1348 lines
37 KiB
C
1348 lines
37 KiB
C
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <complex.h>
|
|
#ifdef complex
|
|
#undef complex
|
|
#endif
|
|
#ifdef I
|
|
#undef I
|
|
#endif
|
|
|
|
#if defined(_WIN64)
|
|
typedef long long BLASLONG;
|
|
typedef unsigned long long BLASULONG;
|
|
#else
|
|
typedef long BLASLONG;
|
|
typedef unsigned long BLASULONG;
|
|
#endif
|
|
|
|
#ifdef LAPACK_ILP64
|
|
typedef BLASLONG blasint;
|
|
#if defined(_WIN64)
|
|
#define blasabs(x) llabs(x)
|
|
#else
|
|
#define blasabs(x) labs(x)
|
|
#endif
|
|
#else
|
|
typedef int blasint;
|
|
#define blasabs(x) abs(x)
|
|
#endif
|
|
|
|
typedef blasint integer;
|
|
|
|
typedef unsigned int uinteger;
|
|
typedef char *address;
|
|
typedef short int shortint;
|
|
typedef float real;
|
|
typedef double doublereal;
|
|
typedef struct { real r, i; } complex;
|
|
typedef struct { doublereal r, i; } doublecomplex;
|
|
#ifdef _MSC_VER
|
|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
|
|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
|
|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
|
|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
|
|
#else
|
|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
|
|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
|
|
#endif
|
|
#define pCf(z) (*_pCf(z))
|
|
#define pCd(z) (*_pCd(z))
|
|
typedef blasint logical;
|
|
|
|
typedef char logical1;
|
|
typedef char integer1;
|
|
|
|
#define TRUE_ (1)
|
|
#define FALSE_ (0)
|
|
|
|
/* Extern is for use with -E */
|
|
#ifndef Extern
|
|
#define Extern extern
|
|
#endif
|
|
|
|
/* I/O stuff */
|
|
|
|
typedef int flag;
|
|
typedef int ftnlen;
|
|
typedef int ftnint;
|
|
|
|
/*external read, write*/
|
|
typedef struct
|
|
{ flag cierr;
|
|
ftnint ciunit;
|
|
flag ciend;
|
|
char *cifmt;
|
|
ftnint cirec;
|
|
} cilist;
|
|
|
|
/*internal read, write*/
|
|
typedef struct
|
|
{ flag icierr;
|
|
char *iciunit;
|
|
flag iciend;
|
|
char *icifmt;
|
|
ftnint icirlen;
|
|
ftnint icirnum;
|
|
} icilist;
|
|
|
|
/*open*/
|
|
typedef struct
|
|
{ flag oerr;
|
|
ftnint ounit;
|
|
char *ofnm;
|
|
ftnlen ofnmlen;
|
|
char *osta;
|
|
char *oacc;
|
|
char *ofm;
|
|
ftnint orl;
|
|
char *oblnk;
|
|
} olist;
|
|
|
|
/*close*/
|
|
typedef struct
|
|
{ flag cerr;
|
|
ftnint cunit;
|
|
char *csta;
|
|
} cllist;
|
|
|
|
/*rewind, backspace, endfile*/
|
|
typedef struct
|
|
{ flag aerr;
|
|
ftnint aunit;
|
|
} alist;
|
|
|
|
/* inquire */
|
|
typedef struct
|
|
{ flag inerr;
|
|
ftnint inunit;
|
|
char *infile;
|
|
ftnlen infilen;
|
|
ftnint *inex; /*parameters in standard's order*/
|
|
ftnint *inopen;
|
|
ftnint *innum;
|
|
ftnint *innamed;
|
|
char *inname;
|
|
ftnlen innamlen;
|
|
char *inacc;
|
|
ftnlen inacclen;
|
|
char *inseq;
|
|
ftnlen inseqlen;
|
|
char *indir;
|
|
ftnlen indirlen;
|
|
char *infmt;
|
|
ftnlen infmtlen;
|
|
char *inform;
|
|
ftnint informlen;
|
|
char *inunf;
|
|
ftnlen inunflen;
|
|
ftnint *inrecl;
|
|
ftnint *innrec;
|
|
char *inblank;
|
|
ftnlen inblanklen;
|
|
} inlist;
|
|
|
|
#define VOID void
|
|
|
|
union Multitype { /* for multiple entry points */
|
|
integer1 g;
|
|
shortint h;
|
|
integer i;
|
|
/* longint j; */
|
|
real r;
|
|
doublereal d;
|
|
complex c;
|
|
doublecomplex z;
|
|
};
|
|
|
|
typedef union Multitype Multitype;
|
|
|
|
struct Vardesc { /* for Namelist */
|
|
char *name;
|
|
char *addr;
|
|
ftnlen *dims;
|
|
int type;
|
|
};
|
|
typedef struct Vardesc Vardesc;
|
|
|
|
struct Namelist {
|
|
char *name;
|
|
Vardesc **vars;
|
|
int nvars;
|
|
};
|
|
typedef struct Namelist Namelist;
|
|
|
|
#define abs(x) ((x) >= 0 ? (x) : -(x))
|
|
#define dabs(x) (fabs(x))
|
|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
|
|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
|
|
#define dmin(a,b) (f2cmin(a,b))
|
|
#define dmax(a,b) (f2cmax(a,b))
|
|
#define bit_test(a,b) ((a) >> (b) & 1)
|
|
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
|
|
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
|
|
|
|
#define abort_() { sig_die("Fortran abort routine called", 1); }
|
|
#define c_abs(z) (cabsf(Cf(z)))
|
|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
|
|
#ifdef _MSC_VER
|
|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
|
|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
|
|
#else
|
|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
|
|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
|
|
#endif
|
|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
|
|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
|
|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
|
|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
|
|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
|
|
#define d_abs(x) (fabs(*(x)))
|
|
#define d_acos(x) (acos(*(x)))
|
|
#define d_asin(x) (asin(*(x)))
|
|
#define d_atan(x) (atan(*(x)))
|
|
#define d_atn2(x, y) (atan2(*(x),*(y)))
|
|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
|
|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
|
|
