OpenBLAS/lapack-netlib/SRC/dtgsja.c

1254 lines
36 KiB
C

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif
#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif
#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif
typedef blasint integer;
typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
#ifdef _MSC_VER
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
#else
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#endif
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef blasint logical;
typedef char logical1;
typedef char integer1;
#define TRUE_ (1)
#define FALSE_ (0)
/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif
/* I/O stuff */
typedef int flag;
typedef int ftnlen;
typedef int ftnint;
/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;
/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;
/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;
/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;
/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;
/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;
#define VOID void
union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};
typedef union Multitype Multitype;
struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;
struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;
#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#ifdef _MSC_VER
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
#else
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#endif
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimagf(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle_() continue;
#define myceiling_(w) {ceil(w)}
#define myhuge_(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
/* procedure parameter types for -A and -C++ */
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif
static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#ifdef _MSC_VER
static _Fcomplex cpow_ui(complex x, integer n) {
complex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
for(u = n; ; ) {
if(u & 01) pow.r *= x.r, pow.i *= x.i;
if(u >>= 1) x.r *= x.r, x.i *= x.i;
else break;
}
}
_Fcomplex p={pow.r, pow.i};
return p;
}
#else
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
#ifdef _MSC_VER
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
_Dcomplex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
for(u = n; ; ) {
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
else break;
}
}
_Dcomplex p = {pow._Val[0], pow._Val[1]};
return p;
}
#else
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
/* Table of constant values */
static doublereal c_b1 = 0.;
static doublereal c_b15 = 1.;
static integer c__1 = 1;
static doublereal c_b44 = -1.;
/* > \brief \b DTGSJA */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download DTGSJA + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtgsja.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtgsja.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtgsja.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE DTGSJA( JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B, */
/* LDB, TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV, */
/* Q, LDQ, WORK, NCALL MYCYCLE, INFO ) */
/* CHARACTER JOBQ, JOBU, JOBV */
/* INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, */
/* $ NCALL MYCYCLE, P */
/* DOUBLE PRECISION TOLA, TOLB */
/* DOUBLE PRECISION A( LDA, * ), ALPHA( * ), B( LDB, * ), */
/* $ BETA( * ), Q( LDQ, * ), U( LDU, * ), */
