952 lines
28 KiB
C
952 lines
28 KiB
C
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <complex.h>
|
|
#ifdef complex
|
|
#undef complex
|
|
#endif
|
|
#ifdef I
|
|
#undef I
|
|
#endif
|
|
|
|
#if defined(_WIN64)
|
|
typedef long long BLASLONG;
|
|
typedef unsigned long long BLASULONG;
|
|
#else
|
|
typedef long BLASLONG;
|
|
typedef unsigned long BLASULONG;
|
|
#endif
|
|
|
|
#ifdef LAPACK_ILP64
|
|
typedef BLASLONG blasint;
|
|
#if defined(_WIN64)
|
|
#define blasabs(x) llabs(x)
|
|
#else
|
|
#define blasabs(x) labs(x)
|
|
#endif
|
|
#else
|
|
typedef int blasint;
|
|
#define blasabs(x) abs(x)
|
|
#endif
|
|
|
|
typedef blasint integer;
|
|
|
|
typedef unsigned int uinteger;
|
|
typedef char *address;
|
|
typedef short int shortint;
|
|
typedef float real;
|
|
typedef double doublereal;
|
|
typedef struct { real r, i; } complex;
|
|
typedef struct { doublereal r, i; } doublecomplex;
|
|
#ifdef _MSC_VER
|
|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
|
|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
|
|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
|
|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
|
|
#else
|
|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
|
|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
|
|
#endif
|
|
#define pCf(z) (*_pCf(z))
|
|
#define pCd(z) (*_pCd(z))
|
|
typedef blasint logical;
|
|
|
|
typedef char logical1;
|
|
typedef char integer1;
|
|
|
|
#define TRUE_ (1)
|
|
#define FALSE_ (0)
|
|
|
|
/* Extern is for use with -E */
|
|
#ifndef Extern
|
|
#define Extern extern
|
|
#endif
|
|
|
|
/* I/O stuff */
|
|
|
|
typedef int flag;
|
|
typedef int ftnlen;
|
|
typedef int ftnint;
|
|
|
|
/*external read, write*/
|
|
typedef struct
|
|
{ flag cierr;
|
|
ftnint ciunit;
|
|
flag ciend;
|
|
char *cifmt;
|
|
ftnint cirec;
|
|
} cilist;
|
|
|
|
/*internal read, write*/
|
|
typedef struct
|
|
{ flag icierr;
|
|
char *iciunit;
|
|
flag iciend;
|
|
char *icifmt;
|
|
ftnint icirlen;
|
|
ftnint icirnum;
|
|
} icilist;
|
|
|
|
/*open*/
|
|
typedef struct
|
|
{ flag oerr;
|
|
ftnint ounit;
|
|
char *ofnm;
|
|
ftnlen ofnmlen;
|
|
char *osta;
|
|
char *oacc;
|
|
char *ofm;
|
|
ftnint orl;
|
|
char *oblnk;
|
|
} olist;
|
|
|
|
/*close*/
|
|
typedef struct
|
|
{ flag cerr;
|
|
ftnint cunit;
|
|
char *csta;
|
|
} cllist;
|
|
|
|
/*rewind, backspace, endfile*/
|
|
typedef struct
|
|
{ flag aerr;
|
|
ftnint aunit;
|
|
} alist;
|
|
|
|
/* inquire */
|
|
typedef struct
|
|
{ flag inerr;
|
|
ftnint inunit;
|
|
char *infile;
|
|
ftnlen infilen;
|
|
ftnint *inex; /*parameters in standard's order*/
|
|
ftnint *inopen;
|
|
ftnint *innum;
|
|
ftnint *innamed;
|
|
char *inname;
|
|
ftnlen innamlen;
|
|
char *inacc;
|
|
ftnlen inacclen;
|
|
char *inseq;
|
|
ftnlen inseqlen;
|
|
char *indir;
|
|
ftnlen indirlen;
|
|
char *infmt;
|
|
ftnlen infmtlen;
|
|
char *inform;
|
|
ftnint informlen;
|
|
char *inunf;
|
|
ftnlen inunflen;
|
|
ftnint *inrecl;
|
|
ftnint *innrec;
|
|
char *inblank;
|
|
ftnlen inblanklen;
|
|
} inlist;
|
|
|
|
#define VOID void
|
|
|
|
union Multitype { /* for multiple entry points */
|
|
integer1 g;
|
|
shortint h;
|
|
integer i;
|
|
/* longint j; */
|
|
real r;
|
|
doublereal d;
|
|
complex c;
|
|
doublecomplex z;
|
|
};
|
|
|
|
typedef union Multitype Multitype;
|
|
|
|
struct Vardesc { /* for Namelist */
|
|
char *name;
|
|
char *addr;
|
|
ftnlen *dims;
|
|
int type;
|
|
};
|
|
typedef struct Vardesc Vardesc;
|
|
|
|
struct Namelist {
|
|
char *name;
|
|
Vardesc **vars;
|
|
int nvars;
|
|
};
|
|
typedef struct Namelist Namelist;
|
|
|
|
#define abs(x) ((x) >= 0 ? (x) : -(x))
|
|
#define dabs(x) (fabs(x))
|
|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
|
|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
|
|
#define dmin(a,b) (f2cmin(a,b))
|
|
#define dmax(a,b) (f2cmax(a,b))
|
|
#define bit_test(a,b) ((a) >> (b) & 1)
|
|
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
|
|
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
|
|
|
|
#define abort_() { sig_die("Fortran abort routine called", 1); }
|
|
#define c_abs(z) (cabsf(Cf(z)))
|
|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
|
|
#ifdef _MSC_VER
|
|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
|
|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
