OpenBLAS/lapack-netlib/SRC/dtrrfs.c

1071 lines
29 KiB
C

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif
#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif
#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif
typedef blasint integer;
typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
#ifdef _MSC_VER
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
#else
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#endif
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef blasint logical;
typedef char logical1;
typedef char integer1;
#define TRUE_ (1)
#define FALSE_ (0)
/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif
/* I/O stuff */
typedef int flag;
typedef int ftnlen;
typedef int ftnint;
/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;
/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;
/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;
/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;
/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;
/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;
#define VOID void
union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};
typedef union Multitype Multitype;
struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;
struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;
#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#ifdef _MSC_VER
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
#else
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#endif
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimagf(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
/* procedure parameter types for -A and -C++ */
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif
static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#ifdef _MSC_VER
static _Fcomplex cpow_ui(complex x, integer n) {
complex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
for(u = n; ; ) {
if(u & 01) pow.r *= x.r, pow.i *= x.i;
if(u >>= 1) x.r *= x.r, x.i *= x.i;
else break;
}
}
_Fcomplex p={pow.r, pow.i};
return p;
}
#else
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
#ifdef _MSC_VER
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
_Dcomplex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
for(u = n; ; ) {
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
else break;
}
}
_Dcomplex p = {pow._Val[0], pow._Val[1]};
return p;
}
#else
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
/* Table of constant values */
static integer c__1 = 1;
static doublereal c_b19 = -1.;
/* > \brief \b DTRRFS */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download DTRRFS + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtrrfs.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtrrfs.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtrrfs.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE DTRRFS( UPLO, TRANS, DIAG, N, NRHS, A, LDA, B, LDB, X, */
/* LDX, FERR, BERR, WORK, IWORK, INFO ) */
/* CHARACTER DIAG, TRANS, UPLO */
/* INTEGER INFO, LDA, LDB, LDX, N, NRHS */
/* INTEGER IWORK( * ) */
/* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), BERR( * ), FERR( * ), */
/* $ WORK( * ), X( LDX, * ) */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > DTRRFS provides error bounds and backward error estimates for the */
/* > solution to a system of linear equations with a triangular */
/* > coefficient matrix. */
/* > */
/* > The solution matrix X must be computed by DTRTRS or some other */
/* > means before entering this routine. DTRRFS does not do iterative */
/* > refinement because doing so cannot improve the backward error. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] UPLO */
/* > \verbatim */
/* > UPLO is CHARACTER*1 */
/* > = 'U': A is upper triangular; */
/* > = 'L': A is lower triangular. */
/* > \endverbatim */
/* > */
/* > \param[in] TRANS */
/* > \verbatim */
/* > TRANS is CHARACTER*1 */
/* > Specifies the form of the system of equations: */
/* > = 'N': A * X = B (No transpose) */
/* > = 'T': A**T * X = B (Transpose) */
/* > = 'C': A**H * X = B (Conjugate transpose = Transpose) */
/* > \endverbatim */
/* > */
/* > \param[in] DIAG */
/* > \verbatim */
/* > DIAG is CHARACTER*1 */
/* > = 'N': A is non-unit triangular; */
/* > = 'U': A is unit triangular. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] NRHS */
/* > \verbatim */
/* > NRHS is INTEGER */
/* > The number of right hand sides, i.e., the number of columns */
