OpenBLAS/lapack-netlib/SRC/sgelsy.c

812 lines
24 KiB
C

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif
#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif
#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif
typedef blasint integer;
typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
#ifdef _MSC_VER
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
#else
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#endif
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef blasint logical;
typedef char logical1;
typedef char integer1;
#define TRUE_ (1)
#define FALSE_ (0)
/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif
/* I/O stuff */
typedef int flag;
typedef int ftnlen;
typedef int ftnint;
/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;
/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;
/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;
/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;
/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;
/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;
#define VOID void
union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};
typedef union Multitype Multitype;
struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;
struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;
#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#ifdef _MSC_VER
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
#else
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#endif
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimagf(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
/* Table of constant values */
static integer c__1 = 1;
static integer c_n1 = -1;
static integer c__0 = 0;
static real c_b31 = 0.f;
static integer c__2 = 2;
static real c_b54 = 1.f;
/* > \brief <b> SGELSY solves overdetermined or underdetermined systems for GE matrices</b> */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download SGELSY + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgelsy.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgelsy.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgelsy.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE SGELSY( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK, */
/* WORK, LWORK, INFO ) */
/* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS, RANK */
/* REAL RCOND */
/* INTEGER JPVT( * ) */
/* REAL A( LDA, * ), B( LDB, * ), WORK( * ) */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > SGELSY computes the minimum-norm solution to a real linear least */
/* > squares problem: */
/* > minimize || A * X - B || */
/* > using a complete orthogonal factorization of A. A is an M-by-N */
/* > matrix which may be rank-deficient. */
/* > */
/* > Several right hand side vectors b and solution vectors x can be */
/* > handled in a single call; they are stored as the columns of the */
/* > M-by-NRHS right hand side matrix B and the N-by-NRHS solution */
/* > matrix X. */
/* > */
/* > The routine first computes a QR factorization with column pivoting: */
/* > A * P = Q * [ R11 R12 ] */
/* > [ 0 R22 ] */
/* > with R11 defined as the largest leading submatrix whose estimated */
/* > condition number is less than 1/RCOND. The order of R11, RANK, */
/* > is the effective rank of A. */
/* > */
/* > Then, R22 is considered to be negligible, and R12 is annihilated */
/* > by orthogonal transformations from the right, arriving at the */
/* > complete orthogonal factorization: */
/* > A * P = Q * [ T11 0 ] * Z */
/* > [ 0 0 ] */
/* > The minimum-norm solution is then */
/* > X = P * Z**T [ inv(T11)*Q1**T*B ] */
/* > [ 0 ] */
/* > where Q1 consists of the first RANK columns of Q. */
/* > */
/* > This routine is basically identical to the original xGELSX except */
/* > three differences: */
/* > o The call to the subroutine xGEQPF has been substituted by the */