#define d_cos(x) (cos(*(x)))
|
|
#define d_cosh(x) (cosh(*(x)))
|
|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
|
|
#define d_exp(x) (exp(*(x)))
|
|
#define d_imag(z) (cimag(Cd(z)))
|
|
#define r_imag(z) (cimagf(Cf(z)))
|
|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define d_log(x) (log(*(x)))
|
|
#define d_mod(x, y) (fmod(*(x), *(y)))
|
|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
|
|
#define d_nint(x) u_nint(*(x))
|
|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
|
|
#define d_sign(a,b) u_sign(*(a),*(b))
|
|
#define r_sign(a,b) u_sign(*(a),*(b))
|
|
#define d_sin(x) (sin(*(x)))
|
|
#define d_sinh(x) (sinh(*(x)))
|
|
#define d_sqrt(x) (sqrt(*(x)))
|
|
#define d_tan(x) (tan(*(x)))
|
|
#define d_tanh(x) (tanh(*(x)))
|
|
#define i_abs(x) abs(*(x))
|
|
#define i_dnnt(x) ((integer)u_nint(*(x)))
|
|
#define i_len(s, n) (n)
|
|
#define i_nint(x) ((integer)u_nint(*(x)))
|
|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
|
|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
|
|
#define pow_si(B,E) spow_ui(*(B),*(E))
|
|
#define pow_ri(B,E) spow_ui(*(B),*(E))
|
|
#define pow_di(B,E) dpow_ui(*(B),*(E))
|
|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
|
|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
|
|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
|
|
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
|
|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
|
|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
|
|
#define sig_die(s, kill) { exit(1); }
|
|
#define s_stop(s, n) {exit(0);}
|
|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
|
|
#define z_abs(z) (cabs(Cd(z)))
|
|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
|
|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
|
|
#define myexit_() break;
|
|
#define mycycle_() continue;
|
|
#define myceiling_(w) {ceil(w)}
|
|
#define myhuge_(w) {HUGE_VAL}
|
|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
|
|
#define mymaxloc_(w,s,e,n) dmaxloc_(w,*(s),*(e),n)
|
|
|
|
/* procedure parameter types for -A and -C++ */
|
|
|
|
|
|
#ifdef __cplusplus
|
|
typedef logical (*L_fp)(...);
|
|
#else
|
|
typedef logical (*L_fp)();
|
|
#endif
|
|
|
|
static float spow_ui(float x, integer n) {
|
|
float pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
static double dpow_ui(double x, integer n) {
|
|
double pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#ifdef _MSC_VER
|
|
static _Fcomplex cpow_ui(complex x, integer n) {
|
|
complex pow={1.0,0.0}; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow.r *= x.r, pow.i *= x.i;
|
|
if(u >>= 1) x.r *= x.r, x.i *= x.i;
|
|
else break;
|
|
}
|
|
}
|
|
_Fcomplex p={pow.r, pow.i};
|
|
return p;
|
|
}
|
|
#else
|
|
static _Complex float cpow_ui(_Complex float x, integer n) {
|
|
_Complex float pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#endif
|
|
#ifdef _MSC_VER
|
|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
|
|
_Dcomplex pow={1.0,0.0}; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
|
|
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
|
|
else break;
|
|
}
|
|
}
|
|
_Dcomplex p = {pow._Val[0], pow._Val[1]};
|
|
return p;
|
|
}
|
|
#else
|
|
static _Complex double zpow_ui(_Complex double x, integer n) {
|
|
_Complex double pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#endif
|
|
static integer pow_ii(integer x, integer n) {
|
|
integer pow; unsigned long int u;
|
|
if (n <= 0) {
|
|
if (n == 0 || x == 1) pow = 1;
|
|
else if (x != -1) pow = x == 0 ? 1/x : 0;
|
|
else n = -n;
|
|
}
|
|
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
|
|
u = n;
|
|
for(pow = 1; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
|
|
{
|
|
double m; integer i, mi;
|
|
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
|
if (w[i-1]>m) mi=i ,m=w[i-1];
|
|
return mi-s+1;
|
|
}
|
|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
|
|
{
|
|
float m; integer i, mi;
|
|
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
|
if (w[i-1]>m) mi=i ,m=w[i-1];
|
|
return mi-s+1;
|
|
}
|
|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Fcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
|
|
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex float zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Dcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
|
|
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex double zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Fcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
|
|
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex float zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cf(&x[i]) * Cf(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Dcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
|
|
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex double zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cd(&x[i]) * Cd(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#endif
|
|
/* -- translated by f2c (version 20000121).
