566 lines
16 KiB
C
566 lines
16 KiB
C
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <complex.h>
|
|
#ifdef complex
|
|
#undef complex
|
|
#endif
|
|
#ifdef I
|
|
#undef I
|
|
#endif
|
|
|
|
#if defined(_WIN64)
|
|
typedef long long BLASLONG;
|
|
typedef unsigned long long BLASULONG;
|
|
#else
|
|
typedef long BLASLONG;
|
|
typedef unsigned long BLASULONG;
|
|
#endif
|
|
|
|
#ifdef LAPACK_ILP64
|
|
typedef BLASLONG blasint;
|
|
#if defined(_WIN64)
|
|
#define blasabs(x) llabs(x)
|
|
#else
|
|
#define blasabs(x) labs(x)
|
|
#endif
|
|
#else
|
|
typedef int blasint;
|
|
#define blasabs(x) abs(x)
|
|
#endif
|
|
|
|
typedef blasint integer;
|
|
|
|
typedef unsigned int uinteger;
|
|
typedef char *address;
|
|
typedef short int shortint;
|
|
typedef float real;
|
|
typedef double doublereal;
|
|
typedef struct { real r, i; } complex;
|
|
typedef struct { doublereal r, i; } doublecomplex;
|
|
#ifdef _MSC_VER
|
|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
|
|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
|
|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
|
|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
|
|
#else
|
|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
|
|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
|
|
#endif
|
|
#define pCf(z) (*_pCf(z))
|
|
#define pCd(z) (*_pCd(z))
|
|
typedef char integer1;
|
|
|
|
#define TRUE_ (1)
|
|
#define FALSE_ (0)
|
|
|
|
/* Extern is for use with -E */
|
|
#ifndef Extern
|
|
#define Extern extern
|
|
#endif
|
|
|
|
/* I/O stuff */
|
|
|
|
typedef int flag;
|
|
typedef int ftnlen;
|
|
typedef int ftnint;
|
|
|
|
/*external read, write*/
|
|
typedef struct
|
|
{ flag cierr;
|
|
ftnint ciunit;
|
|
flag ciend;
|
|
char *cifmt;
|
|
ftnint cirec;
|
|
} cilist;
|
|
|
|
/*internal read, write*/
|
|
typedef struct
|
|
{ flag icierr;
|
|
char *iciunit;
|
|
flag iciend;
|
|
char *icifmt;
|
|
ftnint icirlen;
|
|
ftnint icirnum;
|
|
} icilist;
|
|
|
|
/*open*/
|
|
typedef struct
|
|
{ flag oerr;
|
|
ftnint ounit;
|
|
char *ofnm;
|
|
ftnlen ofnmlen;
|
|
char *osta;
|
|
char *oacc;
|
|
char *ofm;
|
|
ftnint orl;
|
|
char *oblnk;
|
|
} olist;
|
|
|
|
/*close*/
|
|
typedef struct
|
|
{ flag cerr;
|
|
ftnint cunit;
|
|
char *csta;
|
|
} cllist;
|
|
|
|
/*rewind, backspace, endfile*/
|
|
typedef struct
|
|
{ flag aerr;
|
|
ftnint aunit;
|
|
} alist;
|
|
|
|
/* inquire */
|
|
typedef struct
|
|
{ flag inerr;
|
|
ftnint inunit;
|
|
char *infile;
|
|
ftnlen infilen;
|
|
ftnint *inex; /*parameters in standard's order*/
|
|
ftnint *inopen;
|
|
ftnint *innum;
|
|
ftnint *innamed;
|
|
char *inname;
|
|
ftnlen innamlen;
|
|
char *inacc;
|
|
ftnlen inacclen;
|
|
char *inseq;
|
|
ftnlen inseqlen;
|
|
char *indir;
|
|
ftnlen indirlen;
|
|
char *infmt;
|
|
ftnlen infmtlen;
|
|
char *inform;
|
|
ftnint informlen;
|
|
char *inunf;
|
|
ftnlen inunflen;
|
|
ftnint *inrecl;
|
|
ftnint *innrec;
|
|
char *inblank;
|
|
ftnlen inblanklen;
|
|
} inlist;
|
|
|
|
#define VOID void
|
|
|
|
union Multitype { /* for multiple entry points */
|
|
integer1 g;
|
|
shortint h;
|
|
integer i;
|
|
/* longint j; */
|
|
real r;
|
|
doublereal d;
|
|
complex c;
|
|
doublecomplex z;
|
|
};
|
|
|
|
typedef union Multitype Multitype;
|
|
|
|
struct Vardesc { /* for Namelist */
|
|
char *name;
|
|
char *addr;
|
|
ftnlen *dims;
|
|
int type;
|
|
};
|
|
typedef struct Vardesc Vardesc;
|
|
|
|
struct Namelist {
|
|
char *name;
|
|
Vardesc **vars;
|
|
int nvars;
|
|
};
|
|
typedef struct Namelist Namelist;
|
|
|
|
#define abs(x) ((x) >= 0 ? (x) : -(x))
|
|
#define dabs(x) (fabs(x))
|
|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
|
