) {
|
|
tmp = sminw;
|
|
tjj = sminw;
|
|
*info = 1;
|
|
}
|
|
|
|
if (tjj < 1.f) {
|
|
if (xj > bignum * tjj) {
|
|
rec = 1.f / xj;
|
|
sscal_(&n2, &rec, &x[1], &c__1);
|
|
*scale *= rec;
|
|
xmax *= rec;
|
|
}
|
|
}
|
|
r__1 = -z__;
|
|
sladiv_(&x[j1], &x[*n + j1], &tmp, &r__1, &sr, &si);
|
|
x[j1] = sr;
|
|
x[j1 + *n] = si;
|
|
/* Computing MAX */
|
|
r__3 = (r__1 = x[j1], abs(r__1)) + (r__2 = x[j1 + *n],
|
|
abs(r__2));
|
|
xmax = f2cmax(r__3,xmax);
|
|
|
|
} else {
|
|
|
|
/* 2 by 2 diagonal block */
|
|
|
|
/* Scale if necessary to avoid overflow in forming the */
|
|
/* right-hand side element by inner product. */
|
|
|
|
/* Computing MAX */
|
|
r__5 = (r__1 = x[j1], abs(r__1)) + (r__2 = x[*n + j1],
|
|
abs(r__2)), r__6 = (r__3 = x[j2], abs(r__3)) + (
|
|
r__4 = x[*n + j2], abs(r__4));
|
|
xj = f2cmax(r__5,r__6);
|
|
if (xmax > 1.f) {
|
|
rec = 1.f / xmax;
|
|
/* Computing MAX */
|
|
r__1 = work[j1], r__2 = work[j2];
|
|
if (f2cmax(r__1,r__2) > (bignum - xj) / xmax) {
|
|
sscal_(&n2, &rec, &x[1], &c__1);
|
|
*scale *= rec;
|
|
xmax *= rec;
|
|
}
|
|
}
|
|
|
|
i__2 = j1 - 1;
|
|
d__[0] = x[j1] - sdot_(&i__2, &t[j1 * t_dim1 + 1], &c__1,
|
|
&x[1], &c__1);
|
|
i__2 = j1 - 1;
|
|
d__[1] = x[j2] - sdot_(&i__2, &t[j2 * t_dim1 + 1], &c__1,
|
|
&x[1], &c__1);
|
|
i__2 = j1 - 1;
|
|
d__[2] = x[*n + j1] - sdot_(&i__2, &t[j1 * t_dim1 + 1], &
|
|
c__1, &x[*n + 1], &c__1);
|
|
i__2 = j1 - 1;
|
|
d__[3] = x[*n + j2] - sdot_(&i__2, &t[j2 * t_dim1 + 1], &
|
|
c__1, &x[*n + 1], &c__1);
|
|
d__[0] -= b[j1] * x[*n + 1];
|
|
d__[1] -= b[j2] * x[*n + 1];
|
|
d__[2] += b[j1] * x[1];
|
|
d__[3] += b[j2] * x[1];
|
|
|
|
slaln2_(&c_true, &c__2, &c__2, &sminw, &c_b21, &t[j1 + j1
|
|
* t_dim1], ldt, &c_b21, &c_b21, d__, &c__2, &
|
|
c_b25, w, v, &c__2, &scaloc, &xnorm, &ierr);
|
|
if (ierr != 0) {
|
|
*info = 2;
|
|
}
|
|
|
|
if (scaloc != 1.f) {
|
|
sscal_(&n2, &scaloc, &x[1], &c__1);
|
|
*scale = scaloc * *scale;
|
|
}
|
|
x[j1] = v[0];
|
|
x[j2] = v[1];
|
|
x[*n + j1] = v[2];
|
|
x[*n + j2] = v[3];
|
|
/* Computing MAX */
|
|
r__5 = (r__1 = x[j1], abs(r__1)) + (r__2 = x[*n + j1],
|
|
abs(r__2)), r__6 = (r__3 = x[j2], abs(r__3)) + (
|
|
r__4 = x[*n + j2], abs(r__4)), r__5 = f2cmax(r__5,
|
|
r__6);
|
|
xmax = f2cmax(r__5,xmax);
|
|
|
|
}
|
|
|
|
L80:
|
|
;
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
/* End of SLAQTR */
|
|
|
|
} /* slaqtr_ */
|
|
|