1344 lines
41 KiB
C
1344 lines
41 KiB
C
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <complex.h>
|
|
#ifdef complex
|
|
#undef complex
|
|
#endif
|
|
#ifdef I
|
|
#undef I
|
|
#endif
|
|
|
|
#if defined(_WIN64)
|
|
typedef long long BLASLONG;
|
|
typedef unsigned long long BLASULONG;
|
|
#else
|
|
typedef long BLASLONG;
|
|
typedef unsigned long BLASULONG;
|
|
#endif
|
|
|
|
#ifdef LAPACK_ILP64
|
|
typedef BLASLONG blasint;
|
|
#if defined(_WIN64)
|
|
#define blasabs(x) llabs(x)
|
|
#else
|
|
#define blasabs(x) labs(x)
|
|
#endif
|
|
#else
|
|
typedef int blasint;
|
|
#define blasabs(x) abs(x)
|
|
#endif
|
|
|
|
typedef blasint integer;
|
|
|
|
typedef unsigned int uinteger;
|
|
typedef char *address;
|
|
typedef short int shortint;
|
|
typedef float real;
|
|
typedef double doublereal;
|
|
typedef struct { real r, i; } complex;
|
|
typedef struct { doublereal r, i; } doublecomplex;
|
|
#ifdef _MSC_VER
|
|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
|
|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
|
|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
|
|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
|
|
#else
|
|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
|
|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
|
|
#endif
|
|
#define pCf(z) (*_pCf(z))
|
|
#define pCd(z) (*_pCd(z))
|
|
typedef blasint logical;
|
|
|
|
typedef char logical1;
|
|
typedef char integer1;
|
|
|
|
#define TRUE_ (1)
|
|
#define FALSE_ (0)
|
|
|
|
/* Extern is for use with -E */
|
|
#ifndef Extern
|
|
#define Extern extern
|
|
#endif
|
|
|
|
/* I/O stuff */
|
|
|
|
typedef int flag;
|
|
typedef int ftnlen;
|
|
typedef int ftnint;
|
|
|
|
/*external read, write*/
|
|
typedef struct
|
|
{ flag cierr;
|
|
ftnint ciunit;
|
|
flag ciend;
|
|
char *cifmt;
|
|
ftnint cirec;
|
|
} cilist;
|
|
|
|
/*internal read, write*/
|
|
typedef struct
|
|
{ flag icierr;
|
|
char *iciunit;
|
|
flag iciend;
|
|
char *icifmt;
|
|
ftnint icirlen;
|
|
ftnint icirnum;
|
|
} icilist;
|
|
|
|
/*open*/
|
|
typedef struct
|
|
{ flag oerr;
|
|
ftnint ounit;
|
|
char *ofnm;
|
|
ftnlen ofnmlen;
|
|
char *osta;
|
|
char *oacc;
|
|
char *ofm;
|
|
ftnint orl;
|
|
char *oblnk;
|
|
} olist;
|
|
|
|
/*close*/
|
|
typedef struct
|
|
{ flag cerr;
|
|
ftnint cunit;
|
|
char *csta;
|
|
} cllist;
|
|
|
|
/*rewind, backspace, endfile*/
|
|
typedef struct
|
|
{ flag aerr;
|
|
ftnint aunit;
|
|
} alist;
|
|
|
|
/* inquire */
|
|
typedef struct
|
|
{ flag inerr;
|
|
ftnint inunit;
|
|
char *infile;
|
|
ftnlen infilen;
|
|
ftnint *inex; /*parameters in standard's order*/
|
|
ftnint *inopen;
|
|
ftnint *innum;
|
|
ftnint *innamed;
|
|
char *inname;
|
|
ftnlen innamlen;
|
|
char *inacc;
|
|
ftnlen inacclen;
|
|
char *inseq;
|
|
ftnlen inseqlen;
|
|
char *indir;
|
|
ftnlen indirlen;
|
|
char *infmt;
|
|
ftnlen infmtlen;
|
|
char *inform;
|
|
ftnint informlen;
|
|
char *inunf;
|
|
ftnlen inunflen;
|
|
ftnint *inrecl;
|
|
ftnint *innrec;
|
|
char *inblank;
|
|
ftnlen inblanklen;
|
|
} inlist;
|
|
|
|
#define VOID void
|
|
|
|
union Multitype { /* for multiple entry points */
|
|
integer1 g;
|
|
shortint h;
|
|
integer i;
|
|
/* longint j; */
|
|
real r;
|
|
doublereal d;
|
|
complex c;
|
|
doublecomplex z;
|
|
};
|
|
|
|
typedef union Multitype Multitype;
|
|
|
|
struct Vardesc { /* for Namelist */
|
|
char *name;
|
|
char *addr;
|
|
ftnlen *dims;
|
|
int type;
|
|
};
|
|
typedef struct Vardesc Vardesc;
|
|
|
|
struct Namelist {
|
|
char *name;
|
|
Vardesc **vars;
|
|
int nvars;
|
|
};
|
|
typedef struct Namelist Namelist;
|
|
|
|
#define abs(x) ((x) >= 0 ? (x) : -(x))
|
|
#define dabs(x) (fabs(x))
|
|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
|
|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
|
|
#define dmin(a,b) (f2cmin(a,b))
|
|
#define dmax(a,b) (f2cmax(a,b))
|
|
#define bit_test(a,b) ((a) >> (b) & 1)
|
|
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
|
|
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
|
|
|
|
#define abort_() { sig_die("Fortran abort routine called", 1); }
|
|
#define c_abs(z) (cabsf(Cf(z)))
|
|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
|
|
#ifdef _MSC_VER
|
|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
|
|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
|
|
#else
|
|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
|
|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
|
|
#endif
|
|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
|
|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
|
|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
|
|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
|
|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
|
|
#define d_abs(x) (fabs(*(x)))
|
|
#define d_acos(x) (acos(*(x)))
|
|
#define d_asin(x) (asin(*(x)))
|
|
#define d_atan(x) (atan(*(x)))
|
|
#define d_atn2(x, y) (atan2(*(x),*(y)))
|
|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
|
|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
|
|
#define d_cos(x) (cos(*(x)))
|
|
#define d_cosh(x) (cosh(*(x)))
|
|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
|
|
#define d_exp(x) (exp(*(x)))
|
|
#define d_imag(z) (cimag(Cd(z)))
|
|
#define r_imag(z) (cimagf(Cf(z)))
|
|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define d_log(x) (log(*(x)))
|
|
#define d_mod(x, y) (fmod(*(x), *(y)))
|
|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
|
|
#define d_nint(x) u_nint(*(x))
|