|
|
#else
|
|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
|
|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
|
|
#endif
|
|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
|
|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
|
|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
|
|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
|
|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
|
|
#define d_abs(x) (fabs(*(x)))
|
|
#define d_acos(x) (acos(*(x)))
|
|
#define d_asin(x) (asin(*(x)))
|
|
#define d_atan(x) (atan(*(x)))
|
|
#define d_atn2(x, y) (atan2(*(x),*(y)))
|
|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
|
|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
|
|
#define d_cos(x) (cos(*(x)))
|
|
#define d_cosh(x) (cosh(*(x)))
|
|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
|
|
#define d_exp(x) (exp(*(x)))
|
|
#define d_imag(z) (cimag(Cd(z)))
|
|
#define r_imag(z) (cimagf(Cf(z)))
|
|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define d_log(x) (log(*(x)))
|
|
#define d_mod(x, y) (fmod(*(x), *(y)))
|
|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
|
|
#define d_nint(x) u_nint(*(x))
|
|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
|
|
#define d_sign(a,b) u_sign(*(a),*(b))
|
|
#define r_sign(a,b) u_sign(*(a),*(b))
|
|
#define d_sin(x) (sin(*(x)))
|
|
#define d_sinh(x) (sinh(*(x)))
|
|
#define d_sqrt(x) (sqrt(*(x)))
|
|
#define d_tan(x) (tan(*(x)))
|
|
#define d_tanh(x) (tanh(*(x)))
|
|
#define i_abs(x) abs(*(x))
|
|
#define i_dnnt(x) ((integer)u_nint(*(x)))
|
|
#define i_len(s, n) (n)
|
|
#define i_nint(x) ((integer)u_nint(*(x)))
|
|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
|
|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
|
|
#define pow_si(B,E) spow_ui(*(B),*(E))
|
|
#define pow_ri(B,E) spow_ui(*(B),*(E))
|
|
#define pow_di(B,E) dpow_ui(*(B),*(E))
|
|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
|
|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
|
|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
|
|
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
|
|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
|
|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
|
|
#define sig_die(s, kill) { exit(1); }
|
|
#define s_stop(s, n) {exit(0);}
|
|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
|
|
#define z_abs(z) (cabs(Cd(z)))
|
|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
|
|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
|
|
#define myexit_() break;
|
|
#define mycycle() continue;
|
|
#define myceiling(w) {ceil(w)}
|
|
#define myhuge(w) {HUGE_VAL}
|
|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
|
|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
|
|
|
|
/* procedure parameter types for -A and -C++ */
|
|
|
|
|
|
#ifdef __cplusplus
|
|
typedef logical (*L_fp)(...);
|
|
#else
|
|
typedef logical (*L_fp)();
|
|
#endif
|
|
|
|
static float spow_ui(float x, integer n) {
|
|
float pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
static double dpow_ui(double x, integer n) {
|
|
double pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#ifdef _MSC_VER
|
|
static _Fcomplex cpow_ui(complex x, integer n) {
|
|
complex pow={1.0,0.0}; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow.r *= x.r, pow.i *= x.i;
|
|
if(u >>= 1) x.r *= x.r, x.i *= x.i;
|
|
else break;
|
|
}
|
|
}
|
|
_Fcomplex p={pow.r, pow.i};
|
|
return p;
|
|
}
|
|
#else
|
|
static _Complex float cpow_ui(_Complex float x, integer n) {
|
|
_Complex float pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#endif
|
|
#ifdef _MSC_VER
|
|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
|
|
_Dcomplex pow={1.0,0.0}; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
|
|
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
|
|
else break;
|
|
}
|
|
}
|
|
_Dcomplex p = {pow._Val[0], pow._Val[1]};
|
|
return p;
|
|
}
|
|
#else
|
|
static _Complex double zpow_ui(_Complex double x, integer n) {
|
|
_Complex double pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#endif
|
|
static integer pow_ii(integer x, integer n) {
|
|
integer pow; unsigned long int u;
|
|
if (n <= 0) {
|
|
if (n == 0 || x == 1) pow = 1;
|
|