/* $ V( LDV, * ), WORK( * ) */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > DTGSJA computes the generalized singular value decomposition (GSVD) */
/* > of two real upper triangular (or trapezoidal) matrices A and B. */
/* > */
/* > On entry, it is assumed that matrices A and B have the following */
/* > forms, which may be obtained by the preprocessing subroutine DGGSVP */
/* > from a general M-by-N matrix A and P-by-N matrix B: */
/* > */
/* > N-K-L K L */
/* > A = K ( 0 A12 A13 ) if M-K-L >= 0; */
/* > L ( 0 0 A23 ) */
/* > M-K-L ( 0 0 0 ) */
/* > */
/* > N-K-L K L */
/* > A = K ( 0 A12 A13 ) if M-K-L < 0; */
/* > M-K ( 0 0 A23 ) */
/* > */
/* > N-K-L K L */
/* > B = L ( 0 0 B13 ) */
/* > P-L ( 0 0 0 ) */
/* > */
/* > where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular */
/* > upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0, */
/* > otherwise A23 is (M-K)-by-L upper trapezoidal. */
/* > */
/* > On exit, */
/* > */
/* > U**T *A*Q = D1*( 0 R ), V**T *B*Q = D2*( 0 R ), */
/* > */
/* > where U, V and Q are orthogonal matrices. */
/* > R is a nonsingular upper triangular matrix, and D1 and D2 are */
/* > ``diagonal'' matrices, which are of the following structures: */
/* > */
/* > If M-K-L >= 0, */
/* > */
/* > K L */
/* > D1 = K ( I 0 ) */
/* > L ( 0 C ) */
/* > M-K-L ( 0 0 ) */
/* > */
/* > K L */
/* > D2 = L ( 0 S ) */
/* > P-L ( 0 0 ) */
/* > */
/* > N-K-L K L */
/* > ( 0 R ) = K ( 0 R11 R12 ) K */
/* > L ( 0 0 R22 ) L */
/* > */
/* > where */
/* > */
/* > C = diag( ALPHA(K+1), ... , ALPHA(K+L) ), */
/* > S = diag( BETA(K+1), ... , BETA(K+L) ), */
/* > C**2 + S**2 = I. */
/* > */
/* > R is stored in A(1:K+L,N-K-L+1:N) on exit. */
/* > */
/* > If M-K-L < 0, */
/* > */
/* > K M-K K+L-M */
/* > D1 = K ( I 0 0 ) */
/* > M-K ( 0 C 0 ) */
/* > */
/* > K M-K K+L-M */
/* > D2 = M-K ( 0 S 0 ) */
/* > K+L-M ( 0 0 I ) */
/* > P-L ( 0 0 0 ) */
/* > */
/* > N-K-L K M-K K+L-M */
/* > ( 0 R ) = K ( 0 R11 R12 R13 ) */
/* > M-K ( 0 0 R22 R23 ) */
/* > K+L-M ( 0 0 0 R33 ) */
/* > */
/* > where */
/* > C = diag( ALPHA(K+1), ... , ALPHA(M) ), */
/* > S = diag( BETA(K+1), ... , BETA(M) ), */
/* > C**2 + S**2 = I. */
/* > */
/* > R = ( R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N) and R33 is stored */
/* > ( 0 R22 R23 ) */
/* > in B(M-K+1:L,N+M-K-L+1:N) on exit. */
/* > */
/* > The computation of the orthogonal transformation matrices U, V or Q */
/* > is optional. These matrices may either be formed explicitly, or they */
/* > may be postmultiplied into input matrices U1, V1, or Q1. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] JOBU */
/* > \verbatim */
/* > JOBU is CHARACTER*1 */
/* > = 'U': U must contain an orthogonal matrix U1 on entry, and */
/* > the product U1*U is returned; */
/* > = 'I': U is initialized to the unit matrix, and the */
/* > orthogonal matrix U is returned; */
/* > = 'N': U is not computed. */
/* > \endverbatim */
/* > */
/* > \param[in] JOBV */
/* > \verbatim */
/* > JOBV is CHARACTER*1 */
/* > = 'V': V must contain an orthogonal matrix V1 on entry, and */
/* > the product V1*V is returned; */
/* > = 'I': V is initialized to the unit matrix, and the */
/* > orthogonal matrix V is returned; */
/* > = 'N': V is not computed. */
/* > \endverbatim */
/* > */
/* > \param[in] JOBQ */
/* > \verbatim */
/* > JOBQ is CHARACTER*1 */
/* > = 'Q': Q must contain an orthogonal matrix Q1 on entry, and */
/* > the product Q1*Q is returned; */
/* > = 'I': Q is initialized to the unit matrix, and the */
/* > orthogonal matrix Q is returned; */