|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
|
|
#define d_sign(a,b) u_sign(*(a),*(b))
|
|
#define r_sign(a,b) u_sign(*(a),*(b))
|
|
#define d_sin(x) (sin(*(x)))
|
|
#define d_sinh(x) (sinh(*(x)))
|
|
#define d_sqrt(x) (sqrt(*(x)))
|
|
#define d_tan(x) (tan(*(x)))
|
|
#define d_tanh(x) (tanh(*(x)))
|
|
#define i_abs(x) abs(*(x))
|
|
#define i_dnnt(x) ((integer)u_nint(*(x)))
|
|
#define i_len(s, n) (n)
|
|
#define i_nint(x) ((integer)u_nint(*(x)))
|
|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
|
|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
|
|
#define pow_si(B,E) spow_ui(*(B),*(E))
|
|
#define pow_ri(B,E) spow_ui(*(B),*(E))
|
|
#define pow_di(B,E) dpow_ui(*(B),*(E))
|
|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
|
|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
|
|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
|
|
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
|
|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
|
|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
|
|
#define sig_die(s, kill) { exit(1); }
|
|
#define s_stop(s, n) {exit(0);}
|
|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
|
|
#define z_abs(z) (cabs(Cd(z)))
|
|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
|
|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
|
|
#define myexit_() break;
|
|
#define mycycle() continue;
|
|
#define myceiling(w) {ceil(w)}
|
|
#define myhuge(w) {HUGE_VAL}
|
|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
|
|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
|
|
|
|
/* procedure parameter types for -A and -C++ */
|
|
|
|
|
|
#ifdef __cplusplus
|
|
typedef logical (*L_fp)(...);
|
|
#else
|
|
typedef logical (*L_fp)();
|
|
#endif
|
|
|
|
static float spow_ui(float x, integer n) {
|
|
float pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
static double dpow_ui(double x, integer n) {
|
|
double pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#ifdef _MSC_VER
|
|
static _Fcomplex cpow_ui(complex x, integer n) {
|
|
complex pow={1.0,0.0}; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow.r *= x.r, pow.i *= x.i;
|
|
if(u >>= 1) x.r *= x.r, x.i *= x.i;
|
|
else break;
|
|
}
|
|
}
|
|
_Fcomplex p={pow.r, pow.i};
|
|
return p;
|
|
}
|
|
#else
|
|
static _Complex float cpow_ui(_Complex float x, integer n) {
|
|
_Complex float pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#endif
|
|
#ifdef _MSC_VER
|
|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
|
|
_Dcomplex pow={1.0,0.0}; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
|
|
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
|
|
else break;
|
|
}
|
|
}
|
|
_Dcomplex p = {pow._Val[0], pow._Val[1]};
|
|
return p;
|
|
}
|
|
#else
|
|
static _Complex double zpow_ui(_Complex double x, integer n) {
|
|
_Complex double pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#endif
|
|
static integer pow_ii(integer x, integer n) {
|
|
integer pow; unsigned long int u;
|
|
if (n <= 0) {
|
|
if (n == 0 || x == 1) pow = 1;
|
|
else if (x != -1) pow = x == 0 ? 1/x : 0;
|
|
else n = -n;
|
|
}
|
|
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
|
|
u = n;
|
|
for(pow = 1; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
|
|
{
|
|
double m; integer i, mi;
|
|
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
|
if (w[i-1]>m) mi=i ,m=w[i-1];
|
|
return mi-s+1;
|
|
}
|
|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
|
|
{
|
|
float m; integer i, mi;
|
|
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
|
if (w[i-1]>m) mi=i ,m=w[i-1];
|
|
return mi-s+1;
|
|
}
|
|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Fcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
|
|
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex float zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Dcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
|
|
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex double zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Fcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
|
|
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex float zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cf(&x[i]) * Cf(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Dcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
|
|
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex double zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cd(&x[i]) * Cd(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#endif
|
|
/* -- translated by f2c (version 20000121).
|
|
You must link the resulting object file with the libraries:
|
|
-lf2c -lm (in that order)
|
|
*/
|
|
|
|
|
|
|
|
|
|
/* Table of constant values */
|
|
|
|
static integer c__13 = 13;
|
|
static integer c__15 = 15;
|
|
static integer c_n1 = -1;
|
|
static integer c__12 = 12;
|
|
static integer c__14 = 14;
|
|
static integer c__16 = 16;
|
|
static logical c_false = FALSE_;
|
|
static integer c__1 = 1;
|
|
static integer c__3 = 3;
|
|
|
|
/* > \brief \b SLAQR0 computes the eigenvalues of a Hessenberg matrix, and optionally the matrices from the Sc
|
|
hur decomposition. */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* > \htmlonly */
|
|
/* > Download SLAQR0 + dependencies */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaqr0.
|
|
f"> */
|
|
/* > [TGZ]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaqr0.
|
|
f"> */
|
|
/* > [ZIP]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaqr0.