|
|
You must link the resulting object file with the libraries:
|
|
-lf2c -lm (in that order)
|
|
*/
|
|
|
|
|
|
|
|
/* -- translated by f2c (version 20000121).
|
|
You must link the resulting object file with the libraries:
|
|
-lf2c -lm (in that order)
|
|
*/
|
|
|
|
|
|
|
|
/* Table of constant values */
|
|
|
|
static integer c__1 = 1;
|
|
static real c_b179 = 0.f;
|
|
static real c_b180 = 1.f;
|
|
static integer c__0 = 0;
|
|
|
|
/* > \brief \b ILAENV */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* > \htmlonly */
|
|
/* > Download ILAENV + dependencies */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ilaenv.
|
|
f"> */
|
|
/* > [TGZ]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ilaenv.
|
|
f"> */
|
|
/* > [ZIP]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ilaenv.
|
|
f"> */
|
|
/* > [TXT]</a> */
|
|
/* > \endhtmlonly */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* INTEGER FUNCTION ILAENV( ISPEC, NAME, OPTS, N1, N2, N3, N4 ) */
|
|
|
|
/* CHARACTER*( * ) NAME, OPTS */
|
|
/* INTEGER ISPEC, N1, N2, N3, N4 */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > ILAENV is called from the LAPACK routines to choose problem-dependent */
|
|
/* > parameters for the local environment. See ISPEC for a description of */
|
|
/* > the parameters. */
|
|
/* > */
|
|
/* > ILAENV returns an INTEGER */
|
|
/* > if ILAENV >= 0: ILAENV returns the value of the parameter specified by ISPEC */
|
|
/* > if ILAENV < 0: if ILAENV = -k, the k-th argument had an illegal value. */
|
|
/* > */
|
|
/* > This version provides a set of parameters which should give good, */
|
|
/* > but not optimal, performance on many of the currently available */
|
|
/* > computers. Users are encouraged to modify this subroutine to set */
|
|
/* > the tuning parameters for their particular machine using the option */
|
|
/* > and problem size information in the arguments. */
|
|
/* > */
|
|
/* > This routine will not function correctly if it is converted to all */
|
|
/* > lower case. Converting it to all upper case is allowed. */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] ISPEC */
|
|
/* > \verbatim */
|
|
/* > ISPEC is INTEGER */
|
|
/* > Specifies the parameter to be returned as the value of */
|
|
/* > ILAENV. */
|
|
/* > = 1: the optimal blocksize; if this value is 1, an unblocked */
|
|
/* > algorithm will give the best performance. */
|
|
/* > = 2: the minimum block size for which the block routine */
|
|
/* > should be used; if the usable block size is less than */
|
|
/* > this value, an unblocked routine should be used. */
|
|
/* > = 3: the crossover point (in a block routine, for N less */
|
|
/* > than this value, an unblocked routine should be used) */
|
|
/* > = 4: the number of shifts, used in the nonsymmetric */
|
|
/* > eigenvalue routines (DEPRECATED) */
|
|
/* > = 5: the minimum column dimension for blocking to be used; */
|
|
/* > rectangular blocks must have dimension at least k by m, */
|
|
/* > where k is given by ILAENV(2,...) and m by ILAENV(5,...) */
|
|
/* > = 6: the crossover point for the SVD (when reducing an m by n */
|
|
/* > matrix to bidiagonal form, if f2cmax(m,n)/f2cmin(m,n) exceeds */
|
|
/* > this value, a QR factorization is used first to reduce */
|
|
/* > the matrix to a triangular form.) */
|
|
/* > = 7: the number of processors */
|
|
/* > = 8: the crossover point for the multishift QR method */
|
|
/* > for nonsymmetric eigenvalue problems (DEPRECATED) */
|
|
/* > = 9: maximum size of the subproblems at the bottom of the */
|
|
/* > computation tree in the divide-and-conquer algorithm */
|
|
/* > (used by xGELSD and xGESDD) */
|
|
/* > =10: ieee infinity and NaN arithmetic can be trusted not to trap */
|
|
/* > =11: infinity arithmetic can be trusted not to trap */
|
|
/* > 12 <= ISPEC <= 17: */
|
|
/* > xHSEQR or related subroutines, */
|
|
/* > see IPARMQ for detailed explanation */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] NAME */
|
|
/* > \verbatim */
