1119 lines
30 KiB
C
1119 lines
30 KiB
C
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <complex.h>
|
|
#ifdef complex
|
|
#undef complex
|
|
#endif
|
|
#ifdef I
|
|
#undef I
|
|
#endif
|
|
|
|
#if defined(_WIN64)
|
|
typedef long long BLASLONG;
|
|
typedef unsigned long long BLASULONG;
|
|
#else
|
|
typedef long BLASLONG;
|
|
typedef unsigned long BLASULONG;
|
|
#endif
|
|
|
|
#ifdef LAPACK_ILP64
|
|
typedef BLASLONG blasint;
|
|
#if defined(_WIN64)
|
|
#define blasabs(x) llabs(x)
|
|
#else
|
|
#define blasabs(x) labs(x)
|
|
#endif
|
|
#else
|
|
typedef int blasint;
|
|
#define blasabs(x) abs(x)
|
|
#endif
|
|
|
|
typedef blasint integer;
|
|
|
|
typedef unsigned int uinteger;
|
|
typedef char *address;
|
|
typedef short int shortint;
|
|
typedef float real;
|
|
typedef double doublereal;
|
|
typedef struct { real r, i; } complex;
|
|
typedef struct { doublereal r, i; } doublecomplex;
|
|
#ifdef _MSC_VER
|
|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
|
|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
|
|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
|
|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
|
|
#else
|
|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
|
|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
|
|
#endif
|
|
#define pCf(z) (*_pCf(z))
|
|
#define pCd(z) (*_pCd(z))
|
|
typedef blasint logical;
|
|
|
|
typedef char logical1;
|
|
typedef char integer1;
|
|
|
|
#define TRUE_ (1)
|
|
#define FALSE_ (0)
|
|
|
|
/* Extern is for use with -E */
|
|
#ifndef Extern
|
|
#define Extern extern
|
|
#endif
|
|
|
|
/* I/O stuff */
|
|
|
|
typedef int flag;
|
|
typedef int ftnlen;
|
|
typedef int ftnint;
|
|
|
|
/*external read, write*/
|
|
typedef struct
|
|
{ flag cierr;
|
|
ftnint ciunit;
|
|
flag ciend;
|
|
char *cifmt;
|
|
ftnint cirec;
|
|
} cilist;
|
|
|
|
/*internal read, write*/
|
|
typedef struct
|
|
{ flag icierr;
|
|
char *iciunit;
|
|
flag iciend;
|
|
char *icifmt;
|
|
ftnint icirlen;
|
|
ftnint icirnum;
|
|
} icilist;
|
|
|
|
/*open*/
|
|
typedef struct
|
|
{ flag oerr;
|
|
ftnint ounit;
|
|
char *ofnm;
|
|
ftnlen ofnmlen;
|
|
char *osta;
|
|
char *oacc;
|
|
char *ofm;
|
|
ftnint orl;
|
|
char *oblnk;
|
|
} olist;
|
|
|
|
/*close*/
|
|
typedef struct
|
|
{ flag cerr;
|
|
ftnint cunit;
|
|
char *csta;
|
|
} cllist;
|
|
|
|
/*rewind, backspace, endfile*/
|
|
typedef struct
|
|
{ flag aerr;
|
|
ftnint aunit;
|
|
} alist;
|
|
|
|
/* inquire */
|
|
typedef struct
|
|
{ flag inerr;
|
|
ftnint inunit;
|
|
char *infile;
|
|
ftnlen infilen;
|
|
ftnint *inex; /*parameters in standard's order*/
|
|
ftnint *inopen;
|
|
ftnint *innum;
|
|
ftnint *innamed;
|
|
char *inname;
|
|
ftnlen innamlen;
|
|
char *inacc;
|
|
ftnlen inacclen;
|
|
char *inseq;
|
|
ftnlen inseqlen;
|
|
char *indir;
|
|
ftnlen indirlen;
|
|
char *infmt;
|
|
ftnlen infmtlen;
|
|
char *inform;
|
|
ftnint informlen;
|
|
char *inunf;
|
|
ftnlen inunflen;
|
|
ftnint *inrecl;
|
|
ftnint *innrec;
|
|
char *inblank;
|
|
ftnlen inblanklen;
|
|
} inlist;
|
|
|
|
#define VOID void
|
|
|
|
union Multitype { /* for multiple entry points */
|
|
integer1 g;
|
|
shortint h;
|
|
integer i;
|
|
/* longint j; */
|
|
real r;
|
|
doublereal d;
|
|
complex c;
|
|
doublecomplex z;
|
|
};
|
|
|
|
typedef union Multitype Multitype;
|
|
|
|
struct Vardesc { /* for Namelist */
|
|
char *name;
|
|
char *addr;
|
|
ftnlen *dims;
|
|
int type;
|
|
};
|
|
typedef struct Vardesc Vardesc;
|
|
|
|
struct Namelist {
|
|
char *name;
|
|
Vardesc **vars;
|
|
int nvars;
|
|
};
|
|
typedef struct Namelist Namelist;
|
|
|
|