|
|
f"> */
|
|
/* > [TXT]</a> */
|
|
/* > \endhtmlonly */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* SUBROUTINE SLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI, */
|
|
/* ILOZ, IHIZ, Z, LDZ, WORK, LWORK, INFO ) */
|
|
|
|
/* INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N */
|
|
/* LOGICAL WANTT, WANTZ */
|
|
/* REAL H( LDH, * ), WI( * ), WORK( * ), WR( * ), */
|
|
/* $ Z( LDZ, * ) */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > SLAQR0 computes the eigenvalues of a Hessenberg matrix H */
|
|
/* > and, optionally, the matrices T and Z from the Schur decomposition */
|
|
/* > H = Z T Z**T, where T is an upper quasi-triangular matrix (the */
|
|
/* > Schur form), and Z is the orthogonal matrix of Schur vectors. */
|
|
/* > */
|
|
/* > Optionally Z may be postmultiplied into an input orthogonal */
|
|
/* > matrix Q so that this routine can give the Schur factorization */
|
|
/* > of a matrix A which has been reduced to the Hessenberg form H */
|
|
/* > by the orthogonal matrix Q: A = Q*H*Q**T = (QZ)*T*(QZ)**T. */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] WANTT */
|
|
/* > \verbatim */
|
|
/* > WANTT is LOGICAL */
|
|
/* > = .TRUE. : the full Schur form T is required; */
|
|
/* > = .FALSE.: only eigenvalues are required. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] WANTZ */
|
|
/* > \verbatim */
|
|
/* > WANTZ is LOGICAL */
|
|
/* > = .TRUE. : the matrix of Schur vectors Z is required; */
|
|
/* > = .FALSE.: Schur vectors are not required. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > The order of the matrix H. N >= 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] ILO */
|
|
/* > \verbatim */
|
|
/* > ILO is INTEGER */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] IHI */
|
|
/* > \verbatim */
|
|
/* > IHI is INTEGER */
|
|
/* > It is assumed that H is already upper triangular in rows */
|
|
/* > and columns 1:ILO-1 and IHI+1:N and, if ILO > 1, */
|
|
/* > H(ILO,ILO-1) is zero. ILO and IHI are normally set by a */
|
|
/* > previous call to SGEBAL, and then passed to SGEHRD when the */
|
|
/* > matrix output by SGEBAL is reduced to Hessenberg form. */
|
|
/* > Otherwise, ILO and IHI should be set to 1 and N, */
|
|
/* > respectively. If N > 0, then 1 <= ILO <= IHI <= N. */
|
|
/* > If N = 0, then ILO = 1 and IHI = 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] H */
|
|
/* > \verbatim */
|
|
/* > H is REAL array, dimension (LDH,N) */
|
|
/* > On entry, the upper Hessenberg matrix H. */
|
|
/* > On exit, if INFO = 0 and WANTT is .TRUE., then H contains */
|
|
/* > the upper quasi-triangular matrix T from the Schur */
|
|
/* > decomposition (the Schur form); 2-by-2 diagonal blocks */
|
|
/* > (corresponding to complex conjugate pairs of eigenvalues) */
|
|
/* > are returned in standard form, with H(i,i) = H(i+1,i+1) */
|
|
/* > and H(i+1,i)*H(i,i+1) < 0. If INFO = 0 and WANTT is */
|
|
/* > .FALSE., then the contents of H are unspecified on exit. */
|
|
/* > (The output value of H when INFO > 0 is given under the */
|
|
/* > description of INFO below.) */
|
|
/* > */
|
|
/* > This subroutine may explicitly set H(i,j) = 0 for i > j and */
|
|
/* > j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDH */
|
|
/* > \verbatim */
|
|
/* > LDH is INTEGER */
|
|
/* > The leading dimension of the array H. LDH >= f2cmax(1,N). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] WR */
|
|
/* > \verbatim */
|
|
/* > WR is REAL array, dimension (IHI) */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] WI */
|
|
/* > \verbatim */
|
|
/* > WI is REAL array, dimension (IHI) */
|
|
/* > The real and imaginary parts, respectively, of the computed */
|
|
/* > eigenvalues of H(ILO:IHI,ILO:IHI) are stored in WR(ILO:IHI) */
|
|
/* > and WI(ILO:IHI). If two eigenvalues are computed as a */
|
|
/* > complex conjugate pair, they are stored in consecutive */
|
|
/* > elements of WR and WI, say the i-th and (i+1)th, with */
|
|
/* > WI(i) > 0 and WI(i+1) < 0. If WANTT is .TRUE., then */
|
|
/* > the eigenvalues are stored in the same order as on the */
|
|
/* > diagonal of the Schur form returned in H, with */
|
|
/* > WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2 diagonal */
|
|
/* > block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and */