/* > the call to the subroutine xGEQP3. This subroutine is a Blas-3 */
/* > version of the QR factorization with column pivoting. */
/* > o Matrix B (the right hand side) is updated with Blas-3. */
/* > o The permutation of matrix B (the right hand side) is faster and */
/* > more simple. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix A. M >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] NRHS */
/* > \verbatim */
/* > NRHS is INTEGER */
/* > The number of right hand sides, i.e., the number of */
/* > columns of matrices B and X. NRHS >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is REAL array, dimension (LDA,N) */
/* > On entry, the M-by-N matrix A. */
/* > On exit, A has been overwritten by details of its */
/* > complete orthogonal factorization. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
/* > \endverbatim */
/* > */
/* > \param[in,out] B */
/* > \verbatim */
/* > B is REAL array, dimension (LDB,NRHS) */
/* > On entry, the M-by-NRHS right hand side matrix B. */
/* > On exit, the N-by-NRHS solution matrix X. */
/* > \endverbatim */
/* > */
/* > \param[in] LDB */
/* > \verbatim */
/* > LDB is INTEGER */
/* > The leading dimension of the array B. LDB >= f2cmax(1,M,N). */
/* > \endverbatim */
/* > */
/* > \param[in,out] JPVT */
/* > \verbatim */
/* > JPVT is INTEGER array, dimension (N) */
/* > On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted */
/* > to the front of AP, otherwise column i is a free column. */
/* > On exit, if JPVT(i) = k, then the i-th column of AP */
/* > was the k-th column of A. */
/* > \endverbatim */
/* > */
/* > \param[in] RCOND */
/* > \verbatim */
/* > RCOND is REAL */
/* > RCOND is used to determine the effective rank of A, which */
/* > is defined as the order of the largest leading triangular */
/* > submatrix R11 in the QR factorization with pivoting of A, */
/* > whose estimated condition number < 1/RCOND. */
/* > \endverbatim */
/* > */
/* > \param[out] RANK */
/* > \verbatim */
/* > RANK is INTEGER */
/* > The effective rank of A, i.e., the order of the submatrix */
/* > R11. This is the same as the order of the submatrix T11 */
/* > in the complete orthogonal factorization of A. */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is REAL array, dimension (MAX(1,LWORK)) */
/* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* > \endverbatim */
/* > */
/* > \param[in] LWORK */
/* > \verbatim */
/* > LWORK is INTEGER */
/* > The dimension of the array WORK. */
/* > The unblocked strategy requires that: */
/* > LWORK >= MAX( MN+3*N+1, 2*MN+NRHS ), */
/* > where MN = f2cmin( M, N ). */
/* > The block algorithm requires that: */
/* > LWORK >= MAX( MN+2*N+NB*(N+1), 2*MN+NB*NRHS ), */
/* > where NB is an upper bound on the blocksize returned */
/* > by ILAENV for the routines SGEQP3, STZRZF, STZRQF, SORMQR, */
/* > and SORMRZ. */
/* > */
/* > If LWORK = -1, then a workspace query is assumed; the routine */
/* > only calculates the optimal size of the WORK array, returns */
/* > this value as the first entry of the WORK array, and no error */
/* > message related to LWORK is issued by XERBLA. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: If INFO = -i, the i-th argument had an illegal value. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date December 2016 */
/* > \ingroup realGEsolve */
/* > \par Contributors: */
/* ================== */
/* > */
/* > A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA \n */
/* > E. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain \n */
/* > G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain \n */
/* > */
/* ===================================================================== */
/* Subroutine */ void sgelsy_(integer *m, integer *n, integer *nrhs, real *a,
integer *lda, real *b, integer *ldb, integer *jpvt, real *rcond,
integer *rank, real *work, integer *lwork, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2;