/* > of the matrices B and X. NRHS >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] A */
/* > \verbatim */
/* > A is DOUBLE PRECISION array, dimension (LDA,N) */
/* > The triangular matrix A. If UPLO = 'U', the leading N-by-N */
/* > upper triangular part of the array A contains the upper */
/* > triangular matrix, and the strictly lower triangular part of */
/* > A is not referenced. If UPLO = 'L', the leading N-by-N lower */
/* > triangular part of the array A contains the lower triangular */
/* > matrix, and the strictly upper triangular part of A is not */
/* > referenced. If DIAG = 'U', the diagonal elements of A are */
/* > also not referenced and are assumed to be 1. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
/* > \endverbatim */
/* > */
/* > \param[in] B */
/* > \verbatim */
/* > B is DOUBLE PRECISION array, dimension (LDB,NRHS) */
/* > The right hand side matrix B. */
/* > \endverbatim */
/* > */
/* > \param[in] LDB */
/* > \verbatim */
/* > LDB is INTEGER */
/* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
/* > \endverbatim */
/* > */
/* > \param[in] X */
/* > \verbatim */
/* > X is DOUBLE PRECISION array, dimension (LDX,NRHS) */
/* > The solution matrix X. */
/* > \endverbatim */
/* > */
/* > \param[in] LDX */
/* > \verbatim */
/* > LDX is INTEGER */
/* > The leading dimension of the array X. LDX >= f2cmax(1,N). */
/* > \endverbatim */
/* > */
/* > \param[out] FERR */
/* > \verbatim */
/* > FERR is DOUBLE PRECISION array, dimension (NRHS) */
/* > The estimated forward error bound for each solution vector */
/* > X(j) (the j-th column of the solution matrix X). */
/* > If XTRUE is the true solution corresponding to X(j), FERR(j) */
/* > is an estimated upper bound for the magnitude of the largest */
/* > element in (X(j) - XTRUE) divided by the magnitude of the */
/* > largest element in X(j). The estimate is as reliable as */
/* > the estimate for RCOND, and is almost always a slight */
/* > overestimate of the true error. */
/* > \endverbatim */
/* > */
/* > \param[out] BERR */
/* > \verbatim */
/* > BERR is DOUBLE PRECISION array, dimension (NRHS) */
/* > The componentwise relative backward error of each solution */
/* > vector X(j) (i.e., the smallest relative change in */
/* > any element of A or B that makes X(j) an exact solution). */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is DOUBLE PRECISION array, dimension (3*N) */
/* > \endverbatim */
/* > */
/* > \param[out] IWORK */
/* > \verbatim */
/* > IWORK is INTEGER array, dimension (N) */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date December 2016 */
/* > \ingroup doubleOTHERcomputational */
/* ===================================================================== */
/* Subroutine */ void dtrrfs_(char *uplo, char *trans, char *diag, integer *n,
integer *nrhs, doublereal *a, integer *lda, doublereal *b, integer *
ldb, doublereal *x, integer *ldx, doublereal *ferr, doublereal *berr,
doublereal *work, integer *iwork, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, x_dim1, x_offset, i__1, i__2,
i__3;
doublereal d__1, d__2, d__3;
/* Local variables */
integer kase;
doublereal safe1, safe2;
integer i__, j, k;
doublereal s;
extern logical lsame_(char *, char *);
integer isave[3];
extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *,
doublereal *, integer *), daxpy_(integer *, doublereal *,
doublereal *, integer *, doublereal *, integer *);
logical upper;
extern /* Subroutine */ void dtrmv_(char *, char *, char *, integer *,
doublereal *, integer *, doublereal *, integer *), dtrsv_(char *, char *, char *, integer *, doublereal *,
integer *, doublereal *, integer *),
dlacn2_(integer *, doublereal *, doublereal *, integer *,
doublereal *, integer *, integer *);
extern doublereal dlamch_(char *);
doublereal xk;
integer nz;
doublereal safmin;
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
logical notran;
char transt[1];
logical nounit;
doublereal lstres, eps;
/* -- LAPACK computational routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */
/* ===================================================================== */
/* Test the input parameters. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1 * 1;
b -= b_offset;
x_dim1 = *ldx;
x_offset = 1 + x_dim1 * 1;
x -= x_offset;
--ferr;
--berr;
--work;
--iwork;
/* Function Body */
*info = 0;
upper = lsame_(uplo, "U");
notran = lsame_(trans, "N");
nounit = lsame_(diag, "N");
if (! upper && ! lsame_(uplo, "L")) {
*info = -1;
} else if (! notran && ! lsame_(trans, "T") && !