|
|
/* > WI(i+1) = -WI(i). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] ILOZ */
|
|
/* > \verbatim */
|
|
/* > ILOZ is INTEGER */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] IHIZ */
|
|
/* > \verbatim */
|
|
/* > IHIZ is INTEGER */
|
|
/* > Specify the rows of Z to which transformations must be */
|
|
/* > applied if WANTZ is .TRUE.. */
|
|
/* > 1 <= ILOZ <= ILO; IHI <= IHIZ <= N. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] Z */
|
|
/* > \verbatim */
|
|
/* > Z is REAL array, dimension (LDZ,IHI) */
|
|
/* > If WANTZ is .FALSE., then Z is not referenced. */
|
|
/* > If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is */
|
|
/* > replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the */
|
|
/* > orthogonal Schur factor of H(ILO:IHI,ILO:IHI). */
|
|
/* > (The output value of Z when INFO > 0 is given under */
|
|
/* > the description of INFO below.) */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDZ */
|
|
/* > \verbatim */
|
|
/* > LDZ is INTEGER */
|
|
/* > The leading dimension of the array Z. if WANTZ is .TRUE. */
|
|
/* > then LDZ >= MAX(1,IHIZ). Otherwise, LDZ >= 1. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] WORK */
|
|
/* > \verbatim */
|
|
/* > WORK is REAL array, dimension LWORK */
|
|
/* > On exit, if LWORK = -1, WORK(1) returns an estimate of */
|
|
/* > the optimal value for LWORK. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LWORK */
|
|
/* > \verbatim */
|
|
/* > LWORK is INTEGER */
|
|
/* > The dimension of the array WORK. LWORK >= f2cmax(1,N) */
|
|
/* > is sufficient, but LWORK typically as large as 6*N may */
|
|
/* > be required for optimal performance. A workspace query */
|
|
/* > to determine the optimal workspace size is recommended. */
|
|
/* > */
|
|
/* > If LWORK = -1, then SLAQR0 does a workspace query. */
|
|
/* > In this case, SLAQR0 checks the input parameters and */
|
|
/* > estimates the optimal workspace size for the given */
|
|
/* > values of N, ILO and IHI. The estimate is returned */
|
|
/* > in WORK(1). No error message related to LWORK is */
|
|
/* > issued by XERBLA. Neither H nor Z are accessed. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] INFO */
|
|
/* > \verbatim */
|
|
/* > INFO is INTEGER */
|
|
/* > = 0: successful exit */
|
|
/* > > 0: if INFO = i, SLAQR0 failed to compute all of */
|
|
/* > the eigenvalues. Elements 1:ilo-1 and i+1:n of WR */
|
|
/* > and WI contain those eigenvalues which have been */
|
|
/* > successfully computed. (Failures are rare.) */
|
|
/* > */
|
|
/* > If INFO > 0 and WANT is .FALSE., then on exit, */
|
|
/* > the remaining unconverged eigenvalues are the eigen- */
|
|
/* > values of the upper Hessenberg matrix rows and */
|
|
/* > columns ILO through INFO of the final, output */
|
|
/* > value of H. */
|
|
/* > */
|
|
/* > If INFO > 0 and WANTT is .TRUE., then on exit */
|
|
/* > */
|
|
/* > (*) (initial value of H)*U = U*(final value of H) */
|
|
/* > */
|
|
/* > where U is an orthogonal matrix. The final */
|
|
/* > value of H is upper Hessenberg and quasi-triangular */
|
|
/* > in rows and columns INFO+1 through IHI. */
|
|
/* > */
|
|
/* > If INFO > 0 and WANTZ is .TRUE., then on exit */
|
|
/* > */
|
|
/* > (final value of Z(ILO:IHI,ILOZ:IHIZ) */
|
|
/* > = (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U */
|
|
/* > */
|
|
/* > where U is the orthogonal matrix in (*) (regard- */
|
|
/* > less of the value of WANTT.) */
|
|
/* > */
|
|
/* > If INFO > 0 and WANTZ is .FALSE., then Z is not */
|
|
/* > accessed. */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \date December 2016 */
|
|
|
|
/* > \ingroup realOTHERauxiliary */
|
|
|
|
/* > \par Contributors: */
|
|
/* ================== */
|
|
/* > */
|
|
/* > Karen Braman and Ralph Byers, Department of Mathematics, */
|
|
/* > University of Kansas, USA */
|
|
|
|
/* > \par References: */
|
|
/* ================ */
|
|
/* > */
|
|
/* > K. Braman, R. Byers and R. Mathias, The Multi-Shift QR */
|
|
/* > Algorithm Part I: Maintaining Well Focused Shifts, and Level 3 */
|
|
/* > Performance, SIAM Journal of Matrix Analysis, volume 23, pages */
|
|
/* > 929--947, 2002. */
|
|
/* > \n */
|
|
/* > K. Braman, R. Byers and R. Mathias, The Multi-Shift QR */
|