|
|
/* > NAME is CHARACTER*(*) */
|
|
/* > The name of the calling subroutine, in either upper case or */
|
|
/* > lower case. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] OPTS */
|
|
/* > \verbatim */
|
|
/* > OPTS is CHARACTER*(*) */
|
|
/* > The character options to the subroutine NAME, concatenated */
|
|
/* > into a single character string. For example, UPLO = 'U', */
|
|
/* > TRANS = 'T', and DIAG = 'N' for a triangular routine would */
|
|
/* > be specified as OPTS = 'UTN'. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N1 */
|
|
/* > \verbatim */
|
|
/* > N1 is INTEGER */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N2 */
|
|
/* > \verbatim */
|
|
/* > N2 is INTEGER */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N3 */
|
|
/* > \verbatim */
|
|
/* > N3 is INTEGER */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N4 */
|
|
/* > \verbatim */
|
|
/* > N4 is INTEGER */
|
|
/* > Problem dimensions for the subroutine NAME; these may not all */
|
|
/* > be required. */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \ingroup ilaenv */
|
|
|
|
/* > \par Further Details: */
|
|
/* ===================== */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > The following conventions have been used when calling ILAENV from the */
|
|
/* > LAPACK routines: */
|
|
/* > 1) OPTS is a concatenation of all of the character options to */
|
|
/* > subroutine NAME, in the same order that they appear in the */
|
|
/* > argument list for NAME, even if they are not used in determining */
|
|
/* > the value of the parameter specified by ISPEC. */
|
|
/* > 2) The problem dimensions N1, N2, N3, N4 are specified in the order */
|
|
/* > that they appear in the argument list for NAME. N1 is used */
|
|
/* > first, N2 second, and so on, and unused problem dimensions are */
|
|
/* > passed a value of -1. */
|
|
/* > 3) The parameter value returned by ILAENV is checked for validity in */
|
|
/* > the calling subroutine. For example, ILAENV is used to retrieve */
|
|
/* > the optimal blocksize for STRTRI as follows: */
|
|
/* > */
|
|
/* > NB = ILAENV( 1, 'STRTRI', UPLO // DIAG, N, -1, -1, -1 ) */
|
|
/* > IF( NB.LE.1 ) NB = MAX( 1, N ) */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* ===================================================================== */
|
|
integer ilaenv_(integer *ispec, char *name__, char *opts, integer *n1,
|
|
integer *n2, integer *n3, integer *n4, ftnlen name_len, ftnlen
|
|
opts_len)
|
|
{
|
|
/* System generated locals */
|
|
integer ret_val, i__1, i__2, i__3;
|
|
|
|
/* Local variables */
|
|
logical twostage;
|
|
integer i__;
|
|
logical cname;
|
|
integer nbmin;
|
|
logical sname;
|
|
char c1[1], c2[2], c3[3], c4[2];
|
|
integer ic, nb;
|
|
extern integer ieeeck_(integer *, real *, real *);
|
|
integer iz, nx;
|
|
char subnam[16];
|
|
extern integer iparmq_(integer *, char *, char *, integer *, integer *,
|
|
integer *, integer *);
|
|
|
|
|
|
/* -- LAPACK auxiliary routine -- */
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
|
|
|
|
/* ===================================================================== */
|
|
|
|
|
|
switch (*ispec) {
|
|
case 1: goto L10;
|
|
case 2: goto L10;
|
|
case 3: goto L10;
|
|
case 4: goto L80;
|
|
case 5: goto L90;
|
|
case 6: goto L100;
|
|
case 7: goto L110;
|
|
case 8: goto L120;
|
|
case 9: goto L130;
|
|
case 10: goto L140;
|
|
case 11: goto L150;
|
|
case 12: goto L160;
|
|
case 13: goto L160;
|
|
case 14: goto L160;
|
|
case 15: goto L160;
|
|
case 16: goto L160;
|
|
case 17: goto L160;
|
|
}
|
|
|
|
/* Invalid value for ISPEC */
|
|
|
|
ret_val = -1;
|
|
return ret_val;
|
|
|
|
L10:
|
|
|
|
/* Convert NAME to upper case if the first character is lower case. */
|
|
|
|
ret_val = 1;
|
|
s_copy(subnam, name__, (ftnlen)16, name_len);
|
|
ic = *(unsigned char *)subnam;
|
|
iz = 'Z';
|
|
if (iz == 90 || iz == 122) {
|
|
|
|
/* ASCII character set */
|
|
|
|
if (ic >= 97 && ic <= 122) {
|
|
*(unsigned char *)subnam = (char) (ic - 32);