else if (x != -1) pow = x == 0 ? 1/x : 0;
|
|
else n = -n;
|
|
}
|
|
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
|
|
u = n;
|
|
for(pow = 1; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
|
|
{
|
|
double m; integer i, mi;
|
|
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
|
if (w[i-1]>m) mi=i ,m=w[i-1];
|
|
return mi-s+1;
|
|
}
|
|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
|
|
{
|
|
float m; integer i, mi;
|
|
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
|
if (w[i-1]>m) mi=i ,m=w[i-1];
|
|
return mi-s+1;
|
|
}
|
|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Fcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
|
|
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex float zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Dcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
|
|
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex double zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Fcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
|
|
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex float zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cf(&x[i]) * Cf(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Dcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
|
|
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex double zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cd(&x[i]) * Cd(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#endif
|
|
/* -- translated by f2c (version 20000121).
|
|
You must link the resulting object file with the libraries:
|
|
-lf2c -lm (in that order)
|
|
*/
|
|
|
|
|
|
|
|
|
|
/* Table of constant values */
|
|
|
|
static integer c__1 = 1;
|
|
|
|
/* > \brief \b DSPGVX */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* > \htmlonly */
|
|
/* > Download DSPGVX + dependencies */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dspgvx.
|
|
f"> */
|
|
/* > [TGZ]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dspgvx.
|
|
f"> */
|
|
/* > [ZIP]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dspgvx.
|
|
f"> */
|
|
/* > [TXT]</a> */
|
|
/* > \endhtmlonly */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* SUBROUTINE DSPGVX( ITYPE, JOBZ, RANGE, UPLO, N, AP, BP, VL, VU, */
|
|
/* IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK, */
|
|
/* IFAIL, INFO ) */
|
|
|
|
/* CHARACTER JOBZ, RANGE, UPLO */
|
|
/* INTEGER IL, INFO, ITYPE, IU, LDZ, M, N */
|
|
/* DOUBLE PRECISION ABSTOL, VL, VU */
|
|
/* INTEGER IFAIL( * ), IWORK( * ) */
|
|
/* DOUBLE PRECISION AP( * ), BP( * ), W( * ), WORK( * ), */
|
|
/* $ Z( LDZ, * ) */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > DSPGVX computes selected eigenvalues, and optionally, eigenvectors */
|
|
/* > of a real generalized symmetric-definite eigenproblem, of the form */
|
|
/* > A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A */
|
|
/* > and B are assumed to be symmetric, stored in packed storage, and B */
|
|
/* > is also positive definite. Eigenvalues and eigenvectors can be */
|
|
/* > selected by specifying either a range of values or a range of indices */
|
|
/* > for the desired eigenvalues. */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] ITYPE */
|
|
/* > \verbatim */
|
|
/* > ITYPE is INTEGER */
|
|
/* > Specifies the problem type to be solved: */
|
|
/* > = 1: A*x = (lambda)*B*x */
|
|
/* > = 2: A*B*x = (lambda)*x */
|
|
/* > = 3: B*A*x = (lambda)*x */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] JOBZ */
|
|
/* > \verbatim */
|
|
/* > JOBZ is CHARACTER*1 */
|
|
/* > = 'N': Compute eigenvalues only; */
|
|
/* > = 'V': Compute eigenvalues and eigenvectors. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] RANGE */
|
|
/* > \verbatim */
|
|
/* > RANGE is CHARACTER*1 */
|
|
/* > = 'A': all eigenvalues will be found. */
|
|
/* > = 'V': all eigenvalues in the half-open interval (VL,VU] */
|
|
/* > will be found. */
|
|
/* > = 'I': the IL-th through IU-th eigenvalues will be found. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] UPLO */
|
|
/* > \verbatim */
|
|
/* > UPLO is CHARACTER*1 */
|
|
/* > = 'U': Upper triangle of A and B are stored; */
|
|
/* > = 'L': Lower triangle of A and B are stored. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > The order of the matrix pencil (A,B). N >= 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] AP */