#define abs(x) ((x) >= 0 ? (x) : -(x))
|
|
#define dabs(x) (fabs(x))
|
|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
|
|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
|
|
#define dmin(a,b) (f2cmin(a,b))
|
|
#define dmax(a,b) (f2cmax(a,b))
|
|
#define bit_test(a,b) ((a) >> (b) & 1)
|
|
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
|
|
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
|
|
|
|
#define abort_() { sig_die("Fortran abort routine called", 1); }
|
|
#define c_abs(z) (cabsf(Cf(z)))
|
|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
|
|
#ifdef _MSC_VER
|
|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
|
|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
|
|
#else
|
|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
|
|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
|
|
#endif
|
|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
|
|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
|
|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
|
|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
|
|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
|
|
#define d_abs(x) (fabs(*(x)))
|
|
#define d_acos(x) (acos(*(x)))
|
|
#define d_asin(x) (asin(*(x)))
|
|
#define d_atan(x) (atan(*(x)))
|
|
#define d_atn2(x, y) (atan2(*(x),*(y)))
|
|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
|
|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
|
|
#define d_cos(x) (cos(*(x)))
|
|
#define d_cosh(x) (cosh(*(x)))
|
|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
|
|
#define d_exp(x) (exp(*(x)))
|
|
#define d_imag(z) (cimag(Cd(z)))
|
|
#define r_imag(z) (cimagf(Cf(z)))
|
|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define d_log(x) (log(*(x)))
|
|
#define d_mod(x, y) (fmod(*(x), *(y)))
|
|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
|
|
#define d_nint(x) u_nint(*(x))
|
|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
|
|
#define d_sign(a,b) u_sign(*(a),*(b))
|
|
#define r_sign(a,b) u_sign(*(a),*(b))
|
|
#define d_sin(x) (sin(*(x)))
|
|
#define d_sinh(x) (sinh(*(x)))
|
|
#define d_sqrt(x) (sqrt(*(x)))
|
|
#define d_tan(x) (tan(*(x)))
|
|
#define d_tanh(x) (tanh(*(x)))
|
|
#define i_abs(x) abs(*(x))
|
|
#define i_dnnt(x) ((integer)u_nint(*(x)))
|
|
#define i_len(s, n) (n)
|
|
#define i_nint(x) ((integer)u_nint(*(x)))
|
|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
|
|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
|
|
#define pow_si(B,E) spow_ui(*(B),*(E))
|
|
#define pow_ri(B,E) spow_ui(*(B),*(E))
|
|
#define pow_di(B,E) dpow_ui(*(B),*(E))
|
|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
|
|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
|
|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
|
|
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
|
|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
|
|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
|
|
#define sig_die(s, kill) { exit(1); }
|
|
#define s_stop(s, n) {exit(0);}
|
|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
|
|
#define z_abs(z) (cabs(Cd(z)))
|
|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
|
|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
|
|
#define myexit_() break;
|
|
#define mycycle() continue;
|
|
#define myceiling(w) {ceil(w)}
|
|
#define myhuge(w) {HUGE_VAL}
|
|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
|
|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
|
|
|
|
/* procedure parameter types for -A and -C++ */
|
|
|
|
|
|
#ifdef __cplusplus
|
|
typedef logical (*L_fp)(...);