|
|
for (i__ = 2; i__ <= 6; ++i__) {
|
|
ic = *(unsigned char *)&subnam[i__ - 1];
|
|
if (ic >= 97 && ic <= 122) {
|
|
*(unsigned char *)&subnam[i__ - 1] = (char) (ic - 32);
|
|
}
|
|
/* L20: */
|
|
}
|
|
}
|
|
|
|
} else if (iz == 233 || iz == 169) {
|
|
|
|
/* EBCDIC character set */
|
|
|
|
if (ic >= 129 && ic <= 137 || ic >= 145 && ic <= 153 || ic >= 162 &&
|
|
ic <= 169) {
|
|
*(unsigned char *)subnam = (char) (ic + 64);
|
|
for (i__ = 2; i__ <= 6; ++i__) {
|
|
ic = *(unsigned char *)&subnam[i__ - 1];
|
|
if (ic >= 129 && ic <= 137 || ic >= 145 && ic <= 153 || ic >=
|
|
162 && ic <= 169) {
|
|
*(unsigned char *)&subnam[i__ - 1] = (char) (ic + 64);
|
|
}
|
|
/* L30: */
|
|
}
|
|
}
|
|
|
|
} else if (iz == 218 || iz == 250) {
|
|
|
|
/* Prime machines: ASCII+128 */
|
|
|
|
if (ic >= 225 && ic <= 250) {
|
|
*(unsigned char *)subnam = (char) (ic - 32);
|
|
for (i__ = 2; i__ <= 6; ++i__) {
|
|
ic = *(unsigned char *)&subnam[i__ - 1];
|
|
if (ic >= 225 && ic <= 250) {
|
|
*(unsigned char *)&subnam[i__ - 1] = (char) (ic - 32);
|
|
}
|
|
/* L40: */
|
|
}
|
|
}
|
|
}
|
|
|
|
*(unsigned char *)c1 = *(unsigned char *)subnam;
|
|
sname = *(unsigned char *)c1 == 'S' || *(unsigned char *)c1 == 'D';
|
|
cname = *(unsigned char *)c1 == 'C' || *(unsigned char *)c1 == 'Z';
|
|
if (! (cname || sname)) {
|
|
return ret_val;
|
|
}
|
|
s_copy(c2, subnam + 1, (ftnlen)2, (ftnlen)2);
|
|
s_copy(c3, subnam + 3, (ftnlen)3, (ftnlen)3);
|
|
s_copy(c4, c3 + 1, (ftnlen)2, (ftnlen)2);
|
|
twostage = i_len(subnam, (ftnlen)16) >= 11 && *(unsigned char *)&subnam[
|
|
10] == '2';
|
|
|
|
switch (*ispec) {
|
|
case 1: goto L50;
|
|
case 2: goto L60;
|
|
case 3: goto L70;
|
|
}
|
|
|
|
L50:
|
|
|
|
/* ISPEC = 1: block size */
|
|
|
|
/* In these examples, separate code is provided for setting NB for */
|
|
/* real and complex. We assume that NB will take the same value in */
|
|
/* single or double precision. */
|
|
|
|
nb = 1;
|
|
|
|
if (s_cmp(subnam + 1, "LAORH", (ftnlen)5, (ftnlen)5) == 0) {
|
|
|
|
/* This is for *LAORHR_GETRFNP routine */
|
|
|
|
if (sname) {
|
|
nb = 32;
|
|
} else {
|
|
nb = 32;
|
|
}
|
|
} else if (s_cmp(c2, "GE", (ftnlen)2, (ftnlen)2) == 0) {
|
|
if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) {
|
|
if (sname) {
|
|
nb = 64;
|
|
} else {
|
|
nb = 64;
|
|
}
|
|
} else if (s_cmp(c3, "QRF", (ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3,
|
|
"RQF", (ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, "LQF", (ftnlen)
|
|
3, (ftnlen)3) == 0 || s_cmp(c3, "QLF", (ftnlen)3, (ftnlen)3)
|
|
== 0) {
|
|
if (sname) {
|
|
nb = 32;
|
|
} else {
|
|
nb = 32;
|
|
}
|
|
} else if (s_cmp(c3, "QR ", (ftnlen)3, (ftnlen)3) == 0) {
|
|
if (*n3 == 1) {
|
|
if (sname) {
|
|
/* M*N */
|
|
if (*n1 * *n2 <= 131072 || *n1 <= 8192) {
|
|
nb = *n1;
|
|
} else {
|
|
nb = 32768 / *n2;
|
|
}
|
|
} else {
|
|
if (*n1 * *n2 <= 131072 || *n1 <= 8192) {
|
|
nb = *n1;
|
|
} else {
|
|
nb = 32768 / *n2;
|
|
}
|
|
}
|
|
} else {
|
|
if (sname) {
|
|
nb = 1;
|
|
} else {
|
|
nb = 1;
|
|
}
|
|
}
|
|
} else if (s_cmp(c3, "LQ ", (ftnlen)3, (ftnlen)3) == 0) {
|
|
if (*n3 == 2) {
|
|
if (sname) {
|
|
/* M*N */
|
|
if (*n1 * *n2 <= 131072 || *n1 <= 8192) {
|
|
nb = *n1;
|
|
} else {
|
|
nb = 32768 / *n2;
|
|
}
|
|
} else {
|
|
if (*n1 * *n2 <= 131072 || *n1 <= 8192) {
|
|
nb = *n1;
|
|
} else {
|
|
nb = 32768 / *n2;
|
|
}
|
|
}
|
|
} else {
|
|
if (sname) {
|
|
nb = 1;
|
|
} else {
|
|
nb = 1;
|
|
}
|
|
}
|
|
} else if (s_cmp(c3, "HRD", (ftnlen)3, (ftnlen)3) == 0) {
|
|
if (sname) {
|
|
nb = 32;
|
|
} else {
|
|
nb = 32;
|
|
}
|
|
} else if (s_cmp(c3, "BRD", (ftnlen)3, (ftnlen)3) == 0) {
|
|
if (sname) {
|
|
nb = 32;
|
|
} else {
|
|
nb = 32;
|
|
}
|
|
} else if (s_cmp(c3, "TRI", (ftnlen)3, (ftnlen)3) == 0) {
|
|
if (sname) {
|
|
nb = 64;
|
|
} else {
|
|
nb = 64;
|
|
}
|
|
} else if (s_cmp(subnam + 3, "QP3RK", (ftnlen)4, (ftnlen)5) == 0) {
|
|
if (sname) {
|
|
nb = 32;
|
|
} else {
|
|
nb = 32;
|
|
}
|
|
}
|
|