/* > = 'N': Q is not computed. */
/* > \endverbatim */
/* > */
/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix A. M >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] P */
/* > \verbatim */
/* > P is INTEGER */
/* > The number of rows of the matrix B. P >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrices A and B. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] K */
/* > \verbatim */
/* > K is INTEGER */
/* > \endverbatim */
/* > */
/* > \param[in] L */
/* > \verbatim */
/* > L is INTEGER */
/* > */
/* > K and L specify the subblocks in the input matrices A and B: */
/* > A23 = A(K+1:MIN(K+L,M),N-L+1:N) and B13 = B(1:L,N-L+1:N) */
/* > of A and B, whose GSVD is going to be computed by DTGSJA. */
/* > See Further Details. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is DOUBLE PRECISION array, dimension (LDA,N) */
/* > On entry, the M-by-N matrix A. */
/* > On exit, A(N-K+1:N,1:MIN(K+L,M) ) contains the triangular */
/* > matrix R or part of R. See Purpose for details. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
/* > \endverbatim */
/* > */
/* > \param[in,out] B */
/* > \verbatim */
/* > B is DOUBLE PRECISION array, dimension (LDB,N) */
/* > On entry, the P-by-N matrix B. */
/* > On exit, if necessary, B(M-K+1:L,N+M-K-L+1:N) contains */
/* > a part of R. See Purpose for details. */
/* > \endverbatim */
/* > */
/* > \param[in] LDB */
/* > \verbatim */
/* > LDB is INTEGER */
/* > The leading dimension of the array B. LDB >= f2cmax(1,P). */
/* > \endverbatim */
/* > */
/* > \param[in] TOLA */
/* > \verbatim */
/* > TOLA is DOUBLE PRECISION */
/* > \endverbatim */
/* > */
/* > \param[in] TOLB */
/* > \verbatim */
/* > TOLB is DOUBLE PRECISION */
/* > */
/* > TOLA and TOLB are the convergence criteria for the Jacobi- */
/* > Kogbetliantz iteration procedure. Generally, they are the */
/* > same as used in the preprocessing step, say */
/* > TOLA = f2cmax(M,N)*norm(A)*MAZHEPS, */
/* > TOLB = f2cmax(P,N)*norm(B)*MAZHEPS. */
/* > \endverbatim */
/* > */
/* > \param[out] ALPHA */
/* > \verbatim */
/* > ALPHA is DOUBLE PRECISION array, dimension (N) */
/* > \endverbatim */
/* > */
/* > \param[out] BETA */
/* > \verbatim */
/* > BETA is DOUBLE PRECISION array, dimension (N) */
/* > */
/* > On exit, ALPHA and BETA contain the generalized singular */
/* > value pairs of A and B; */
/* > ALPHA(1:K) = 1, */
/* > BETA(1:K) = 0, */
/* > and if M-K-L >= 0, */
/* > ALPHA(K+1:K+L) = diag(C), */
/* > BETA(K+1:K+L) = diag(S), */
/* > or if M-K-L < 0, */
/* > ALPHA(K+1:M)= C, ALPHA(M+1:K+L)= 0 */
/* > BETA(K+1:M) = S, BETA(M+1:K+L) = 1. */
/* > Furthermore, if K+L < N, */
/* > ALPHA(K+L+1:N) = 0 and */
/* > BETA(K+L+1:N) = 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] U */
/* > \verbatim */
/* > U is DOUBLE PRECISION array, dimension (LDU,M) */
/* > On entry, if JOBU = 'U', U must contain a matrix U1 (usually */
/* > the orthogonal matrix returned by DGGSVP). */
/* > On exit, */
/* > if JOBU = 'I', U contains the orthogonal matrix U; */
/* > if JOBU = 'U', U contains the product U1*U. */
/* > If JOBU = 'N', U is not referenced. */
/* > \endverbatim */
/* > */
/* > \param[in] LDU */
/* > \verbatim */
/* > LDU is INTEGER */
/* > The leading dimension of the array U. LDU >= f2cmax(1,M) if */
/* > JOBU = 'U'; LDU >= 1 otherwise. */
/* > \endverbatim */
/* > */
/* > \param[in,out] V */
/* > \verbatim */
/* > V is DOUBLE PRECISION array, dimension (LDV,P) */
/* > On entry, if JOBV = 'V', V must contain a matrix V1 (usually */