|
|
#else
|
|
typedef logical (*L_fp)();
|
|
#endif
|
|
|
|
static float spow_ui(float x, integer n) {
|
|
float pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
static double dpow_ui(double x, integer n) {
|
|
double pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#ifdef _MSC_VER
|
|
static _Fcomplex cpow_ui(complex x, integer n) {
|
|
complex pow={1.0,0.0}; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow.r *= x.r, pow.i *= x.i;
|
|
if(u >>= 1) x.r *= x.r, x.i *= x.i;
|
|
else break;
|
|
}
|
|
}
|
|
_Fcomplex p={pow.r, pow.i};
|
|
return p;
|
|
}
|
|
#else
|
|
static _Complex float cpow_ui(_Complex float x, integer n) {
|
|
_Complex float pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#endif
|
|
#ifdef _MSC_VER
|
|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
|
|
_Dcomplex pow={1.0,0.0}; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
|
|
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
|
|
else break;
|
|
}
|
|
}
|
|
_Dcomplex p = {pow._Val[0], pow._Val[1]};
|
|
return p;
|
|
}
|
|
#else
|
|
static _Complex double zpow_ui(_Complex double x, integer n) {
|
|
_Complex double pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#endif
|
|
static integer pow_ii(integer x, integer n) {
|
|
integer pow; unsigned long int u;
|
|
if (n <= 0) {
|
|
if (n == 0 || x == 1) pow = 1;
|
|
else if (x != -1) pow = x == 0 ? 1/x : 0;
|
|
else n = -n;
|
|
}
|
|
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
|
|
u = n;
|
|
for(pow = 1; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
|
|
{
|
|
double m; integer i, mi;
|
|
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
|
if (w[i-1]>m) mi=i ,m=w[i-1];
|
|
return mi-s+1;
|
|
}
|
|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
|
|
{
|
|
float m; integer i, mi;
|
|
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
|
if (w[i-1]>m) mi=i ,m=w[i-1];
|
|
return mi-s+1;
|
|
}
|
|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Fcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
|
|
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex float zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Dcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
|
|
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex double zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Fcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
|
|
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex float zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cf(&x[i]) * Cf(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Dcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
|
|
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex double zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cd(&x[i]) * Cd(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#endif
|
|
/* -- translated by f2c (version 20000121).
|
|
You must link the resulting object file with the libraries:
|
|
-lf2c -lm (in that order)
|
|
*/
|
|
|
|
|
|
|
|
|
|
/* Table of constant values */
|
|
|
|
static real c_b3 = -1.f;
|
|
static integer c__1 = 1;
|
|
|
|
/* > \brief \b SLAED2 used by sstedc. Merges eigenvalues and deflates secular equation. Used when the original
|
|
matrix is tridiagonal. */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* > \htmlonly */
|
|
/* > Download SLAED2 + dependencies */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaed2.
|
|
f"> */
|
|
/* > [TGZ]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaed2.
|
|
f"> */
|
|
/* > [ZIP]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaed2.