} else if (s_cmp(c2, "PO", (ftnlen)2, (ftnlen)2) == 0) {
|
|
if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) {
|
|
if (sname) {
|
|
nb = 64;
|
|
} else {
|
|
nb = 64;
|
|
}
|
|
}
|
|
} else if (s_cmp(c2, "SY", (ftnlen)2, (ftnlen)2) == 0) {
|
|
if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) {
|
|
if (sname) {
|
|
if (twostage) {
|
|
nb = 192;
|
|
} else {
|
|
nb = 64;
|
|
}
|
|
} else {
|
|
if (twostage) {
|
|
nb = 192;
|
|
} else {
|
|
nb = 64;
|
|
}
|
|
}
|
|
} else if (sname && s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) {
|
|
nb = 32;
|
|
} else if (sname && s_cmp(c3, "GST", (ftnlen)3, (ftnlen)3) == 0) {
|
|
nb = 64;
|
|
}
|
|
} else if (cname && s_cmp(c2, "HE", (ftnlen)2, (ftnlen)2) == 0) {
|
|
if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) {
|
|
if (twostage) {
|
|
nb = 192;
|
|
} else {
|
|
nb = 64;
|
|
}
|
|
} else if (s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) {
|
|
nb = 32;
|
|
} else if (s_cmp(c3, "GST", (ftnlen)3, (ftnlen)3) == 0) {
|
|
nb = 64;
|
|
}
|
|
} else if (sname && s_cmp(c2, "OR", (ftnlen)2, (ftnlen)2) == 0) {
|
|
if (*(unsigned char *)c3 == 'G') {
|
|
if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ",
|
|
(ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
|
|
ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
|
|
0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
|
|
c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
|
|
ftnlen)2, (ftnlen)2) == 0) {
|
|
nb = 32;
|
|
}
|
|
} else if (*(unsigned char *)c3 == 'M') {
|
|
if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ",
|
|
(ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
|
|
ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
|
|
0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
|
|
c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
|
|
ftnlen)2, (ftnlen)2) == 0) {
|
|
nb = 32;
|
|
}
|
|
}
|
|
} else if (cname && s_cmp(c2, "UN", (ftnlen)2, (ftnlen)2) == 0) {
|
|
if (*(unsigned char *)c3 == 'G') {
|
|
if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ",
|
|
(ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
|
|
ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
|
|
0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
|
|
c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
|
|
ftnlen)2, (ftnlen)2) == 0) {
|
|
nb = 32;
|
|
}
|
|
} else if (*(unsigned char *)c3 == 'M') {
|
|
if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ",
|
|
(ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
|
|
ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
|
|
0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
|
|
c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
|
|
ftnlen)2, (ftnlen)2) == 0) {
|
|
nb = 32;
|
|
}
|
|
}
|
|
} else if (s_cmp(c2, "GB", (ftnlen)2, (ftnlen)2) == 0) {
|
|
if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) {
|
|
if (sname) {
|
|
if (*n4 <= 64) {
|
|
nb = 1;
|
|
} else {
|
|
nb = 32;
|
|
}
|
|
} else {
|
|
if (*n4 <= 64) {
|
|
nb = 1;
|
|
} else {
|
|
nb = 32;
|
|
}
|
|
}
|
|
}
|
|
} else if (s_cmp(c2, "PB", (ftnlen)2, (ftnlen)2) == 0) {
|
|
if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) {
|
|
if (sname) {
|
|
if (*n2 <= 64) {
|
|
nb = 1;
|
|
} else {
|
|
nb = 32;
|
|
}
|
|
} else {
|
|
if (*n2 <= 64) {
|
|
nb = 1;
|
|
} else {
|
|
nb = 32;
|
|
}
|
|
}
|
|
}
|
|
} else if (s_cmp(c2, "TR", (ftnlen)2, (ftnlen)2) == 0) {
|
|
if (s_cmp(c3, "TRI", (ftnlen)3, (ftnlen)3) == 0) {
|
|
if (sname) {
|
|
nb = 64;
|
|
} else {
|
|
nb = 64;
|
|
}
|
|
} else if (s_cmp(c3, "EVC", (ftnlen)3, (ftnlen)3) == 0) {
|
|
if (sname) {
|
|
nb = 64;
|
|
} else {
|
|
nb = 64;
|
|
}
|
|
} else if (s_cmp(c3, "SYL", (ftnlen)3, (ftnlen)3) == 0) {
|
|
/* The upper bound is to prevent overly aggressive scaling. */
|
|
if (sname) {
|
|
/* Computing MIN */
|
|
/* Computing MAX */
|
|
i__2 = 48, i__3 = (f2cmin(*n1,*n2) << 4) / 100;
|
|
i__1 = f2cmax(i__2,i__3);
|
|
nb = f2cmin(i__1,240);
|
|
} else {
|
|
/* Computing MIN */
|
|
/* Computing MAX */
|
|