real r__1, r__2;
/* Local variables */
real anrm, bnrm, smin, smax;
integer i__, j, iascl, ibscl, ismin, ismax;
real c1, c2;
extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *,
integer *);
real wsize, s1, s2;
extern /* Subroutine */ void strsm_(char *, char *, char *, char *,
integer *, integer *, real *, real *, integer *, real *, integer *
), slaic1_(integer *, integer *,
real *, real *, real *, real *, real *, real *, real *), sgeqp3_(
integer *, integer *, real *, integer *, integer *, real *, real *
, integer *, integer *);
integer nb;
extern /* Subroutine */ void slabad_(real *, real *);
integer mn;
extern real slamch_(char *), slange_(char *, integer *, integer *,
real *, integer *, real *);
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *, ftnlen, ftnlen);
real bignum;
extern /* Subroutine */ void slascl_(char *, integer *, integer *, real *,
real *, integer *, integer *, real *, integer *, integer *), slaset_(char *, integer *, integer *, real *, real *,
real *, integer *);
integer lwkmin, nb1, nb2, nb3, nb4;
real sminpr, smaxpr, smlnum;
integer lwkopt;
logical lquery;
extern /* Subroutine */ void sormqr_(char *, char *, integer *, integer *,
integer *, real *, integer *, real *, real *, integer *, real *,
integer *, integer *), sormrz_(char *, char *,
integer *, integer *, integer *, integer *, real *, integer *,
real *, real *, integer *, real *, integer *, integer *), stzrzf_(integer *, integer *, real *, integer *, real *,
real *, integer *, integer *);
/* -- LAPACK driver routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */
/* ===================================================================== */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1 * 1;
b -= b_offset;
--jpvt;
--work;
/* Function Body */
mn = f2cmin(*m,*n);
ismin = mn + 1;
ismax = (mn << 1) + 1;
/* Test the input arguments. */
*info = 0;
lquery = *lwork == -1;
if (*m < 0) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*nrhs < 0) {
*info = -3;
} else if (*lda < f2cmax(1,*m)) {
*info = -5;
} else /* if(complicated condition) */ {
/* Computing MAX */
i__1 = f2cmax(1,*m);
if (*ldb < f2cmax(i__1,*n)) {
*info = -7;
}
}
/* Figure out optimal block size */
if (*info == 0) {
if (mn == 0 || *nrhs == 0) {
lwkmin = 1;
lwkopt = 1;
} else {
nb1 = ilaenv_(&c__1, "SGEQRF", " ", m, n, &c_n1, &c_n1, (ftnlen)6,
(ftnlen)1);
nb2 = ilaenv_(&c__1, "SGERQF", " ", m, n, &c_n1, &c_n1, (ftnlen)6,
(ftnlen)1);
nb3 = ilaenv_(&c__1, "SORMQR", " ", m, n, nrhs, &c_n1, (ftnlen)6,
(ftnlen)1);
nb4 = ilaenv_(&c__1, "SORMRQ", " ", m, n, nrhs, &c_n1, (ftnlen)6,
(ftnlen)1);
/* Computing MAX */
i__1 = f2cmax(nb1,nb2), i__1 = f2cmax(i__1,nb3);
nb = f2cmax(i__1,nb4);
/* Computing MAX */
i__1 = mn << 1, i__2 = *n + 1, i__1 = f2cmax(i__1,i__2), i__2 = mn +
*nrhs;
lwkmin = mn + f2cmax(i__1,i__2);
/* Computing MAX */
i__1 = lwkmin, i__2 = mn + (*n << 1) + nb * (*n + 1), i__1 = f2cmax(
i__1,i__2), i__2 = (mn << 1) + nb * *nrhs;
lwkopt = f2cmax(i__1,i__2);
}
work[1] = (real) lwkopt;
if (*lwork < lwkmin && ! lquery) {
*info = -12;
}
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("SGELSY", &i__1, (ftnlen)6);
return;
} else if (lquery) {
return;
}
/* Quick return if possible */
if (mn == 0 || *nrhs == 0) {
*rank = 0;
return;
}
/* Get machine parameters */
smlnum = slamch_("S") / slamch_("P");
bignum = 1.f / smlnum;
slabad_(&smlnum, &bignum);
/* Scale A, B if f2cmax entries outside range [SMLNUM,BIGNUM] */
anrm = slange_("M", m, n, &a[a_offset], lda, &work[1]);
iascl = 0;
if (anrm > 0.f && anrm < smlnum) {
/* Scale matrix norm up to SMLNUM */
slascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda,
info);
iascl = 1;
} else if (anrm > bignum) {
/* Scale matrix norm down to BIGNUM */
slascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda,
info);
iascl = 2;
} else if (anrm == 0.f) {
/* Matrix all zero. Return zero solution. */