|
/* > Algorithm Part II: Aggressive Early Deflation, SIAM Journal */
|
|
/* > of Matrix Analysis, volume 23, pages 948--973, 2002. */
|
|
/* > */
|
|
/* ===================================================================== */
|
|
/* Subroutine */ void slaqr0_(logical *wantt, logical *wantz, integer *n,
|
|
integer *ilo, integer *ihi, real *h__, integer *ldh, real *wr, real *
|
|
wi, integer *iloz, integer *ihiz, real *z__, integer *ldz, real *work,
|
|
integer *lwork, integer *info)
|
|
{
|
|
/* System generated locals */
|
|
integer h_dim1, h_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5;
|
|
real r__1, r__2, r__3, r__4;
|
|
|
|
/* Local variables */
|
|
integer ndec, ndfl, kbot, nmin;
|
|
real swap;
|
|
integer ktop;
|
|
real zdum[1] /* was [1][1] */;
|
|
integer kacc22, i__, k, itmax, nsmax, nwmax, kwtop;
|
|
real aa, bb;
|
|
extern /* Subroutine */ void slanv2_(real *, real *, real *, real *, real *
|
|
, real *, real *, real *, real *, real *);
|
|
real cc;
|
|
extern /* Subroutine */ void slaqr3_(logical *, logical *, integer *,
|
|
integer *, integer *, integer *, real *, integer *, integer *,
|
|
integer *, real *, integer *, integer *, integer *, real *, real *
|
|
, real *, integer *, integer *, real *, integer *, integer *,
|
|
real *, integer *, real *, integer *);
|
|
real dd;
|
|
extern /* Subroutine */ void slaqr4_(logical *, logical *, integer *,
|
|
integer *, integer *, real *, integer *, real *, real *, integer *
|
|
, integer *, real *, integer *, real *, integer *, integer *),
|
|
slaqr5_(logical *, logical *, integer *, integer *, integer *,
|
|
integer *, integer *, real *, real *, real *, integer *, integer *
|
|
, integer *, real *, integer *, real *, integer *, real *,
|
|
integer *, integer *, real *, integer *, integer *, real *,
|
|
integer *);
|
|
integer ld;
|
|
real cs;
|
|
integer nh, nibble, it, ks, kt;
|
|
real sn;
|
|
integer ku, kv, ls, ns;
|
|
real ss;
|
|
integer nw;
|
|
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
|
|
integer *, integer *, ftnlen, ftnlen);
|
|
char jbcmpz[2];
|
|
extern /* Subroutine */ void slahqr_(logical *, logical *, integer *,
|
|
integer *, integer *, real *, integer *, real *, real *, integer *
|
|
, integer *, real *, integer *, integer *), slacpy_(char *,
|
|
integer *, integer *, real *, integer *, real *, integer *);
|
|
integer nwupbd;
|
|
logical sorted;
|
|
integer lwkopt, inf, kdu, nho, nve, kwh, nsr, nwr, kwv;
|
|
|
|
|
|
/* -- LAPACK auxiliary routine (version 3.7.0) -- */
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
/* December 2016 */
|
|
|
|
|
|
/* ================================================================ */
|
|
|
|
/* ==== Matrices of order NTINY or smaller must be processed by */
|
|
/* . SLAHQR because of insufficient subdiagonal scratch space. */
|
|
/* . (This is a hard limit.) ==== */
|
|
|
|
/* ==== Exceptional deflation windows: try to cure rare */
|
|
/* . slow convergence by varying the size of the */
|
|
/* . deflation window after KEXNW iterations. ==== */
|
|
|
|
/* ==== Exceptional shifts: try to cure rare slow convergence */
|
|
/* . with ad-hoc exceptional shifts every KEXSH iterations. */
|
|
/* . ==== */
|
|
|
|
/* ==== The constants WILK1 and WILK2 are used to form the */
|
|
/* . exceptional shifts. ==== */
|
|
/* Parameter adjustments */
|
|
h_dim1 = *ldh;
|
|
h_offset = 1 + h_dim1 * 1;
|
|
h__ -= h_offset;
|
|
--wr;
|
|
--wi;
|
|
z_dim1 = *ldz;
|
|
z_offset = 1 + z_dim1 * 1;
|
|
z__ -= z_offset;
|
|
--work;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
|
|
/* ==== Quick return for N = 0: nothing to do. ==== */
|
|
|
|
if (*n == 0) {
|
|
work[1] = 1.f;
|
|
return;
|
|
}
|
|
|
|
if (*n <= 15) {
|
|
|
|
/* ==== Tiny matrices must use SLAHQR. ==== */
|
|
|
|
lwkopt = 1;
|
|
if (*lwork != -1) {
|
|
slahqr_(wantt, wantz, n, ilo, ihi, &h__[h_offset], ldh, &wr[1], &
|
|
wi[1], iloz, ihiz, &z__[z_offset], ldz, info);
|
|
}
|
|
} else {
|
|
|
|
/* ==== Use small bulge multi-shift QR with aggressive early */
|
|
/* . deflation on larger-than-tiny matrices. ==== */
|
|
|
|
/* ==== Hope for the best. ==== */
|
|
|
|
*info = 0;
|
|
|
|
/* ==== Set up job flags for ILAENV. ==== */
|
|
|
|
if (*wantt) {
|
|
*(unsigned char *)jbcmpz = 'S';
|
|
} else {
|
|