|
|
f"> */
|
|
/* > [TXT]</a> */
|
|
/* > \endhtmlonly */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* SUBROUTINE SLAED2( K, N, N1, D, Q, LDQ, INDXQ, RHO, Z, DLAMDA, W, */
|
|
/* Q2, INDX, INDXC, INDXP, COLTYP, INFO ) */
|
|
|
|
/* INTEGER INFO, K, LDQ, N, N1 */
|
|
/* REAL RHO */
|
|
/* INTEGER COLTYP( * ), INDX( * ), INDXC( * ), INDXP( * ), */
|
|
/* $ INDXQ( * ) */
|
|
/* REAL D( * ), DLAMDA( * ), Q( LDQ, * ), Q2( * ), */
|
|
/* $ W( * ), Z( * ) */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > SLAED2 merges the two sets of eigenvalues together into a single */
|
|
/* > sorted set. Then it tries to deflate the size of the problem. */
|
|
/* > There are two ways in which deflation can occur: when two or more */
|
|
/* > eigenvalues are close together or if there is a tiny entry in the */
|
|
/* > Z vector. For each such occurrence the order of the related secular */
|
|
/* > equation problem is reduced by one. */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[out] K */
|
|
/* > \verbatim */
|
|
/* > K is INTEGER */
|
|
/* > The number of non-deflated eigenvalues, and the order of the */
|
|
/* > related secular equation. 0 <= K <=N. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > The dimension of the symmetric tridiagonal matrix. N >= 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N1 */
|
|
/* > \verbatim */
|
|
/* > N1 is INTEGER */
|
|
/* > The location of the last eigenvalue in the leading sub-matrix. */
|
|
/* > f2cmin(1,N) <= N1 <= N/2. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] D */
|
|
/* > \verbatim */
|
|
/* > D is REAL array, dimension (N) */
|
|
/* > On entry, D contains the eigenvalues of the two submatrices to */
|
|
/* > be combined. */
|
|
/* > On exit, D contains the trailing (N-K) updated eigenvalues */
|
|
/* > (those which were deflated) sorted into increasing order. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] Q */
|
|
/* > \verbatim */
|
|
/* > Q is REAL array, dimension (LDQ, N) */
|
|
/* > On entry, Q contains the eigenvectors of two submatrices in */
|
|
/* > the two square blocks with corners at (1,1), (N1,N1) */
|
|
/* > and (N1+1, N1+1), (N,N). */
|
|
/* > On exit, Q contains the trailing (N-K) updated eigenvectors */
|
|
/* > (those which were deflated) in its last N-K columns. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDQ */
|
|
/* > \verbatim */
|
|
/* > LDQ is INTEGER */
|
|
/* > The leading dimension of the array Q. LDQ >= f2cmax(1,N). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] INDXQ */
|
|
/* > \verbatim */
|
|
/* > INDXQ is INTEGER array, dimension (N) */
|
|
/* > The permutation which separately sorts the two sub-problems */
|
|
/* > in D into ascending order. Note that elements in the second */
|
|
/* > half of this permutation must first have N1 added to their */
|
|
/* > values. Destroyed on exit. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] RHO */
|
|
/* > \verbatim */
|
|
/* > RHO is REAL */
|
|
/* > On entry, the off-diagonal element associated with the rank-1 */
|
|
/* > cut which originally split the two submatrices which are now */
|
|
/* > being recombined. */
|
|
/* > On exit, RHO has been modified to the value required by */
|
|