/* > the orthogonal matrix returned by DGGSVP). */
/* > On exit, */
/* > if JOBV = 'I', V contains the orthogonal matrix V; */
/* > if JOBV = 'V', V contains the product V1*V. */
/* > If JOBV = 'N', V is not referenced. */
/* > \endverbatim */
/* > */
/* > \param[in] LDV */
/* > \verbatim */
/* > LDV is INTEGER */
/* > The leading dimension of the array V. LDV >= f2cmax(1,P) if */
/* > JOBV = 'V'; LDV >= 1 otherwise. */
/* > \endverbatim */
/* > */
/* > \param[in,out] Q */
/* > \verbatim */
/* > Q is DOUBLE PRECISION array, dimension (LDQ,N) */
/* > On entry, if JOBQ = 'Q', Q must contain a matrix Q1 (usually */
/* > the orthogonal matrix returned by DGGSVP). */
/* > On exit, */
/* > if JOBQ = 'I', Q contains the orthogonal matrix Q; */
/* > if JOBQ = 'Q', Q contains the product Q1*Q. */
/* > If JOBQ = 'N', Q is not referenced. */
/* > \endverbatim */
/* > */
/* > \param[in] LDQ */
/* > \verbatim */
/* > LDQ is INTEGER */
/* > The leading dimension of the array Q. LDQ >= f2cmax(1,N) if */
/* > JOBQ = 'Q'; LDQ >= 1 otherwise. */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is DOUBLE PRECISION array, dimension (2*N) */
/* > \endverbatim */
/* > */
/* > \param[out] NCALL MYCYCLE */
/* > \verbatim */
/* > NCALL MYCYCLE is INTEGER */
/* > The number of cycles required for convergence. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value. */
/* > = 1: the procedure does not converge after MAXIT cycles. */
/* > \endverbatim */
/* > */
/* > \verbatim */
/* > Internal Parameters */
/* > =================== */
/* > */
/* > MAXIT INTEGER */
/* > MAXIT specifies the total loops that the iterative procedure */
/* > may take. If after MAXIT cycles, the routine fails to */
/* > converge, we return INFO = 1. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date December 2016 */
/* > \ingroup doubleOTHERcomputational */
/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > DTGSJA essentially uses a variant of Kogbetliantz algorithm to reduce */
/* > f2cmin(L,M-K)-by-L triangular (or trapezoidal) matrix A23 and L-by-L */
/* > matrix B13 to the form: */
/* > */
/* > U1**T *A13*Q1 = C1*R1; V1**T *B13*Q1 = S1*R1, */
/* > */
/* > where U1, V1 and Q1 are orthogonal matrix, and Z**T is the transpose */
/* > of Z. C1 and S1 are diagonal matrices satisfying */
/* > */
/* > C1**2 + S1**2 = I, */
/* > */
/* > and R1 is an L-by-L nonsingular upper triangular matrix. */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */ void dtgsja_(char *jobu, char *jobv, char *jobq, integer *m,
integer *p, integer *n, integer *k, integer *l, doublereal *a,
integer *lda, doublereal *b, integer *ldb, doublereal *tola,
doublereal *tolb, doublereal *alpha, doublereal *beta, doublereal *u,
integer *ldu, doublereal *v, integer *ldv, doublereal *q, integer *
ldq, doublereal *work, integer *ncallmycycle, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, u_dim1,
u_offset, v_dim1, v_offset, i__1, i__2, i__3, i__4;
doublereal d__1;
/* Local variables */
extern /* Subroutine */ void drot_(integer *, doublereal *, integer *,
doublereal *, integer *, doublereal *, doublereal *);
integer kcallmycycle, i__, j;
doublereal gamma;
extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *,
integer *);
extern logical lsame_(char *, char *);
extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *,
doublereal *, integer *);
doublereal a1;
logical initq;
doublereal a2, a3, b1;
logical initu, initv, wantq, upper;
doublereal b2, b3;
logical wantu, wantv;