lsame_(trans, "C")) {
*info = -2;
} else if (! nounit && ! lsame_(diag, "U")) {
*info = -3;
} else if (*n < 0) {
*info = -4;
} else if (*nrhs < 0) {
*info = -5;
} else if (*lda < f2cmax(1,*n)) {
*info = -7;
} else if (*ldb < f2cmax(1,*n)) {
*info = -9;
} else if (*ldx < f2cmax(1,*n)) {
*info = -11;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DTRRFS", &i__1, (ftnlen)6);
return;
}
/* Quick return if possible */
if (*n == 0 || *nrhs == 0) {
i__1 = *nrhs;
for (j = 1; j <= i__1; ++j) {
ferr[j] = 0.;
berr[j] = 0.;
/* L10: */
}
return;
}
if (notran) {
*(unsigned char *)transt = 'T';
} else {
*(unsigned char *)transt = 'N';
}
/* NZ = maximum number of nonzero elements in each row of A, plus 1 */
nz = *n + 1;
eps = dlamch_("Epsilon");
safmin = dlamch_("Safe minimum");
safe1 = nz * safmin;
safe2 = safe1 / eps;
/* Do for each right hand side */
i__1 = *nrhs;
for (j = 1; j <= i__1; ++j) {
/* Compute residual R = B - op(A) * X, */
/* where op(A) = A or A**T, depending on TRANS. */
dcopy_(n, &x[j * x_dim1 + 1], &c__1, &work[*n + 1], &c__1);
dtrmv_(uplo, trans, diag, n, &a[a_offset], lda, &work[*n + 1], &c__1);
daxpy_(n, &c_b19, &b[j * b_dim1 + 1], &c__1, &work[*n + 1], &c__1);
/* Compute componentwise relative backward error from formula */
/* f2cmax(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) ) */
/* where abs(Z) is the componentwise absolute value of the matrix */
/* or vector Z. If the i-th component of the denominator is less */
/* than SAFE2, then SAFE1 is added to the i-th components of the */
/* numerator and denominator before dividing. */
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
work[i__] = (d__1 = b[i__ + j * b_dim1], abs(d__1));
/* L20: */
}
if (notran) {
/* Compute abs(A)*abs(X) + abs(B). */
if (upper) {
if (nounit) {
i__2 = *n;
for (k = 1; k <= i__2; ++k) {
xk = (d__1 = x[k + j * x_dim1], abs(d__1));
i__3 = k;
for (i__ = 1; i__ <= i__3; ++i__) {
work[i__] += (d__1 = a[i__ + k * a_dim1], abs(
d__1)) * xk;
/* L30: */
}
/* L40: */
}
} else {
i__2 = *n;
for (k = 1; k <= i__2; ++k) {
xk = (d__1 = x[k + j * x_dim1], abs(d__1));
i__3 = k - 1;
for (i__ = 1; i__ <= i__3; ++i__) {
work[i__] += (d__1 = a[i__ + k * a_dim1], abs(
d__1)) * xk;
/* L50: */
}
work[k] += xk;
/* L60: */
}
}
} else {
if (nounit) {
i__2 = *n;
for (k = 1; k <= i__2; ++k) {
xk = (d__1 = x[k + j * x_dim1], abs(d__1));
i__3 = *n;
for (i__ = k; i__ <= i__3; ++i__) {
work[i__] += (d__1 = a[i__ + k * a_dim1], abs(
d__1)) * xk;
/* L70: */
}
/* L80: */
}
} else {
i__2 = *n;
for (k = 1; k <= i__2; ++k) {
xk = (d__1 = x[k + j * x_dim1], abs(d__1));
i__3 = *n;
for (i__ = k + 1; i__ <= i__3; ++i__) {
work[i__] += (d__1 = a[i__ + k * a_dim1], abs(
d__1)) * xk;
/* L90: */
}
work[k] += xk;
/* L100: */
}
}
}
} else {
/* Compute abs(A**T)*abs(X) + abs(B). */
if (upper) {
if (nounit) {
i__2 = *n;
for (k = 1; k <= i__2; ++k) {
s = 0.;
i__3 = k;
for (i__ = 1; i__ <= i__3; ++i__) {
s += (d__1 = a[i__ + k * a_dim1], abs(d__1)) * (
d__2 = x[i__ + j * x_dim1], abs(d__2));
/* L110: */
}
work[k] += s;
/* L120: */
}
} else {
i__2 = *n;
for (k = 1; k <= i__2; ++k) {