*(unsigned char *)jbcmpz = 'E';
|
|
}
|
|
if (*wantz) {
|
|
*(unsigned char *)&jbcmpz[1] = 'V';
|
|
} else {
|
|
*(unsigned char *)&jbcmpz[1] = 'N';
|
|
}
|
|
|
|
/* ==== NWR = recommended deflation window size. At this */
|
|
/* . point, N .GT. NTINY = 15, so there is enough */
|
|
/* . subdiagonal workspace for NWR.GE.2 as required. */
|
|
/* . (In fact, there is enough subdiagonal space for */
|
|
/* . NWR.GE.4.) ==== */
|
|
|
|
nwr = ilaenv_(&c__13, "SLAQR0", jbcmpz, n, ilo, ihi, lwork, (ftnlen)6,
|
|
(ftnlen)2);
|
|
nwr = f2cmax(2,nwr);
|
|
/* Computing MIN */
|
|
i__1 = *ihi - *ilo + 1, i__2 = (*n - 1) / 3, i__1 = f2cmin(i__1,i__2);
|
|
nwr = f2cmin(i__1,nwr);
|
|
|
|
/* ==== NSR = recommended number of simultaneous shifts. */
|
|
/* . At this point N .GT. NTINY = 15, so there is at */
|
|
/* . enough subdiagonal workspace for NSR to be even */
|
|
/* . and greater than or equal to two as required. ==== */
|
|
|
|
nsr = ilaenv_(&c__15, "SLAQR0", jbcmpz, n, ilo, ihi, lwork, (ftnlen)6,
|
|
(ftnlen)2);
|
|
/* Computing MIN */
|
|
i__1 = nsr, i__2 = (*n - 3) / 6, i__1 = f2cmin(i__1,i__2), i__2 = *ihi -
|
|
*ilo;
|
|
nsr = f2cmin(i__1,i__2);
|
|
/* Computing MAX */
|
|
i__1 = 2, i__2 = nsr - nsr % 2;
|
|
nsr = f2cmax(i__1,i__2);
|
|
|
|
/* ==== Estimate optimal workspace ==== */
|
|
|
|
/* ==== Workspace query call to SLAQR3 ==== */
|
|
|
|
i__1 = nwr + 1;
|
|
slaqr3_(wantt, wantz, n, ilo, ihi, &i__1, &h__[h_offset], ldh, iloz,
|
|
ihiz, &z__[z_offset], ldz, &ls, &ld, &wr[1], &wi[1], &h__[
|
|
h_offset], ldh, n, &h__[h_offset], ldh, n, &h__[h_offset],
|
|
ldh, &work[1], &c_n1);
|
|
|
|
/* ==== Optimal workspace = MAX(SLAQR5, SLAQR3) ==== */
|
|
|
|
/* Computing MAX */
|
|
i__1 = nsr * 3 / 2, i__2 = (integer) work[1];
|
|
lwkopt = f2cmax(i__1,i__2);
|
|
|
|
/* ==== Quick return in case of workspace query. ==== */
|
|
|
|
if (*lwork == -1) {
|
|
work[1] = (real) lwkopt;
|
|
return;
|
|
}
|
|
|
|
/* ==== SLAHQR/SLAQR0 crossover point ==== */
|
|
|
|
nmin = ilaenv_(&c__12, "SLAQR0", jbcmpz, n, ilo, ihi, lwork, (ftnlen)
|
|
6, (ftnlen)2);
|
|
nmin = f2cmax(15,nmin);
|
|
|
|
/* ==== Nibble crossover point ==== */
|
|
|
|
nibble = ilaenv_(&c__14, "SLAQR0", jbcmpz, n, ilo, ihi, lwork, (
|
|
ftnlen)6, (ftnlen)2);
|
|
nibble = f2cmax(0,nibble);
|
|
|
|
/* ==== Accumulate reflections during ttswp? Use block */
|
|
/* . 2-by-2 structure during matrix-matrix multiply? ==== */
|
|
|
|
kacc22 = ilaenv_(&c__16, "SLAQR0", jbcmpz, n, ilo, ihi, lwork, (
|
|
ftnlen)6, (ftnlen)2);
|
|
kacc22 = f2cmax(0,kacc22);
|
|
kacc22 = f2cmin(2,kacc22);
|
|
|
|
/* ==== NWMAX = the largest possible deflation window for */
|
|
/* . which there is sufficient workspace. ==== */
|
|
|
|
/* Computing MIN */
|
|
i__1 = (*n - 1) / 3, i__2 = *lwork / 2;
|
|
nwmax = f2cmin(i__1,i__2);
|
|
nw = nwmax;
|
|
|
|
/* ==== NSMAX = the Largest number of simultaneous shifts */
|
|
/* . for which there is sufficient workspace. ==== */
|
|
|
|
/* Computing MIN */
|
|
i__1 = (*n - 3) / 6, i__2 = (*lwork << 1) / 3;
|
|
nsmax = f2cmin(i__1,i__2);
|
|
nsmax -= nsmax % 2;
|
|
|
|
/* ==== NDFL: an iteration count restarted at deflation. ==== */
|
|
|
|
ndfl = 1;
|
|
|
|
/* ==== ITMAX = iteration limit ==== */
|
|
|
|
/* Computing MAX */
|
|
i__1 = 10, i__2 = *ihi - *ilo + 1;
|
|
itmax = 30 * f2cmax(i__1,i__2);
|
|
|
|
/* ==== Last row and column in the active block ==== */
|
|
|
|
kbot = *ihi;
|
|
|
|
/* ==== Main Loop ==== */
|
|
|
|
i__1 = itmax;
|
|
for (it = 1; it <= i__1; ++it) {
|
|
|
|
/* ==== Done when KBOT falls below ILO ==== */
|
|
|
|
if (kbot < *ilo) {
|
|
goto L90;
|
|
}
|
|
|
|
/* ==== Locate active block ==== */
|
|
|
|
i__2 = *ilo + 1;
|
|
for (k = kbot; k >= i__2; --k) {
|
|
if (h__[k + (k - 1) * h_dim1] == 0.f) {
|
|
goto L20;
|
|
}
|
|
/* L10: */
|
|
}
|
|
k = *ilo;
|
|
L20:
|
|
ktop = k;
|
|
|
|
/* ==== Select deflation window size: */
|
|
/* . Typical Case: */
|
|
/* . If possible and advisable, nibble the entire */
|
|
/* . active block. If not, use size MIN(NWR,NWMAX) */
|
|
/* . or MIN(NWR+1,NWMAX) depending upon which has */
|
|
/* . the smaller corresponding subdiagonal entry */
|
|
/* . (a heuristic). */
|
|
/* . */
|
|
/* . Exceptional Case: */
|
|
/* . If there have been no deflations in KEXNW or */
|
|