doublereal error, ssmin;
extern /* Subroutine */ void dlags2_(logical *, doublereal *, doublereal *,
doublereal *, doublereal *, doublereal *, doublereal *,
doublereal *, doublereal *, doublereal *, doublereal *,
doublereal *, doublereal *), dlapll_(integer *, doublereal *,
integer *, doublereal *, integer *, doublereal *), dlartg_(
doublereal *, doublereal *, doublereal *, doublereal *,
doublereal *), dlaset_(char *, integer *, integer *, doublereal *,
doublereal *, doublereal *, integer *);
extern int xerbla_(char *, integer *, ftnlen);
// extern integer myhuge_(doublereal *);
doublereal csq, csu, csv, snq, rwk, snu, snv;
/* -- LAPACK computational routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */
/* ===================================================================== */
/* Decode and test the input parameters */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1 * 1;
b -= b_offset;
--alpha;
--beta;
u_dim1 = *ldu;
u_offset = 1 + u_dim1 * 1;
u -= u_offset;
v_dim1 = *ldv;
v_offset = 1 + v_dim1 * 1;
v -= v_offset;
q_dim1 = *ldq;
q_offset = 1 + q_dim1 * 1;
q -= q_offset;
--work;
/* Function Body */
initu = lsame_(jobu, "I");
wantu = initu || lsame_(jobu, "U");
initv = lsame_(jobv, "I");
wantv = initv || lsame_(jobv, "V");
initq = lsame_(jobq, "I");
wantq = initq || lsame_(jobq, "Q");
*info = 0;
if (! (initu || wantu || lsame_(jobu, "N"))) {
*info = -1;
} else if (! (initv || wantv || lsame_(jobv, "N")))
{
*info = -2;
} else if (! (initq || wantq || lsame_(jobq, "N")))
{
*info = -3;
} else if (*m < 0) {
*info = -4;
} else if (*p < 0) {
*info = -5;
} else if (*n < 0) {
*info = -6;
} else if (*lda < f2cmax(1,*m)) {
*info = -10;
} else if (*ldb < f2cmax(1,*p)) {
*info = -12;
} else if (*ldu < 1 || wantu && *ldu < *m) {
*info = -18;
} else if (*ldv < 1 || wantv && *ldv < *p) {
*info = -20;
} else if (*ldq < 1 || wantq && *ldq < *n) {
*info = -22;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DTGSJA", &i__1, (ftnlen)6);
return;
}
/* Initialize U, V and Q, if necessary */
if (initu) {
dlaset_("Full", m, m, &c_b1, &c_b15, &u[u_offset], ldu);
}
if (initv) {
dlaset_("Full", p, p, &c_b1, &c_b15, &v[v_offset], ldv);
}
if (initq) {
dlaset_("Full", n, n, &c_b1, &c_b15, &q[q_offset], ldq);
}
/* Loop until convergence */
upper = FALSE_;
for (kcallmycycle = 1; kcallmycycle <= 40; ++kcallmycycle) {
upper = ! upper;
i__1 = *l - 1;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = *l;
for (j = i__ + 1; j <= i__2; ++j) {
a1 = 0.;
a2 = 0.;
a3 = 0.;
if (*k + i__ <= *m) {
a1 = a[*k + i__ + (*n - *l + i__) * a_dim1];
}
if (*k + j <= *m) {
a3 = a[*k + j + (*n - *l + j) * a_dim1];
}
b1 = b[i__ + (*n - *l + i__) * b_dim1];
b3 = b[j + (*n - *l + j) * b_dim1];
if (upper) {
if (*k + i__ <= *m) {
a2 = a[*k + i__ + (*n - *l + j) * a_dim1];
}
b2 = b[i__ + (*n - *l + j) * b_dim1];
} else {
if (*k + j <= *m) {
a2 = a[*k + j + (*n - *l + i__) * a_dim1];
}
b2 = b[j + (*n - *l + i__) * b_dim1];
}
dlags2_(&upper, &a1, &a2, &a3, &b1, &b2, &b3, &csu, &snu, &
csv, &snv, &csq, &snq);
/* Update (K+I)-th and (K+J)-th rows of matrix A: U**T *A */
if (*k + j <= *m) {
drot_(l, &a[*k + j + (*n - *l + 1) * a_dim1], lda, &a[*k
+ i__ + (*n - *l + 1) * a_dim1], lda, &csu, &snu);
}
/* Update I-th and J-th rows of matrix B: V**T *B */
drot_(l, &b[j + (*n - *l + 1) * b_dim1], ldb, &b[i__ + (*n - *
l + 1) * b_dim1], ldb, &csv, &snv);
/* Update (N-L+I)-th and (N-L+J)-th columns of matrices */
/* A and B: A*Q and B*Q */
/* Computing MIN */
i__4 = *k + *l;
i__3 = f2cmin(i__4,*m);