/* > SLAED3. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] Z */
|
|
/* > \verbatim */
|
|
/* > Z is REAL array, dimension (N) */
|
|
/* > On entry, Z contains the updating vector (the last */
|
|
/* > row of the first sub-eigenvector matrix and the first row of */
|
|
/* > the second sub-eigenvector matrix). */
|
|
/* > On exit, the contents of Z have been destroyed by the updating */
|
|
/* > process. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] DLAMDA */
|
|
/* > \verbatim */
|
|
/* > DLAMDA is REAL array, dimension (N) */
|
|
/* > A copy of the first K eigenvalues which will be used by */
|
|
/* > SLAED3 to form the secular equation. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] W */
|
|
/* > \verbatim */
|
|
/* > W is REAL array, dimension (N) */
|
|
/* > The first k values of the final deflation-altered z-vector */
|
|
/* > which will be passed to SLAED3. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] Q2 */
|
|
/* > \verbatim */
|
|
/* > Q2 is REAL array, dimension (N1**2+(N-N1)**2) */
|
|
/* > A copy of the first K eigenvectors which will be used by */
|
|
/* > SLAED3 in a matrix multiply (SGEMM) to solve for the new */
|
|
/* > eigenvectors. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] INDX */
|
|
/* > \verbatim */
|
|
/* > INDX is INTEGER array, dimension (N) */
|
|
/* > The permutation used to sort the contents of DLAMDA into */
|
|
/* > ascending order. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] INDXC */
|
|
/* > \verbatim */
|
|
/* > INDXC is INTEGER array, dimension (N) */
|
|
/* > The permutation used to arrange the columns of the deflated */
|
|
/* > Q matrix into three groups: the first group contains non-zero */
|
|
/* > elements only at and above N1, the second contains */
|
|
/* > non-zero elements only below N1, and the third is dense. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] INDXP */
|
|
/* > \verbatim */
|
|
/* > INDXP is INTEGER array, dimension (N) */
|
|
/* > The permutation used to place deflated values of D at the end */
|
|
/* > of the array. INDXP(1:K) points to the nondeflated D-values */
|
|
/* > and INDXP(K+1:N) points to the deflated eigenvalues. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] COLTYP */
|
|
/* > \verbatim */
|
|
/* > COLTYP is INTEGER array, dimension (N) */
|
|
/* > During execution, a label which will indicate which of the */
|
|
/* > following types a column in the Q2 matrix is: */
|
|
/* > 1 : non-zero in the upper half only; */
|
|
/* > 2 : dense; */
|
|
/* > 3 : non-zero in the lower half only; */
|
|
/* > 4 : deflated. */
|
|
/* > On exit, COLTYP(i) is the number of columns of type i, */
|
|
/* > for i=1 to 4 only. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] INFO */
|
|
/* > \verbatim */
|
|
/* > INFO is INTEGER */
|
|
/* > = 0: successful exit. */
|
|
/* > < 0: if INFO = -i, the i-th argument had an illegal value. */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \date December 2016 */
|
|
|
|
/* > \ingroup auxOTHERcomputational */
|
|
|
|
/* > \par Contributors: */
|
|
/* ================== */
|
|
/* > */
|
|
/* > Jeff Rutter, Computer Science Division, University of California */
|
|
/* > at Berkeley, USA \n */
|
|
/* > Modified by Francoise Tisseur, University of Tennessee */