i__2 = 24, i__3 = (f2cmin(*n1,*n2) << 3) / 100;
|
|
i__1 = f2cmax(i__2,i__3);
|
|
nb = f2cmin(i__1,80);
|
|
}
|
|
}
|
|
} else if (s_cmp(c2, "LA", (ftnlen)2, (ftnlen)2) == 0) {
|
|
if (s_cmp(c3, "UUM", (ftnlen)3, (ftnlen)3) == 0) {
|
|
if (sname) {
|
|
nb = 64;
|
|
} else {
|
|
nb = 64;
|
|
}
|
|
} else if (s_cmp(c3, "TRS", (ftnlen)3, (ftnlen)3) == 0) {
|
|
if (sname) {
|
|
nb = 32;
|
|
} else {
|
|
nb = 32;
|
|
}
|
|
}
|
|
} else if (sname && s_cmp(c2, "ST", (ftnlen)2, (ftnlen)2) == 0) {
|
|
if (s_cmp(c3, "EBZ", (ftnlen)3, (ftnlen)3) == 0) {
|
|
nb = 1;
|
|
}
|
|
} else if (s_cmp(c2, "GG", (ftnlen)2, (ftnlen)2) == 0) {
|
|
nb = 32;
|
|
if (s_cmp(c3, "HD3", (ftnlen)3, (ftnlen)3) == 0) {
|
|
if (sname) {
|
|
nb = 32;
|
|
} else {
|
|
nb = 32;
|
|
}
|
|
}
|
|
}
|
|
ret_val = nb;
|
|
return ret_val;
|
|
|
|
L60:
|
|
|
|
/* ISPEC = 2: minimum block size */
|
|
|
|
nbmin = 2;
|
|
if (s_cmp(c2, "GE", (ftnlen)2, (ftnlen)2) == 0) {
|
|
if (s_cmp(c3, "QRF", (ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, "RQF", (
|
|
ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, "LQF", (ftnlen)3, (
|
|
ftnlen)3) == 0 || s_cmp(c3, "QLF", (ftnlen)3, (ftnlen)3) == 0)
|
|
{
|
|
if (sname) {
|
|
nbmin = 2;
|
|
} else {
|
|
nbmin = 2;
|
|
}
|
|
} else if (s_cmp(c3, "HRD", (ftnlen)3, (ftnlen)3) == 0) {
|
|
if (sname) {
|
|
nbmin = 2;
|
|
} else {
|
|
nbmin = 2;
|
|
}
|
|
} else if (s_cmp(c3, "BRD", (ftnlen)3, (ftnlen)3) == 0) {
|
|
if (sname) {
|
|
nbmin = 2;
|
|
} else {
|
|
nbmin = 2;
|
|
}
|
|
} else if (s_cmp(c3, "TRI", (ftnlen)3, (ftnlen)3) == 0) {
|
|
if (sname) {
|
|
nbmin = 2;
|
|
} else {
|
|
nbmin = 2;
|
|
}
|
|
} else if (s_cmp(subnam + 3, "QP3RK", (ftnlen)4, (ftnlen)5) == 0) {
|
|
if (sname) {
|
|
nbmin = 2;
|
|
} else {
|
|
nbmin = 2;
|
|
}
|
|
}
|
|
} else if (s_cmp(c2, "SY", (ftnlen)2, (ftnlen)2) == 0) {
|
|
if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) {
|
|
if (sname) {
|
|
nbmin = 8;
|
|
} else {
|
|
nbmin = 8;
|
|
}
|
|
} else if (sname && s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) {
|
|
nbmin = 2;
|
|
}
|
|
} else if (cname && s_cmp(c2, "HE", (ftnlen)2, (ftnlen)2) == 0) {
|
|
if (s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) {
|
|
nbmin = 2;
|
|
}
|
|
} else if (sname && s_cmp(c2, "OR", (ftnlen)2, (ftnlen)2) == 0) {
|
|
if (*(unsigned char *)c3 == 'G') {
|
|
if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ",
|
|
(ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
|
|
ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
|
|
0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
|
|
c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
|
|
ftnlen)2, (ftnlen)2) == 0) {
|
|
nbmin = 2;
|
|
}
|
|
} else if (*(unsigned char *)c3 == 'M') {
|
|
if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ",
|
|
(ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
|
|
ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
|
|
0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
|
|
c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
|
|
ftnlen)2, (ftnlen)2) == 0) {
|
|
nbmin = 2;
|
|
}
|
|
}
|
|
} else if (cname && s_cmp(c2, "UN", (ftnlen)2, (ftnlen)2) == 0) {
|
|
if (*(unsigned char *)c3 == 'G') {
|
|
if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ",
|
|
(ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
|
|
ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
|
|
0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
|
|
c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
|
|
ftnlen)2, (ftnlen)2) == 0) {
|
|
nbmin = 2;
|
|
}
|
|
} else if (*(unsigned char *)c3 == 'M') {
|
|
if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ",
|
|
(ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
|
|
ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
|
|
0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
|
|
c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
|
|
ftnlen)2, (ftnlen)2) == 0) {
|
|
nbmin = 2;
|
|
}
|
|
}
|
|
} else if (s_cmp(c2, "GG", (ftnlen)2, (ftnlen)2) == 0) {