|
|
/* > \verbatim */
|
|
/* > AP is DOUBLE PRECISION array, dimension (N*(N+1)/2) */
|
|
/* > On entry, the upper or lower triangle of the symmetric matrix */
|
|
/* > A, packed columnwise in a linear array. The j-th column of A */
|
|
/* > is stored in the array AP as follows: */
|
|
/* > if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
|
|
/* > if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */
|
|
/* > */
|
|
/* > On exit, the contents of AP are destroyed. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] BP */
|
|
/* > \verbatim */
|
|
/* > BP is DOUBLE PRECISION array, dimension (N*(N+1)/2) */
|
|
/* > On entry, the upper or lower triangle of the symmetric matrix */
|
|
/* > B, packed columnwise in a linear array. The j-th column of B */
|
|
/* > is stored in the array BP as follows: */
|
|
/* > if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j; */
|
|
/* > if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n. */
|
|
/* > */
|
|
/* > On exit, the triangular factor U or L from the Cholesky */
|
|
/* > factorization B = U**T*U or B = L*L**T, in the same storage */
|
|
/* > format as B. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] VL */
|
|
/* > \verbatim */
|
|
/* > VL is DOUBLE PRECISION */
|
|
/* > */
|
|
/* > If RANGE='V', the lower bound of the interval to */
|
|
/* > be searched for eigenvalues. VL < VU. */
|
|
/* > Not referenced if RANGE = 'A' or 'I'. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] VU */
|
|
/* > \verbatim */
|
|
/* > VU is DOUBLE PRECISION */
|
|
/* > */
|
|
/* > If RANGE='V', the upper bound of the interval to */
|
|
/* > be searched for eigenvalues. VL < VU. */
|
|
/* > Not referenced if RANGE = 'A' or 'I'. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] IL */
|
|
/* > \verbatim */
|
|
/* > IL is INTEGER */
|
|
/* > */
|
|
/* > If RANGE='I', the index of the */
|
|
/* > smallest eigenvalue to be returned. */
|
|
/* > 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
|
|
/* > Not referenced if RANGE = 'A' or 'V'. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] IU */
|
|
/* > \verbatim */
|
|
/* > IU is INTEGER */
|
|
/* > */
|
|
/* > If RANGE='I', the index of the */
|
|
/* > largest eigenvalue to be returned. */
|
|
/* > 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
|
|
/* > Not referenced if RANGE = 'A' or 'V'. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] ABSTOL */
|
|
/* > \verbatim */
|
|
/* > ABSTOL is DOUBLE PRECISION */
|
|
/* > The absolute error tolerance for the eigenvalues. */
|
|
/* > An approximate eigenvalue is accepted as converged */
|
|
/* > when it is determined to lie in an interval [a,b] */
|
|
/* > of width less than or equal to */
|
|
/* > */
|
|
/* > ABSTOL + EPS * f2cmax( |a|,|b| ) , */
|
|
/* > */
|
|
/* > where EPS is the machine precision. If ABSTOL is less than */
|
|
/* > or equal to zero, then EPS*|T| will be used in its place, */
|
|
/* > where |T| is the 1-norm of the tridiagonal matrix obtained */
|
|
/* > by reducing A to tridiagonal form. */
|
|
/* > */
|
|
/* > Eigenvalues will be computed most accurately when ABSTOL is */
|
|
/* > set to twice the underflow threshold 2*DLAMCH('S'), not zero. */
|
|
/* > If this routine returns with INFO>0, indicating that some */
|
|
/* > eigenvectors did not converge, try setting ABSTOL to */
|
|
/* > 2*DLAMCH('S'). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] M */
|
|
/* > \verbatim */
|
|
/* > M is INTEGER */
|
|
/* > The total number of eigenvalues found. 0 <= M <= N. */
|
|
/* > If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] W */
|
|
/* > \verbatim */
|
|
/* > W is DOUBLE PRECISION array, dimension (N) */
|
|
/* > On normal exit, the first M elements contain the selected */
|
|
/* > eigenvalues in ascending order. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] Z */
|
|
/* > \verbatim */
|
|
/* > Z is DOUBLE PRECISION array, dimension (LDZ, f2cmax(1,M)) */
|
|
/* > If JOBZ = 'N', then Z is not referenced. */
|
|
/* > If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
|
|
/* > contain the orthonormal eigenvectors of the matrix A */
|
|