|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
|
|
#define dmin(a,b) (f2cmin(a,b))
|
|
#define dmax(a,b) (f2cmax(a,b))
|
|
#define bit_test(a,b) ((a) >> (b) & 1)
|
|
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
|
|
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
|
|
|
|
#define abort_() { sig_die("Fortran abort routine called", 1); }
|
|
#define c_abs(z) (cabsf(Cf(z)))
|
|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
|
|
#ifdef _MSC_VER
|
|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
|
|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
|
|
#else
|
|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
|
|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
|
|
#endif
|
|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
|
|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
|
|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
|
|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
|
|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
|
|
#define d_abs(x) (fabs(*(x)))
|
|
#define d_acos(x) (acos(*(x)))
|
|
#define d_asin(x) (asin(*(x)))
|
|
#define d_atan(x) (atan(*(x)))
|
|
#define d_atn2(x, y) (atan2(*(x),*(y)))
|
|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
|
|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
|
|
#define d_cos(x) (cos(*(x)))
|
|
#define d_cosh(x) (cosh(*(x)))
|
|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
|
|
#define d_exp(x) (exp(*(x)))
|
|
#define d_imag(z) (cimag(Cd(z)))
|
|
#define r_imag(z) (cimagf(Cf(z)))
|
|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define d_log(x) (log(*(x)))
|
|
#define d_mod(x, y) (fmod(*(x), *(y)))
|
|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
|
|
#define d_nint(x) u_nint(*(x))
|
|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
|
|
#define d_sign(a,b) u_sign(*(a),*(b))
|
|
#define r_sign(a,b) u_sign(*(a),*(b))
|
|
#define d_sin(x) (sin(*(x)))
|
|
#define d_sinh(x) (sinh(*(x)))
|
|
#define d_sqrt(x) (sqrt(*(x)))
|
|
#define d_tan(x) (tan(*(x)))
|
|
#define d_tanh(x) (tanh(*(x)))
|
|
#define i_abs(x) abs(*(x))
|
|
#define i_dnnt(x) ((integer)u_nint(*(x)))
|
|
#define i_len(s, n) (n)
|
|
#define i_nint(x) ((integer)u_nint(*(x)))
|
|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
|
|
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
|
|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
|
|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
|
|
#define sig_die(s, kill) { exit(1); }
|
|
#define s_stop(s, n) {exit(0);}
|
|
#define z_abs(z) (cabs(Cd(z)))
|
|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
|
|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
|
|
#define myexit_() break;
|
|
#define mycycle() continue;
|
|
#define myceiling(w) {ceil(w)}
|
|
#define myhuge(w) {HUGE_VAL}
|
|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
|
|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
|
|
|
|
/* -- translated by f2c (version 20000121).
|
|
You must link the resulting object file with the libraries:
|
|
-lf2c -lm (in that order)
|
|
*/
|
|
|
|
|
|
|
|
|
|
/* Table of constant values */
|
|
|
|
static integer c__1 = 1;
|
|
static real c_b9 = -1.f;
|
|
|
|
/* > \brief \b SGBTF2 computes the LU factorization of a general band matrix using the unblocked version of th
|
|
e algorithm. */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* > \htmlonly */
|
|
/* > Download SGBTF2 + dependencies */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgbtf2.
|
|
f"> */
|
|
/* > [TGZ]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgbtf2.
|
|
f"> */
|
|
/* > [ZIP]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgbtf2.