|
|
nbmin = 2;
|
|
if (s_cmp(c3, "HD3", (ftnlen)3, (ftnlen)3) == 0) {
|
|
nbmin = 2;
|
|
}
|
|
}
|
|
ret_val = nbmin;
|
|
return ret_val;
|
|
|
|
L70:
|
|
|
|
/* ISPEC = 3: crossover point */
|
|
|
|
nx = 0;
|
|
if (s_cmp(c2, "GE", (ftnlen)2, (ftnlen)2) == 0) {
|
|
if (s_cmp(c3, "QRF", (ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, "RQF", (
|
|
ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, "LQF", (ftnlen)3, (
|
|
ftnlen)3) == 0 || s_cmp(c3, "QLF", (ftnlen)3, (ftnlen)3) == 0)
|
|
{
|
|
if (sname) {
|
|
nx = 128;
|
|
} else {
|
|
nx = 128;
|
|
}
|
|
} else if (s_cmp(c3, "HRD", (ftnlen)3, (ftnlen)3) == 0) {
|
|
if (sname) {
|
|
nx = 128;
|
|
} else {
|
|
nx = 128;
|
|
}
|
|
} else if (s_cmp(c3, "BRD", (ftnlen)3, (ftnlen)3) == 0) {
|
|
if (sname) {
|
|
nx = 128;
|
|
} else {
|
|
nx = 128;
|
|
}
|
|
} else if (s_cmp(subnam + 3, "QP3RK", (ftnlen)4, (ftnlen)5) == 0) {
|
|
if (sname) {
|
|
nx = 128;
|
|
} else {
|
|
nx = 128;
|
|
}
|
|
}
|
|
} else if (s_cmp(c2, "SY", (ftnlen)2, (ftnlen)2) == 0) {
|
|
if (sname && s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) {
|
|
nx = 32;
|
|
}
|
|
} else if (cname && s_cmp(c2, "HE", (ftnlen)2, (ftnlen)2) == 0) {
|
|
if (s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) {
|
|
nx = 32;
|
|
}
|
|
} else if (sname && s_cmp(c2, "OR", (ftnlen)2, (ftnlen)2) == 0) {
|
|
if (*(unsigned char *)c3 == 'G') {
|
|
if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ",
|
|
(ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
|
|
ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
|
|
0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
|
|
c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
|
|
ftnlen)2, (ftnlen)2) == 0) {
|
|
nx = 128;
|
|
}
|
|
}
|
|
} else if (cname && s_cmp(c2, "UN", (ftnlen)2, (ftnlen)2) == 0) {
|
|
if (*(unsigned char *)c3 == 'G') {
|
|
if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ",
|
|
(ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
|
|
ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
|
|
0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
|
|
c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
|
|
ftnlen)2, (ftnlen)2) == 0) {
|
|
nx = 128;
|
|
}
|
|
}
|
|
} else if (s_cmp(c2, "GG", (ftnlen)2, (ftnlen)2) == 0) {
|
|
nx = 128;
|
|
if (s_cmp(c3, "HD3", (ftnlen)3, (ftnlen)3) == 0) {
|
|
nx = 128;
|
|
}
|
|
}
|
|
ret_val = nx;
|
|
return ret_val;
|
|
|
|
L80:
|
|
|
|
/* ISPEC = 4: number of shifts (used by xHSEQR) */
|
|
|
|
ret_val = 6;
|
|
return ret_val;
|
|
|
|
L90:
|
|
|
|
/* ISPEC = 5: minimum column dimension (not used) */
|
|
|
|
ret_val = 2;
|
|
return ret_val;
|
|
|
|
L100:
|
|
|
|
/* ISPEC = 6: crossover point for SVD (used by xGELSS and xGESVD) */
|
|
|
|
ret_val = (integer) ((real) f2cmin(*n1,*n2) * 1.6f);
|
|
return ret_val;
|
|
|
|
L110:
|
|
|
|
/* ISPEC = 7: number of processors (not used) */
|
|
|
|
ret_val = 1;
|
|
return ret_val;
|
|
|
|
L120:
|
|
|
|
/* ISPEC = 8: crossover point for multishift (used by xHSEQR) */
|
|
|
|
ret_val = 50;
|
|
return ret_val;
|
|
|
|
L130:
|
|
|
|
/* ISPEC = 9: maximum size of the subproblems at the bottom of the */
|
|
/* computation tree in the divide-and-conquer algorithm */
|
|
/* (used by xGELSD and xGESDD) */
|
|
|
|
ret_val = 25;
|
|
return ret_val;
|
|
|
|
L140:
|
|
|
|
/* ISPEC = 10: ieee and infinity NaN arithmetic can be trusted not to trap */
|
|
|
|
/* ILAENV = 0 */
|
|
ret_val = 1;
|
|
if (ret_val == 1) {
|
|
ret_val = ieeeck_(&c__1, &c_b179, &c_b180);
|
|
}
|
|
return ret_val;
|
|
|
|
L150:
|
|
|
|
/* ISPEC = 11: ieee infinity arithmetic can be trusted not to trap */
|
|
|
|
/* ILAENV = 0 */
|
|
ret_val = 1;
|
|
if (ret_val == 1) {
|
|
ret_val = ieeeck_(&c__0, &c_b179, &c_b180);
|
|
}
|
|
return ret_val;
|
|
|
|
L160:
|
|
|
|
/* 12 <= ISPEC <= 17: xHSEQR or related subroutines. */
|
|
|
|
ret_val = iparmq_(ispec, name__, opts, n1, n2, n3, n4)
|
|
;
|
|
return ret_val;
|
|
|
|
/* End of ILAENV */
|
|
|
|
} /* ilaenv_ */
|
|
|