/* . more iterations, then vary the deflation window */
|
|
/* . size. At first, because, larger windows are, */
|
|
/* . in general, more powerful than smaller ones, */
|
|
/* . rapidly increase the window to the maximum possible. */
|
|
/* . Then, gradually reduce the window size. ==== */
|
|
|
|
nh = kbot - ktop + 1;
|
|
nwupbd = f2cmin(nh,nwmax);
|
|
if (ndfl < 5) {
|
|
nw = f2cmin(nwupbd,nwr);
|
|
} else {
|
|
/* Computing MIN */
|
|
i__2 = nwupbd, i__3 = nw << 1;
|
|
nw = f2cmin(i__2,i__3);
|
|
}
|
|
if (nw < nwmax) {
|
|
if (nw >= nh - 1) {
|
|
nw = nh;
|
|
} else {
|
|
kwtop = kbot - nw + 1;
|
|
if ((r__1 = h__[kwtop + (kwtop - 1) * h_dim1], abs(r__1))
|
|
> (r__2 = h__[kwtop - 1 + (kwtop - 2) * h_dim1],
|
|
abs(r__2))) {
|
|
++nw;
|
|
}
|
|
}
|
|
}
|
|
if (ndfl < 5) {
|
|
ndec = -1;
|
|
} else if (ndec >= 0 || nw >= nwupbd) {
|
|
++ndec;
|
|
if (nw - ndec < 2) {
|
|
ndec = 0;
|
|
}
|
|
nw -= ndec;
|
|
}
|
|
|
|
/* ==== Aggressive early deflation: */
|
|
/* . split workspace under the subdiagonal into */
|
|
/* . - an nw-by-nw work array V in the lower */
|
|
/* . left-hand-corner, */
|
|
/* . - an NW-by-at-least-NW-but-more-is-better */
|
|
/* . (NW-by-NHO) horizontal work array along */
|
|
/* . the bottom edge, */
|
|
/* . - an at-least-NW-but-more-is-better (NHV-by-NW) */
|
|
/* . vertical work array along the left-hand-edge. */
|
|
/* . ==== */
|
|
|
|
kv = *n - nw + 1;
|
|
kt = nw + 1;
|
|
nho = *n - nw - 1 - kt + 1;
|
|
kwv = nw + 2;
|
|
nve = *n - nw - kwv + 1;
|
|
|
|
/* ==== Aggressive early deflation ==== */
|
|
|
|
slaqr3_(wantt, wantz, n, &ktop, &kbot, &nw, &h__[h_offset], ldh,
|
|
iloz, ihiz, &z__[z_offset], ldz, &ls, &ld, &wr[1], &wi[1],
|
|
&h__[kv + h_dim1], ldh, &nho, &h__[kv + kt * h_dim1],
|
|
ldh, &nve, &h__[kwv + h_dim1], ldh, &work[1], lwork);
|
|
|
|
/* ==== Adjust KBOT accounting for new deflations. ==== */
|
|
|
|
kbot -= ld;
|
|
|
|
/* ==== KS points to the shifts. ==== */
|
|
|
|
ks = kbot - ls + 1;
|
|
|
|
/* ==== Skip an expensive QR sweep if there is a (partly */
|
|
/* . heuristic) reason to expect that many eigenvalues */
|
|
/* . will deflate without it. Here, the QR sweep is */
|
|
/* . skipped if many eigenvalues have just been deflated */
|
|
/* . or if the remaining active block is small. */
|
|
|
|
if (ld == 0 || ld * 100 <= nw * nibble && kbot - ktop + 1 > f2cmin(
|
|
nmin,nwmax)) {
|
|
|
|
/* ==== NS = nominal number of simultaneous shifts. */
|
|
/* . This may be lowered (slightly) if SLAQR3 */
|
|
/* . did not provide that many shifts. ==== */
|
|
|
|
/* Computing MIN */
|
|
/* Computing MAX */
|
|
i__4 = 2, i__5 = kbot - ktop;
|
|
i__2 = f2cmin(nsmax,nsr), i__3 = f2cmax(i__4,i__5);
|
|
ns = f2cmin(i__2,i__3);
|
|
ns -= ns % 2;
|
|
|
|
/* ==== If there have been no deflations */
|
|
/* . in a multiple of KEXSH iterations, */
|
|
/* . then try exceptional shifts. */
|
|
/* . Otherwise use shifts provided by */
|
|
/* . SLAQR3 above or from the eigenvalues */
|
|
/* . of a trailing principal submatrix. ==== */
|
|
|
|
if (ndfl % 6 == 0) {
|
|
ks = kbot - ns + 1;
|
|
/* Computing MAX */
|
|
i__3 = ks + 1, i__4 = ktop + 2;
|
|
i__2 = f2cmax(i__3,i__4);
|
|
for (i__ = kbot; i__ >= i__2; i__ += -2) {
|
|
ss = (r__1 = h__[i__ + (i__ - 1) * h_dim1], abs(r__1))
|
|
+ (r__2 = h__[i__ - 1 + (i__ - 2) * h_dim1],
|
|
abs(r__2));
|
|
aa = ss * .75f + h__[i__ + i__ * h_dim1];
|
|
bb = ss;
|
|
cc = ss * -.4375f;
|
|
dd = aa;
|
|
slanv2_(&aa, &bb, &cc, &dd, &wr[i__ - 1], &wi[i__ - 1]
|
|
, &wr[i__], &wi[i__], &cs, &sn);
|
|
/* L30: */
|
|
}
|
|
if (ks == ktop) {
|
|
wr[ks + 1] = h__[ks + 1 + (ks + 1) * h_dim1];
|
|
wi[ks + 1] = 0.f;
|
|
wr[ks] = wr[ks + 1];
|
|
wi[ks] = wi[ks + 1];
|
|
}
|
|
} else {
|
|
|
|
/* ==== Got NS/2 or fewer shifts? Use SLAQR4 or */
|
|
/* . SLAHQR on a trailing principal submatrix to */
|
|
/* . get more. (Since NS.LE.NSMAX.LE.(N-3)/6, */
|
|
/* . there is enough space below the subdiagonal */
|
|
/* . to fit an NS-by-NS scratch array.) ==== */
|
|
|
|
if (kbot - ks + 1 <= ns / 2) {
|
|
ks = kbot - ns + 1;
|
|
kt = *n - ns + 1;
|
|
slacpy_("A", &ns, &ns, &h__[ks + ks * h_dim1], ldh, &
|
|
h__[kt + h_dim1], ldh);
|
|
if (ns > nmin) {
|
|
slaqr4_(&c_false, &c_false, &ns, &c__1, &ns, &h__[
|
|
kt + h_dim1], ldh, &wr[ks], &wi[ks], &
|
|