|
|
f"> */
|
|
/* > [TXT]</a> */
|
|
/* > \endhtmlonly */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* SUBROUTINE SGBTF2( M, N, KL, KU, AB, LDAB, IPIV, INFO ) */
|
|
|
|
/* INTEGER INFO, KL, KU, LDAB, M, N */
|
|
/* INTEGER IPIV( * ) */
|
|
/* REAL AB( LDAB, * ) */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > SGBTF2 computes an LU factorization of a real m-by-n band matrix A */
|
|
/* > using partial pivoting with row interchanges. */
|
|
/* > */
|
|
/* > This is the unblocked version of the algorithm, calling Level 2 BLAS. */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] M */
|
|
/* > \verbatim */
|
|
/* > M is INTEGER */
|
|
/* > The number of rows of the matrix A. M >= 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > The number of columns of the matrix A. N >= 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] KL */
|
|
/* > \verbatim */
|
|
/* > KL is INTEGER */
|
|
/* > The number of subdiagonals within the band of A. KL >= 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] KU */
|
|
/* > \verbatim */
|
|
/* > KU is INTEGER */
|
|
/* > The number of superdiagonals within the band of A. KU >= 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] AB */
|
|
/* > \verbatim */
|
|
/* > AB is REAL array, dimension (LDAB,N) */
|
|
/* > On entry, the matrix A in band storage, in rows KL+1 to */
|
|
/* > 2*KL+KU+1; rows 1 to KL of the array need not be set. */
|
|
/* > The j-th column of A is stored in the j-th column of the */
|
|
/* > array AB as follows: */
|
|
/* > AB(kl+ku+1+i-j,j) = A(i,j) for f2cmax(1,j-ku)<=i<=f2cmin(m,j+kl) */
|
|
/* > */
|
|
/* > On exit, details of the factorization: U is stored as an */
|
|
/* > upper triangular band matrix with KL+KU superdiagonals in */
|
|
/* > rows 1 to KL+KU+1, and the multipliers used during the */
|
|
/* > factorization are stored in rows KL+KU+2 to 2*KL+KU+1. */
|
|
/* > See below for further details. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDAB */
|
|
/* > \verbatim */
|
|
/* > LDAB is INTEGER */
|
|
/* > The leading dimension of the array AB. LDAB >= 2*KL+KU+1. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] IPIV */
|
|
/* > \verbatim */
|
|
/* > IPIV is INTEGER array, dimension (f2cmin(M,N)) */
|
|
/* > The pivot indices; for 1 <= i <= f2cmin(M,N), row i of the */
|
|
/* > matrix was interchanged with row IPIV(i). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] INFO */
|
|
/* > \verbatim */
|
|
/* > INFO is INTEGER */
|
|
/* > = 0: successful exit */
|
|
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
|
|
/* > > 0: if INFO = +i, U(i,i) is exactly zero. The factorization */
|
|
/* > has been completed, but the factor U is exactly */
|
|
/* > singular, and division by zero will occur if it is used */
|
|
/* > to solve a system of equations. */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \date December 2016 */
|
|
|
|
/* > \ingroup realGBcomputational */
|
|
|
|
/* > \par Further Details: */
|
|
/* ===================== */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > The band storage scheme is illustrated by the following example, when */
|
|
/* > M = N = 6, KL = 2, KU = 1: */
|
|
/* > */
|
|
/* > On entry: On exit: */
|
|
/* > */
|
|
/* > * * * + + + * * * u14 u25 u36 */
|
|
/* > * * + + + + * * u13 u24 u35 u46 */
|
|
/* > * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56 */
|
|
/* > a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66 */
|
|
/* > a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65 * */
|
|
/* > a31 a42 a53 a64 * * m31 m42 m53 m64 * * */
|
|
/* > */
|
|
/* > Array elements marked * are not used by the routine; elements marked */
|
|
/* > + need not be set on entry, but are required by the routine to store */
|
|
/* > elements of U, because of fill-in resulting from the row */
|
|
/* > interchanges. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* ===================================================================== */