i__1 = f2cmax(*m,*n);
slaset_("F", &i__1, nrhs, &c_b31, &c_b31, &b[b_offset], ldb);
*rank = 0;
goto L70;
}
bnrm = slange_("M", m, nrhs, &b[b_offset], ldb, &work[1]);
ibscl = 0;
if (bnrm > 0.f && bnrm < smlnum) {
/* Scale matrix norm up to SMLNUM */
slascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb,
info);
ibscl = 1;
} else if (bnrm > bignum) {
/* Scale matrix norm down to BIGNUM */
slascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb,
info);
ibscl = 2;
}
/* Compute QR factorization with column pivoting of A: */
/* A * P = Q * R */
i__1 = *lwork - mn;
sgeqp3_(m, n, &a[a_offset], lda, &jpvt[1], &work[1], &work[mn + 1], &i__1,
info);
wsize = mn + work[mn + 1];
/* workspace: MN+2*N+NB*(N+1). */
/* Details of Householder rotations stored in WORK(1:MN). */
/* Determine RANK using incremental condition estimation */
work[ismin] = 1.f;
work[ismax] = 1.f;
smax = (r__1 = a[a_dim1 + 1], abs(r__1));
smin = smax;
if ((r__1 = a[a_dim1 + 1], abs(r__1)) == 0.f) {
*rank = 0;
i__1 = f2cmax(*m,*n);
slaset_("F", &i__1, nrhs, &c_b31, &c_b31, &b[b_offset], ldb);
goto L70;
} else {
*rank = 1;
}
L10:
if (*rank < mn) {
i__ = *rank + 1;
slaic1_(&c__2, rank, &work[ismin], &smin, &a[i__ * a_dim1 + 1], &a[
i__ + i__ * a_dim1], &sminpr, &s1, &c1);
slaic1_(&c__1, rank, &work[ismax], &smax, &a[i__ * a_dim1 + 1], &a[
i__ + i__ * a_dim1], &smaxpr, &s2, &c2);
if (smaxpr * *rcond <= sminpr) {
i__1 = *rank;
for (i__ = 1; i__ <= i__1; ++i__) {
work[ismin + i__ - 1] = s1 * work[ismin + i__ - 1];
work[ismax + i__ - 1] = s2 * work[ismax + i__ - 1];
/* L20: */
}
work[ismin + *rank] = c1;
work[ismax + *rank] = c2;
smin = sminpr;
smax = smaxpr;
++(*rank);
goto L10;
}
}
/* workspace: 3*MN. */
/* Logically partition R = [ R11 R12 ] */
/* [ 0 R22 ] */
/* where R11 = R(1:RANK,1:RANK) */
/* [R11,R12] = [ T11, 0 ] * Y */
if (*rank < *n) {
i__1 = *lwork - (mn << 1);
stzrzf_(rank, n, &a[a_offset], lda, &work[mn + 1], &work[(mn << 1) +
1], &i__1, info);
}
/* workspace: 2*MN. */
/* Details of Householder rotations stored in WORK(MN+1:2*MN) */
/* B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS) */
i__1 = *lwork - (mn << 1);
sormqr_("Left", "Transpose", m, nrhs, &mn, &a[a_offset], lda, &work[1], &
b[b_offset], ldb, &work[(mn << 1) + 1], &i__1, info);
/* Computing MAX */
r__1 = wsize, r__2 = (mn << 1) + work[(mn << 1) + 1];
wsize = f2cmax(r__1,r__2);
/* workspace: 2*MN+NB*NRHS. */
/* B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS) */
strsm_("Left", "Upper", "No transpose", "Non-unit", rank, nrhs, &c_b54, &
a[a_offset], lda, &b[b_offset], ldb);
i__1 = *nrhs;
for (j = 1; j <= i__1; ++j) {
i__2 = *n;
for (i__ = *rank + 1; i__ <= i__2; ++i__) {
b[i__ + j * b_dim1] = 0.f;
/* L30: */
}
/* L40: */
}
/* B(1:N,1:NRHS) := Y**T * B(1:N,1:NRHS) */
if (*rank < *n) {
i__1 = *n - *rank;
i__2 = *lwork - (mn << 1);
sormrz_("Left", "Transpose", n, nrhs, rank, &i__1, &a[a_offset], lda,
&work[mn + 1], &b[b_offset], ldb, &work[(mn << 1) + 1], &i__2,
info);
}
/* workspace: 2*MN+NRHS. */
/* B(1:N,1:NRHS) := P * B(1:N,1:NRHS) */
i__1 = *nrhs;
for (j = 1; j <= i__1; ++j) {
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
work[jpvt[i__]] = b[i__ + j * b_dim1];
/* L50: */
}
scopy_(n, &work[1], &c__1, &b[j * b_dim1 + 1], &c__1);
/* L60: */
}
/* workspace: N. */
/* Undo scaling */
if (iascl == 1) {
slascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb,
info);
slascl_("U", &c__0, &c__0, &smlnum, &anrm, rank, rank, &a[a_offset],
lda, info);
} else if (iascl == 2) {
slascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb,
info);
slascl_("U", &c__0, &c__0, &bignum, &anrm, rank, rank, &a[a_offset],
lda, info);
}
if (ibscl == 1) {
slascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb,
info);
} else if (ibscl == 2) {
slascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb,
info);
}
L70:
work[1] = (real) lwkopt;
return;
/* End of SGELSY */
} /* sgelsy_ */