c__1, &c__1, zdum, &c__1, &work[1], lwork,
|
|
&inf);
|
|
} else {
|
|
slahqr_(&c_false, &c_false, &ns, &c__1, &ns, &h__[
|
|
kt + h_dim1], ldh, &wr[ks], &wi[ks], &
|
|
c__1, &c__1, zdum, &c__1, &inf);
|
|
}
|
|
ks += inf;
|
|
|
|
/* ==== In case of a rare QR failure use */
|
|
/* . eigenvalues of the trailing 2-by-2 */
|
|
/* . principal submatrix. ==== */
|
|
|
|
if (ks >= kbot) {
|
|
aa = h__[kbot - 1 + (kbot - 1) * h_dim1];
|
|
cc = h__[kbot + (kbot - 1) * h_dim1];
|
|
bb = h__[kbot - 1 + kbot * h_dim1];
|
|
dd = h__[kbot + kbot * h_dim1];
|
|
slanv2_(&aa, &bb, &cc, &dd, &wr[kbot - 1], &wi[
|
|
kbot - 1], &wr[kbot], &wi[kbot], &cs, &sn)
|
|
;
|
|
ks = kbot - 1;
|
|
}
|
|
}
|
|
|
|
if (kbot - ks + 1 > ns) {
|
|
|
|
/* ==== Sort the shifts (Helps a little) */
|
|
/* . Bubble sort keeps complex conjugate */
|
|
/* . pairs together. ==== */
|
|
|
|
sorted = FALSE_;
|
|
i__2 = ks + 1;
|
|
for (k = kbot; k >= i__2; --k) {
|
|
if (sorted) {
|
|
goto L60;
|
|
}
|
|
sorted = TRUE_;
|
|
i__3 = k - 1;
|
|
for (i__ = ks; i__ <= i__3; ++i__) {
|
|
if ((r__1 = wr[i__], abs(r__1)) + (r__2 = wi[
|
|
i__], abs(r__2)) < (r__3 = wr[i__ + 1]
|
|
, abs(r__3)) + (r__4 = wi[i__ + 1],
|
|
abs(r__4))) {
|
|
sorted = FALSE_;
|
|
|
|
swap = wr[i__];
|
|
wr[i__] = wr[i__ + 1];
|
|
wr[i__ + 1] = swap;
|
|
|
|
swap = wi[i__];
|
|
wi[i__] = wi[i__ + 1];
|
|
wi[i__ + 1] = swap;
|
|
}
|
|
/* L40: */
|
|
}
|
|
/* L50: */
|
|
}
|
|
L60:
|
|
;
|
|
}
|
|
|
|
/* ==== Shuffle shifts into pairs of real shifts */
|
|
/* . and pairs of complex conjugate shifts */
|
|
/* . assuming complex conjugate shifts are */
|
|
/* . already adjacent to one another. (Yes, */
|
|
/* . they are.) ==== */
|
|
|
|
i__2 = ks + 2;
|
|
for (i__ = kbot; i__ >= i__2; i__ += -2) {
|
|
if (wi[i__] != -wi[i__ - 1]) {
|
|
|
|
swap = wr[i__];
|
|
wr[i__] = wr[i__ - 1];
|
|
wr[i__ - 1] = wr[i__ - 2];
|
|
wr[i__ - 2] = swap;
|
|
|
|
swap = wi[i__];
|
|
wi[i__] = wi[i__ - 1];
|
|
wi[i__ - 1] = wi[i__ - 2];
|
|
wi[i__ - 2] = swap;
|
|
}
|
|
/* L70: */
|
|
}
|
|
}
|
|
|
|
/* ==== If there are only two shifts and both are */
|
|
/* . real, then use only one. ==== */
|
|
|
|
if (kbot - ks + 1 == 2) {
|
|
if (wi[kbot] == 0.f) {
|
|
if ((r__1 = wr[kbot] - h__[kbot + kbot * h_dim1], abs(
|
|
r__1)) < (r__2 = wr[kbot - 1] - h__[kbot +
|
|
kbot * h_dim1], abs(r__2))) {
|
|
wr[kbot - 1] = wr[kbot];
|
|
} else {
|
|
wr[kbot] = wr[kbot - 1];
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ==== Use up to NS of the the smallest magnitude */
|
|
/* . shifts. If there aren't NS shifts available, */
|
|
/* . then use them all, possibly dropping one to */
|
|
/* . make the number of shifts even. ==== */
|
|
|
|
/* Computing MIN */
|
|
i__2 = ns, i__3 = kbot - ks + 1;
|
|
ns = f2cmin(i__2,i__3);
|
|
ns -= ns % 2;
|
|
ks = kbot - ns + 1;
|
|
|
|
/* ==== Small-bulge multi-shift QR sweep: */
|
|
/* . split workspace under the subdiagonal into */
|
|
/* . - a KDU-by-KDU work array U in the lower */
|
|
/* . left-hand-corner, */
|
|
/* . - a KDU-by-at-least-KDU-but-more-is-better */
|
|
/* . (KDU-by-NHo) horizontal work array WH along */
|
|
/* . the bottom edge, */
|
|
/* . - and an at-least-KDU-but-more-is-better-by-KDU */
|
|
/* . (NVE-by-KDU) vertical work WV arrow along */
|
|
/* . the left-hand-edge. ==== */
|
|
|
|
kdu = ns << 1;
|
|
ku = *n - kdu + 1;
|
|
kwh = kdu + 1;
|
|
nho = *n - kdu - 3 - (kdu + 1) + 1;
|
|
kwv = kdu + 4;
|
|
nve = *n - kdu - kwv + 1;
|
|
|
|
/* ==== Small-bulge multi-shift QR sweep ==== */
|
|
|
|
slaqr5_(wantt, wantz, &kacc22, n, &ktop, &kbot, &ns, &wr[ks],
|
|
&wi[ks], &h__[h_offset], ldh, iloz, ihiz, &z__[
|
|
z_offset], ldz, &work[1], &c__3, &h__[ku + h_dim1],
|
|
ldh, &nve, &h__[kwv + h_dim1], ldh, &nho, &h__[ku +
|
|
kwh * h_dim1], ldh);
|
|
}
|
|
|
|
/* ==== Note progress (or the lack of it). ==== */
|
|
|
|
if (ld > 0) {
|
|
ndfl = 1;
|
|
} else {
|
|
++ndfl;
|
|
}
|
|
|
|
/* ==== End of main loop ==== */
|
|
/* L80: */
|
|
}
|
|
|
|
/* ==== Iteration limit exceeded. Set INFO to show where */
|
|
/* . the problem occurred and exit. ==== */
|
|
|
|
*info = kbot;
|
|
L90:
|
|
;
|
|
}
|
|
|
|
/* ==== Return the optimal value of LWORK. ==== */
|
|
|
|
work[1] = (real) lwkopt;
|
|
|
|
/* ==== End of SLAQR0 ==== */
|
|
|
|
return;
|
|
} /* slaqr0_ */
|
|
|