drot_(&i__3, &a[(*n - *l + j) * a_dim1 + 1], &c__1, &a[(*n - *
l + i__) * a_dim1 + 1], &c__1, &csq, &snq);
drot_(l, &b[(*n - *l + j) * b_dim1 + 1], &c__1, &b[(*n - *l +
i__) * b_dim1 + 1], &c__1, &csq, &snq);
if (upper) {
if (*k + i__ <= *m) {
a[*k + i__ + (*n - *l + j) * a_dim1] = 0.;
}
b[i__ + (*n - *l + j) * b_dim1] = 0.;
} else {
if (*k + j <= *m) {
a[*k + j + (*n - *l + i__) * a_dim1] = 0.;
}
b[j + (*n - *l + i__) * b_dim1] = 0.;
}
/* Update orthogonal matrices U, V, Q, if desired. */
if (wantu && *k + j <= *m) {
drot_(m, &u[(*k + j) * u_dim1 + 1], &c__1, &u[(*k + i__) *
u_dim1 + 1], &c__1, &csu, &snu);
}
if (wantv) {
drot_(p, &v[j * v_dim1 + 1], &c__1, &v[i__ * v_dim1 + 1],
&c__1, &csv, &snv);
}
if (wantq) {
drot_(n, &q[(*n - *l + j) * q_dim1 + 1], &c__1, &q[(*n - *
l + i__) * q_dim1 + 1], &c__1, &csq, &snq);
}
/* L10: */
}
/* L20: */
}
if (! upper) {
/* The matrices A13 and B13 were lower triangular at the start */
/* of the cycle, and are now upper triangular. */
/* Convergence test: test the parallelism of the corresponding */
/* rows of A and B. */
error = 0.;
/* Computing MIN */
i__2 = *l, i__3 = *m - *k;
i__1 = f2cmin(i__2,i__3);
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = *l - i__ + 1;
dcopy_(&i__2, &a[*k + i__ + (*n - *l + i__) * a_dim1], lda, &
work[1], &c__1);
i__2 = *l - i__ + 1;
dcopy_(&i__2, &b[i__ + (*n - *l + i__) * b_dim1], ldb, &work[*
l + 1], &c__1);
i__2 = *l - i__ + 1;
dlapll_(&i__2, &work[1], &c__1, &work[*l + 1], &c__1, &ssmin);
error = f2cmax(error,ssmin);
/* L30: */
}
if (abs(error) <= f2cmin(*tola,*tolb)) {
goto L50;
}
}
/* End of cycle loop */
/* L40: */
}
/* The algorithm has not converged after MAXIT cycles. */
*info = 1;
goto L100;
L50:
/* If ERROR <= MIN(TOLA,TOLB), then the algorithm has converged. */
/* Compute the generalized singular value pairs (ALPHA, BETA), and */
/* set the triangular matrix R to array A. */
i__1 = *k;
for (i__ = 1; i__ <= i__1; ++i__) {
alpha[i__] = 1.;
beta[i__] = 0.;
/* L60: */
}
/* Computing MIN */
i__2 = *l, i__3 = *m - *k;
i__1 = f2cmin(i__2,i__3);
for (i__ = 1; i__ <= i__1; ++i__) {
a1 = a[*k + i__ + (*n - *l + i__) * a_dim1];
b1 = b[i__ + (*n - *l + i__) * b_dim1];
gamma = b1 / a1;
if (gamma <= (doublereal) myhuge_(&c_b1) && gamma >= -((doublereal)
myhuge_(&c_b1))) {
/* change sign if necessary */
if (gamma < 0.) {
i__2 = *l - i__ + 1;
dscal_(&i__2, &c_b44, &b[i__ + (*n - *l + i__) * b_dim1], ldb)
;
if (wantv) {
dscal_(p, &c_b44, &v[i__ * v_dim1 + 1], &c__1);
}
}
d__1 = abs(gamma);
dlartg_(&d__1, &c_b15, &beta[*k + i__], &alpha[*k + i__], &rwk);
if (alpha[*k + i__] >= beta[*k + i__]) {
i__2 = *l - i__ + 1;
d__1 = 1. / alpha[*k + i__];
dscal_(&i__2, &d__1, &a[*k + i__ + (*n - *l + i__) * a_dim1],
lda);
} else {
i__2 = *l - i__ + 1;
d__1 = 1. / beta[*k + i__];
dscal_(&i__2, &d__1, &b[i__ + (*n - *l + i__) * b_dim1], ldb);
i__2 = *l - i__ + 1;
dcopy_(&i__2, &b[i__ + (*n - *l + i__) * b_dim1], ldb, &a[*k
+ i__ + (*n - *l + i__) * a_dim1], lda);
}
} else {
alpha[*k + i__] = 0.;
beta[*k + i__] = 1.;
i__2 = *l - i__ + 1;
dcopy_(&i__2, &b[i__ + (*n - *l + i__) * b_dim1], ldb, &a[*k +
i__ + (*n - *l + i__) * a_dim1], lda);
}
/* L70: */
}
/* Post-assignment */
i__1 = *k + *l;
for (i__ = *m + 1; i__ <= i__1; ++i__) {
alpha[i__] = 0.;
beta[i__] = 1.;
/* L80: */
}
if (*k + *l < *n) {
i__1 = *n;
for (i__ = *k + *l + 1; i__ <= i__1; ++i__) {
alpha[i__] = 0.;
beta[i__] = 0.;
/* L90: */
}
}
L100:
*ncallmycycle = kcallmycycle;
return;
/* End of DTGSJA */
} /* dtgsja_ */