|
|
/* Subroutine */ void sgbtf2_(integer *m, integer *n, integer *kl, integer *ku,
|
|
real *ab, integer *ldab, integer *ipiv, integer *info)
|
|
{
|
|
/* System generated locals */
|
|
integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4;
|
|
real r__1;
|
|
|
|
/* Local variables */
|
|
extern /* Subroutine */ void sger_(integer *, integer *, real *, real *,
|
|
integer *, real *, integer *, real *, integer *);
|
|
integer i__, j;
|
|
extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *),
|
|
sswap_(integer *, real *, integer *, real *, integer *);
|
|
integer km, jp, ju, kv;
|
|
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
|
|
extern integer isamax_(integer *, real *, integer *);
|
|
|
|
|
|
/* -- LAPACK computational routine (version 3.7.0) -- */
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
/* December 2016 */
|
|
|
|
|
|
/* ===================================================================== */
|
|
|
|
|
|
/* KV is the number of superdiagonals in the factor U, allowing for */
|
|
/* fill-in. */
|
|
|
|
/* Parameter adjustments */
|
|
ab_dim1 = *ldab;
|
|
ab_offset = 1 + ab_dim1 * 1;
|
|
ab -= ab_offset;
|
|
--ipiv;
|
|
|
|
/* Function Body */
|
|
kv = *ku + *kl;
|
|
|
|
/* Test the input parameters. */
|
|
|
|
*info = 0;
|
|
if (*m < 0) {
|
|
*info = -1;
|
|
} else if (*n < 0) {
|
|
*info = -2;
|
|
} else if (*kl < 0) {
|
|
*info = -3;
|
|
} else if (*ku < 0) {
|
|
*info = -4;
|
|
} else if (*ldab < *kl + kv + 1) {
|
|
*info = -6;
|
|
}
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_("SGBTF2", &i__1, (ftnlen)6);
|
|
return;
|
|
}
|
|
|
|
/* Quick return if possible */
|
|
|
|
if (*m == 0 || *n == 0) {
|
|
return;
|
|
}
|
|
|
|
/* Gaussian elimination with partial pivoting */
|
|
|
|
/* Set fill-in elements in columns KU+2 to KV to zero. */
|
|
|
|
i__1 = f2cmin(kv,*n);
|
|
for (j = *ku + 2; j <= i__1; ++j) {
|
|
i__2 = *kl;
|
|
for (i__ = kv - j + 2; i__ <= i__2; ++i__) {
|
|
ab[i__ + j * ab_dim1] = 0.f;
|
|
/* L10: */
|
|
}
|
|
/* L20: */
|
|
}
|
|
|
|
/* JU is the index of the last column affected by the current stage */
|
|
/* of the factorization. */
|
|
|
|
ju = 1;
|
|
|
|
i__1 = f2cmin(*m,*n);
|
|
for (j = 1; j <= i__1; ++j) {
|
|
|
|
/* Set fill-in elements in column J+KV to zero. */
|
|
|
|
if (j + kv <= *n) {
|
|
i__2 = *kl;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
ab[i__ + (j + kv) * ab_dim1] = 0.f;
|
|
/* L30: */
|
|
}
|
|
}
|
|
|
|
/* Find pivot and test for singularity. KM is the number of */
|
|
/* subdiagonal elements in the current column. */
|
|
|
|
/* Computing MIN */
|
|
i__2 = *kl, i__3 = *m - j;
|
|
km = f2cmin(i__2,i__3);
|
|
i__2 = km + 1;
|
|
jp = isamax_(&i__2, &ab[kv + 1 + j * ab_dim1], &c__1);
|
|
ipiv[j] = jp + j - 1;
|
|
if (ab[kv + jp + j * ab_dim1] != 0.f) {
|
|
/* Computing MAX */
|
|
/* Computing MIN */
|
|
i__4 = j + *ku + jp - 1;
|
|
i__2 = ju, i__3 = f2cmin(i__4,*n);
|
|
ju = f2cmax(i__2,i__3);
|
|
|
|
/* Apply interchange to columns J to JU. */
|
|
|
|
if (jp != 1) {
|
|
i__2 = ju - j + 1;
|
|
i__3 = *ldab - 1;
|
|
i__4 = *ldab - 1;
|
|
sswap_(&i__2, &ab[kv + jp + j * ab_dim1], &i__3, &ab[kv + 1 +
|
|
j * ab_dim1], &i__4);
|
|
}
|
|
|
|
if (km > 0) {
|
|
|
|
/* Compute multipliers. */
|
|
|
|
r__1 = 1.f / ab[kv + 1 + j * ab_dim1];
|
|
sscal_(&km, &r__1, &ab[kv + 2 + j * ab_dim1], &c__1);
|
|
|
|
/* Update trailing submatrix within the band. */
|
|
|
|
if (ju > j) {
|
|
i__2 = ju - j;
|
|
i__3 = *ldab - 1;
|
|
i__4 = *ldab - 1;
|
|
sger_(&km, &i__2, &c_b9, &ab[kv + 2 + j * ab_dim1], &c__1,
|
|
&ab[kv + (j + 1) * ab_dim1], &i__3, &ab[kv + 1 +
|
|
(j + 1) * ab_dim1], &i__4);
|
|
}
|
|
}
|
|
} else {
|
|
|
|
/* If pivot is zero, set INFO to the index of the pivot */
|
|
/* unless a zero pivot has already been found. */
|
|
|
|
if (*info == 0) {
|
|
*info = j;
|
|
}
|
|
}
|
|
/* L40: */
|
|
}
|
|
return;
|
|
|
|
/* End of SGBTF2 */
|
|
|
|
} /* sgbtf2_ */
|
|
|