|
|
/* > */
|
|
/* ===================================================================== */
|
|
/* Subroutine */ void slaed2_(integer *k, integer *n, integer *n1, real *d__,
|
|
real *q, integer *ldq, integer *indxq, real *rho, real *z__, real *
|
|
dlamda, real *w, real *q2, integer *indx, integer *indxc, integer *
|
|
indxp, integer *coltyp, integer *info)
|
|
{
|
|
/* System generated locals */
|
|
integer q_dim1, q_offset, i__1, i__2;
|
|
real r__1, r__2, r__3, r__4;
|
|
|
|
/* Local variables */
|
|
integer imax, jmax, ctot[4];
|
|
extern /* Subroutine */ void srot_(integer *, real *, integer *, real *,
|
|
integer *, real *, real *);
|
|
real c__;
|
|
integer i__, j;
|
|
real s, t;
|
|
extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *);
|
|
integer k2;
|
|
extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *,
|
|
integer *);
|
|
integer n2;
|
|
extern real slapy2_(real *, real *);
|
|
integer ct, nj, pj, js;
|
|
extern real slamch_(char *);
|
|
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
|
|
extern integer isamax_(integer *, real *, integer *);
|
|
extern /* Subroutine */ void slamrg_(integer *, integer *, real *, integer
|
|
*, integer *, integer *), slacpy_(char *, integer *, integer *,
|
|
real *, integer *, real *, integer *);
|
|
integer iq1, iq2, n1p1;
|
|
real eps, tau, tol;
|
|
integer psm[4];
|
|
|
|
|
|
/* -- LAPACK computational routine (version 3.7.0) -- */
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
/* December 2016 */
|
|
|
|
|
|
/* ===================================================================== */
|
|
|
|
|
|
/* Test the input parameters. */
|
|
|
|
/* Parameter adjustments */
|
|
--d__;
|
|
q_dim1 = *ldq;
|
|
q_offset = 1 + q_dim1 * 1;
|
|
q -= q_offset;
|
|
--indxq;
|
|
--z__;
|
|
--dlamda;
|
|
--w;
|
|
--q2;
|
|
--indx;
|
|
--indxc;
|
|
--indxp;
|
|
--coltyp;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
|
|
if (*n < 0) {
|
|
*info = -2;
|
|
} else if (*ldq < f2cmax(1,*n)) {
|
|
*info = -6;
|
|
} else /* if(complicated condition) */ {
|
|
/* Computing MIN */
|
|
i__1 = 1, i__2 = *n / 2;
|
|
if (f2cmin(i__1,i__2) > *n1 || *n / 2 < *n1) {
|
|
*info = -3;
|
|
}
|
|
}
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_("SLAED2", &i__1, (ftnlen)6);
|
|
return;
|
|
}
|
|
|
|
/* Quick return if possible */
|
|
|
|
if (*n == 0) {
|
|
return;
|
|
}
|
|
|
|
n2 = *n - *n1;
|
|
n1p1 = *n1 + 1;
|
|
|
|
if (*rho < 0.f) {
|
|
sscal_(&n2, &c_b3, &z__[n1p1], &c__1);
|
|
}
|
|
|
|
/* Normalize z so that norm(z) = 1. Since z is the concatenation of */
|
|
/* two normalized vectors, norm2(z) = sqrt(2). */
|
|
|
|
t = 1.f / sqrt(2.f);
|
|
sscal_(n, &t, &z__[1], &c__1);
|
|
|
|
/* RHO = ABS( norm(z)**2 * RHO ) */
|
|
|
|
*rho = (r__1 = *rho * 2.f, abs(r__1));
|
|
|
|
/* Sort the eigenvalues into increasing order */
|
|
|
|
i__1 = *n;
|
|
for (i__ = n1p1; i__ <= i__1; ++i__) {
|
|
indxq[i__] += *n1;
|
|
/* L10: */
|
|
}
|
|
|
|
/* re-integrate the deflated parts from the last pass */
|
|
|
|
i__1 = *n;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
dlamda[i__] = d__[indxq[i__]];
|
|
/* L20: */
|
|
}
|
|
slamrg_(n1, &n2, &dlamda[1], &c__1, &c__1, &indxc[1]);
|
|
i__1 = *n;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
