OpenBLAS/lapack-netlib/SRC/sgbsv.c

496 lines
14 KiB
C

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif
#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif
#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif
typedef blasint integer;
typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
#ifdef _MSC_VER
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
#else
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#endif
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef char integer1;
#define TRUE_ (1)
#define FALSE_ (0)
/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif
/* I/O stuff */
typedef int flag;
typedef int ftnlen;
typedef int ftnint;
/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;
/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;
/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;
/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;
/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;
/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;
#define VOID void
union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};
typedef union Multitype Multitype;
struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;
struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;
#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#ifdef _MSC_VER
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
#else
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#endif
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimagf(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
/* procedure parameter types for -A and -C++ */
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
/* > \brief <b> SGBSV computes the solution to system of linear equations A * X = B for GB matrices</b> (simpl
e driver) */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download SGBSV + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgbsv.f
"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgbsv.f
"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgbsv.f
"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE SGBSV( N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB, INFO ) */
/* INTEGER INFO, KL, KU, LDAB, LDB, N, NRHS */
/* INTEGER IPIV( * ) */
/* REAL AB( LDAB, * ), B( LDB, * ) */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > SGBSV computes the solution to a real system of linear equations */
/* > A * X = B, where A is a band matrix of order N with KL subdiagonals */
/* > and KU superdiagonals, and X and B are N-by-NRHS matrices. */
/* > */
/* > The LU decomposition with partial pivoting and row interchanges is */
/* > used to factor A as A = L * U, where L is a product of permutation */
/* > and unit lower triangular matrices with KL subdiagonals, and U is */
/* > upper triangular with KL+KU superdiagonals. The factored form of A */
/* > is then used to solve the system of equations A * X = B. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of linear equations, i.e., the order of the */
/* > matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] KL */
/* > \verbatim */
/* > KL is INTEGER */
/* > The number of subdiagonals within the band of A. KL >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] KU */
/* > \verbatim */
/* > KU is INTEGER */
/* > The number of superdiagonals within the band of A. KU >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] NRHS */
/* > \verbatim */
/* > NRHS is INTEGER */
/* > The number of right hand sides, i.e., the number of columns */
/* > of the matrix B. NRHS >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] AB */
/* > \verbatim */
/* > AB is REAL array, dimension (LDAB,N) */
/* > On entry, the matrix A in band storage, in rows KL+1 to */
/* > 2*KL+KU+1; rows 1 to KL of the array need not be set. */
/* > The j-th column of A is stored in the j-th column of the */
/* > array AB as follows: */
/* > AB(KL+KU+1+i-j,j) = A(i,j) for f2cmax(1,j-KU)<=i<=f2cmin(N,j+KL) */
/* > On exit, details of the factorization: U is stored as an */
/* > upper triangular band matrix with KL+KU superdiagonals in */
/* > rows 1 to KL+KU+1, and the multipliers used during the */
/* > factorization are stored in rows KL+KU+2 to 2*KL+KU+1. */
/* > See below for further details. */
/* > \endverbatim */
/* > */
/* > \param[in] LDAB */
/* > \verbatim */
/* > LDAB is INTEGER */
/* > The leading dimension of the array AB. LDAB >= 2*KL+KU+1. */
/* > \endverbatim */
/* > */
/* > \param[out] IPIV */
/* > \verbatim */
/* > IPIV is INTEGER array, dimension (N) */
/* > The pivot indices that define the permutation matrix P; */
/* > row i of the matrix was interchanged with row IPIV(i). */
/* > \endverbatim */
/* > */
/* > \param[in,out] B */
/* > \verbatim */
/* > B is REAL array, dimension (LDB,NRHS) */
/* > On entry, the N-by-NRHS right hand side matrix B. */
/* > On exit, if INFO = 0, the N-by-NRHS solution matrix X. */
/* > \endverbatim */
/* > */
/* > \param[in] LDB */
/* > \verbatim */
/* > LDB is INTEGER */
/* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > > 0: if INFO = i, U(i,i) is exactly zero. The factorization */
/* > has been completed, but the factor U is exactly */
/* > singular, and the solution has not been computed. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date December 2016 */
/* > \ingroup realGBsolve */
/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > The band storage scheme is illustrated by the following example, when */
/* > M = N = 6, KL = 2, KU = 1: */
/* > */
/* > On entry: On exit: */
/* > */
/* > * * * + + + * * * u14 u25 u36 */
/* > * * + + + + * * u13 u24 u35 u46 */
/* > * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56 */
/* > a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66 */
/* > a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65 * */
/* > a31 a42 a53 a64 * * m31 m42 m53 m64 * * */
/* > */
/* > Array elements marked * are not used by the routine; elements marked */
/* > + need not be set on entry, but are required by the routine to store */
/* > elements of U because of fill-in resulting from the row interchanges. */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */ void sgbsv_(integer *n, integer *kl, integer *ku, integer *
nrhs, real *ab, integer *ldab, integer *ipiv, real *b, integer *ldb,
integer *info)
{
/* System generated locals */
integer ab_dim1, ab_offset, b_dim1, b_offset, i__1;
/* Local variables */
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
extern void sgbtrf_(
integer *, integer *, integer *, integer *, real *, integer *,
integer *, integer *), sgbtrs_(char *, integer *, integer *,
integer *, integer *, real *, integer *, integer *, real *,
integer *, integer *);
/* -- LAPACK driver routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */
/* ===================================================================== */
/* Test the input parameters. */
/* Parameter adjustments */
ab_dim1 = *ldab;
ab_offset = 1 + ab_dim1 * 1;
ab -= ab_offset;
--ipiv;
b_dim1 = *ldb;
b_offset = 1 + b_dim1 * 1;
b -= b_offset;
/* Function Body */
*info = 0;
if (*n < 0) {
*info = -1;
} else if (*kl < 0) {
*info = -2;
} else if (*ku < 0) {
*info = -3;
} else if (*nrhs < 0) {
*info = -4;
} else if (*ldab < (*kl << 1) + *ku + 1) {
*info = -6;
} else if (*ldb < f2cmax(*n,1)) {
*info = -9;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("SGBSV ", &i__1, (ftnlen)5);
return;
}
/* Compute the LU factorization of the band matrix A. */
sgbtrf_(n, n, kl, ku, &ab[ab_offset], ldab, &ipiv[1], info);
if (*info == 0) {
/* Solve the system A*X = B, overwriting B with X. */
sgbtrs_("No transpose", n, kl, ku, nrhs, &ab[ab_offset], ldab, &ipiv[
1], &b[b_offset], ldb, info);
}
return;
/* End of SGBSV */
} /* sgbsv_ */