s = (d__1 = x[k + j * x_dim1], abs(d__1));
i__3 = k - 1;
for (i__ = 1; i__ <= i__3; ++i__) {
s += (d__1 = a[i__ + k * a_dim1], abs(d__1)) * (
d__2 = x[i__ + j * x_dim1], abs(d__2));
/* L130: */
}
work[k] += s;
/* L140: */
}
}
} else {
if (nounit) {
i__2 = *n;
for (k = 1; k <= i__2; ++k) {
s = 0.;
i__3 = *n;
for (i__ = k; i__ <= i__3; ++i__) {
s += (d__1 = a[i__ + k * a_dim1], abs(d__1)) * (
d__2 = x[i__ + j * x_dim1], abs(d__2));
/* L150: */
}
work[k] += s;
/* L160: */
}
} else {
i__2 = *n;
for (k = 1; k <= i__2; ++k) {
s = (d__1 = x[k + j * x_dim1], abs(d__1));
i__3 = *n;
for (i__ = k + 1; i__ <= i__3; ++i__) {
s += (d__1 = a[i__ + k * a_dim1], abs(d__1)) * (
d__2 = x[i__ + j * x_dim1], abs(d__2));
/* L170: */
}
work[k] += s;
/* L180: */
}
}
}
}
s = 0.;
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
if (work[i__] > safe2) {
/* Computing MAX */
d__2 = s, d__3 = (d__1 = work[*n + i__], abs(d__1)) / work[
i__];
s = f2cmax(d__2,d__3);
} else {
/* Computing MAX */
d__2 = s, d__3 = ((d__1 = work[*n + i__], abs(d__1)) + safe1)
/ (work[i__] + safe1);
s = f2cmax(d__2,d__3);
}
/* L190: */
}
berr[j] = s;
/* Bound error from formula */
/* norm(X - XTRUE) / norm(X) .le. FERR = */
/* norm( abs(inv(op(A)))* */
/* ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X) */
/* where */
/* norm(Z) is the magnitude of the largest component of Z */
/* inv(op(A)) is the inverse of op(A) */
/* abs(Z) is the componentwise absolute value of the matrix or */
/* vector Z */
/* NZ is the maximum number of nonzeros in any row of A, plus 1 */
/* EPS is machine epsilon */
/* The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B)) */
/* is incremented by SAFE1 if the i-th component of */
/* abs(op(A))*abs(X) + abs(B) is less than SAFE2. */
/* Use DLACN2 to estimate the infinity-norm of the matrix */
/* inv(op(A)) * diag(W), */
/* where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) */
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
if (work[i__] > safe2) {
work[i__] = (d__1 = work[*n + i__], abs(d__1)) + nz * eps *
work[i__];
} else {
work[i__] = (d__1 = work[*n + i__], abs(d__1)) + nz * eps *
work[i__] + safe1;
}
/* L200: */
}
kase = 0;
L210:
dlacn2_(n, &work[(*n << 1) + 1], &work[*n + 1], &iwork[1], &ferr[j], &
kase, isave);
if (kase != 0) {
if (kase == 1) {
/* Multiply by diag(W)*inv(op(A)**T). */
dtrsv_(uplo, transt, diag, n, &a[a_offset], lda, &work[*n + 1]
, &c__1);
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
work[*n + i__] = work[i__] * work[*n + i__];
/* L220: */
}
} else {
/* Multiply by inv(op(A))*diag(W). */
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
work[*n + i__] = work[i__] * work[*n + i__];
/* L230: */
}
dtrsv_(uplo, trans, diag, n, &a[a_offset], lda, &work[*n + 1],
&c__1);
}
goto L210;
}
/* Normalize error. */
lstres = 0.;
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
/* Computing MAX */
d__2 = lstres, d__3 = (d__1 = x[i__ + j * x_dim1], abs(d__1));
lstres = f2cmax(d__2,d__3);
/* L240: */
}
if (lstres != 0.) {
ferr[j] /= lstres;
}
/* L250: */
}
return;
/* End of DTRRFS */
} /* dtrrfs_ */