indx[i__] = indxq[indxc[i__]];
|
|
/* L30: */
|
|
}
|
|
|
|
/* Calculate the allowable deflation tolerance */
|
|
|
|
imax = isamax_(n, &z__[1], &c__1);
|
|
jmax = isamax_(n, &d__[1], &c__1);
|
|
eps = slamch_("Epsilon");
|
|
/* Computing MAX */
|
|
r__3 = (r__1 = d__[jmax], abs(r__1)), r__4 = (r__2 = z__[imax], abs(r__2))
|
|
;
|
|
tol = eps * 8.f * f2cmax(r__3,r__4);
|
|
|
|
/* If the rank-1 modifier is small enough, no more needs to be done */
|
|
/* except to reorganize Q so that its columns correspond with the */
|
|
/* elements in D. */
|
|
|
|
if (*rho * (r__1 = z__[imax], abs(r__1)) <= tol) {
|
|
*k = 0;
|
|
iq2 = 1;
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__ = indx[j];
|
|
scopy_(n, &q[i__ * q_dim1 + 1], &c__1, &q2[iq2], &c__1);
|
|
dlamda[j] = d__[i__];
|
|
iq2 += *n;
|
|
/* L40: */
|
|
}
|
|
slacpy_("A", n, n, &q2[1], n, &q[q_offset], ldq);
|
|
scopy_(n, &dlamda[1], &c__1, &d__[1], &c__1);
|
|
goto L190;
|
|
}
|
|
|
|
/* If there are multiple eigenvalues then the problem deflates. Here */
|
|
/* the number of equal eigenvalues are found. As each equal */
|
|
/* eigenvalue is found, an elementary reflector is computed to rotate */
|
|
/* the corresponding eigensubspace so that the corresponding */
|
|
/* components of Z are zero in this new basis. */
|
|
|
|
i__1 = *n1;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
coltyp[i__] = 1;
|
|
/* L50: */
|
|
}
|
|
i__1 = *n;
|
|
for (i__ = n1p1; i__ <= i__1; ++i__) {
|
|
coltyp[i__] = 3;
|
|
/* L60: */
|
|
}
|
|
|
|
|
|
*k = 0;
|
|
k2 = *n + 1;
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
nj = indx[j];
|
|
if (*rho * (r__1 = z__[nj], abs(r__1)) <= tol) {
|
|
|
|
/* Deflate due to small z component. */
|
|
|
|
--k2;
|
|
coltyp[nj] = 4;
|
|
indxp[k2] = nj;
|
|
if (j == *n) {
|
|
goto L100;
|
|
}
|
|
} else {
|
|
pj = nj;
|
|
goto L80;
|
|
}
|
|
/* L70: */
|
|
}
|
|
L80:
|
|
++j;
|
|
nj = indx[j];
|
|
if (j > *n) {
|
|
goto L100;
|
|
}
|
|
if (*rho * (r__1 = z__[nj], abs(r__1)) <= tol) {
|
|
|
|
/* Deflate due to small z component. */
|
|
|
|
--k2;
|
|
coltyp[nj] = 4;
|
|
indxp[k2] = nj;
|
|
} else {
|
|
|
|
/* Check if eigenvalues are close enough to allow deflation. */
|
|
|
|
s = z__[pj];
|
|
c__ = z__[nj];
|
|
|
|
/* Find sqrt(a**2+b**2) without overflow or */
|
|
/* destructive underflow. */
|
|
|
|
tau = slapy2_(&c__, &s);
|
|
t = d__[nj] - d__[pj];
|
|
c__ /= tau;
|
|
s = -s / tau;
|
|
if ((r__1 = t * c__ * s, abs(r__1)) <= tol) {
|
|
|
|
/* Deflation is possible. */
|
|
|
|
z__[nj] = tau;
|
|
z__[pj] = 0.f;
|
|
if (coltyp[nj] != coltyp[pj]) {
|
|
coltyp[nj] = 2;
|
|
}
|
|
coltyp[pj] = 4;
|
|
srot_(n, &q[pj * q_dim1 + 1], &c__1, &q[nj * q_dim1 + 1], &c__1, &
|
|
c__, &s);
|
|
/* Computing 2nd power */
|
|
r__1 = c__;
|
|
/* Computing 2nd power */
|
|
r__2 = s;
|
|
t = d__[pj] * (r__1 * r__1) + d__[nj] * (r__2 * r__2);
|
|
/* Computing 2nd power */
|
|
r__1 = s;
|
|
/* Computing 2nd power */
|
|
r__2 = c__;
|
|
d__[nj] = d__[pj] * (r__1 * r__1) + d__[nj] * (r__2 * r__2);
|
|
d__[pj] = t;
|
|
--k2;
|
|
i__ = 1;
|
|
L90:
|
|
if (k2 + i__ <= *n) {
|
|
if (d__[pj] < d__[indxp[k2 + i__]]) {
|
|
indxp[k2 + i__ - 1] = indxp[k2 + i__];
|
|
indxp[k2 + i__] = pj;
|
|
++i__;
|
|
goto L90;
|
|
} else {
|
|
indxp[k2 + i__ - 1] = pj;
|
|
}
|
|
} else {
|
|
indxp[k2 + i__ - 1] = pj;
|
|
}
|
|
pj = nj;
|
|
} else {
|
|
++(*k);
|
|
dlamda[*k] = d__[pj];
|
|
w[*k] = z__[pj];
|
|
indxp[*k] = pj;
|
|
pj = nj;
|
|
}
|
|
}
|
|
goto L80;
|
|
L100:
|
|
|
|
/* Record the last eigenvalue. */
|
|
|
|
++(*k);
|
|
dlamda[*k] = d__[pj];
|
|
w[*k] = z__[pj];
|
|
indxp[*k] = pj;
|
|
|
|
/* Count up the total number of the various types of columns, then */
|
|
/* form a permutation which positions the four column types into */
|
|
/* four uniform groups (although one or more of these groups may be */
|
|
/* empty). */
|
|
|
|
for (j = 1; j <= 4; ++j) {
|
|
ctot[j - 1] = 0;
|
|
/* L110: */
|
|
}
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
ct = coltyp[j];
|
|
++ctot[ct - 1];
|
|
/* L120: */
|
|
}
|
|
|
|
/* PSM(*) = Position in SubMatrix (of types 1 through 4) */
|
|
|
|
psm[0] = 1;
|
|
psm[1] = ctot[0] + 1;
|
|
psm[2] = psm[1] + ctot[1];
|
|
psm[3] = psm[2] + ctot[2];
|
|
*k = *n - ctot[3];
|
|
|
|
/* Fill out the INDXC array so that the permutation which it induces */
|
|
/* will place all type-1 columns first, all type-2 columns next, */
|
|
/* then all type-3's, and finally all type-4's. */
|
|
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
js = indxp[j];
|
|
ct = coltyp[js];
|
|
indx[psm[ct - 1]] = js;
|
|
indxc[psm[ct - 1]] = j;
|
|
++psm[ct - 1];
|
|
/* L130: */
|
|
}
|
|
|
|
/* Sort the eigenvalues and corresponding eigenvectors into DLAMDA */
|
|
/* and Q2 respectively. The eigenvalues/vectors which were not */
|
|
/* deflated go into the first K slots of DLAMDA and Q2 respectively, */
|
|
/* while those which were deflated go into the last N - K slots. */
|
|
|
|
i__ = 1;
|
|
iq1 = 1;
|
|
iq2 = (ctot[0] + ctot[1]) * *n1 + 1;
|
|
i__1 = ctot[0];
|
|
for (j = 1; j <= i__1; ++j) {
|
|
js = indx[i__];
|
|
scopy_(n1, &q[js * q_dim1 + 1], &c__1, &q2[iq1], &c__1);
|
|
z__[i__] = d__[js];
|
|
++i__;
|
|
iq1 += *n1;
|
|
/* L140: */
|
|
}
|
|
|
|
i__1 = ctot[1];
|
|
for (j = 1; j <= i__1; ++j) {
|
|
js = indx[i__];
|
|
scopy_(n1, &q[js * q_dim1 + 1], &c__1, &q2[iq1], &c__1);
|
|
scopy_(&n2, &q[*n1 + 1 + js * q_dim1], &c__1, &q2[iq2], &c__1);
|
|
z__[i__] = d__[js];
|
|
++i__;
|
|
iq1 += *n1;
|
|
iq2 += n2;
|
|
/* L150: */
|
|
}
|
|
|
|
i__1 = ctot[2];
|
|
for (j = 1; j <= i__1; ++j) {
|
|
js = indx[i__];
|
|
scopy_(&n2, &q[*n1 + 1 + js * q_dim1], &c__1, &q2[iq2], &c__1);
|
|
z__[i__] = d__[js];
|
|
++i__;
|
|
iq2 += n2;
|
|
/* L160: */
|
|
}
|
|
|
|
iq1 = iq2;
|
|
i__1 = ctot[3];
|
|
for (j = 1; j <= i__1; ++j) {
|
|
js = indx[i__];
|
|
scopy_(n, &q[js * q_dim1 + 1], &c__1, &q2[iq2], &c__1);
|
|
iq2 += *n;
|
|
z__[i__] = d__[js];
|
|
++i__;
|
|
/* L170: */
|
|
}
|
|
|
|
/* The deflated eigenvalues and their corresponding vectors go back */
|
|
/* into the last N - K slots of D and Q respectively. */
|
|
|
|
if (*k < *n) {
|
|
slacpy_("A", n, &ctot[3], &q2[iq1], n, &q[(*k + 1) * q_dim1 + 1], ldq);
|
|
i__1 = *n - *k;
|
|
scopy_(&i__1, &z__[*k + 1], &c__1, &d__[*k + 1], &c__1);
|
|
}
|
|
|
|
/* Copy CTOT into COLTYP for referencing in SLAED3. */
|
|
|
|
for (j = 1; j <= 4; ++j) {
|
|
coltyp[j] = ctot[j - 1];
|
|
/* L180: */
|
|
}
|
|
|
|
L190:
|
|
return;
|
|
|
|
/* End of SLAED2 */
|
|
|
|
} /* slaed2_ */
|
|
|