/* > corresponding to the selected eigenvalues, with the i-th */
|
|
/* > column of Z holding the eigenvector associated with W(i). */
|
|
/* > The eigenvectors are normalized as follows: */
|
|
/* > if ITYPE = 1 or 2, Z**T*B*Z = I; */
|
|
/* > if ITYPE = 3, Z**T*inv(B)*Z = I. */
|
|
/* > */
|
|
/* > If an eigenvector fails to converge, then that column of Z */
|
|
/* > contains the latest approximation to the eigenvector, and the */
|
|
/* > index of the eigenvector is returned in IFAIL. */
|
|
/* > Note: the user must ensure that at least f2cmax(1,M) columns are */
|
|
/* > supplied in the array Z; if RANGE = 'V', the exact value of M */
|
|
/* > is not known in advance and an upper bound must be used. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDZ */
|
|
/* > \verbatim */
|
|
/* > LDZ is INTEGER */
|
|
/* > The leading dimension of the array Z. LDZ >= 1, and if */
|
|
/* > JOBZ = 'V', LDZ >= f2cmax(1,N). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] WORK */
|
|
/* > \verbatim */
|
|
/* > WORK is DOUBLE PRECISION array, dimension (8*N) */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] IWORK */
|
|
/* > \verbatim */
|
|
/* > IWORK is INTEGER array, dimension (5*N) */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] IFAIL */
|
|
/* > \verbatim */
|
|
/* > IFAIL is INTEGER array, dimension (N) */
|
|
/* > If JOBZ = 'V', then if INFO = 0, the first M elements of */
|
|
/* > IFAIL are zero. If INFO > 0, then IFAIL contains the */
|
|
/* > indices of the eigenvectors that failed to converge. */
|
|
/* > If JOBZ = 'N', then IFAIL is not referenced. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] INFO */
|
|
/* > \verbatim */
|
|
/* > INFO is INTEGER */
|
|
/* > = 0: successful exit */
|
|
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
|
|
/* > > 0: DPPTRF or DSPEVX returned an error code: */
|
|
/* > <= N: if INFO = i, DSPEVX failed to converge; */
|
|
/* > i eigenvectors failed to converge. Their indices */
|
|
/* > are stored in array IFAIL. */
|
|
/* > > N: if INFO = N + i, for 1 <= i <= N, then the leading */
|
|
/* > minor of order i of B is not positive definite. */
|
|
/* > The factorization of B could not be completed and */
|
|
/* > no eigenvalues or eigenvectors were computed. */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \date June 2016 */
|
|
|
|
/* > \ingroup doubleOTHEReigen */
|
|
|
|
/* > \par Contributors: */
|
|
/* ================== */
|
|
/* > */
|
|
/* > Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA */
|
|
|
|
/* ===================================================================== */
|
|
/* Subroutine */ void dspgvx_(integer *itype, char *jobz, char *range, char *
|
|
uplo, integer *n, doublereal *ap, doublereal *bp, doublereal *vl,
|
|
doublereal *vu, integer *il, integer *iu, doublereal *abstol, integer
|
|
*m, doublereal *w, doublereal *z__, integer *ldz, doublereal *work,
|
|
integer *iwork, integer *ifail, integer *info)
|
|
{
|
|
/* System generated locals */
|
|
integer z_dim1, z_offset, i__1;
|
|
|
|
/* Local variables */
|
|
integer j;
|
|
extern logical lsame_(char *, char *);
|
|
char trans[1];
|
|
logical upper;
|
|
extern /* Subroutine */ void dtpmv_(char *, char *, char *, integer *,
|
|
doublereal *, doublereal *, integer *),
|
|
dtpsv_(char *, char *, char *, integer *, doublereal *,
|
|
doublereal *, integer *);
|
|
logical wantz, alleig, indeig, valeig;
|
|
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
|
|
extern void dpptrf_(
|
|
char *, integer *, doublereal *, integer *), dspgst_(
|
|
integer *, char *, integer *, doublereal *, doublereal *, integer
|
|
*), dspevx_(char *, char *, char *, integer *, doublereal
|
|
*, doublereal *, doublereal *, integer *, integer *, doublereal *,
|
|
integer *, doublereal *, doublereal *, integer *, doublereal *,
|
|
integer *, integer *, integer *);
|
|
|
|
|
|
/* -- LAPACK driver routine (version 3.7.0) -- */
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
/* June 2016 */
|
|
|
|
|
|
/* ===================================================================== */
|
|
|
|
|
|
/* Test the input parameters. */
|
|
|
|
/* Parameter adjustments */
|
|
--ap;
|
|
--bp;
|
|
--w;
|
|
z_dim1 = *ldz;
|
|
z_offset = 1 + z_dim1 * 1;
|
|
z__ -= z_offset;
|
|
--work;
|
|
--iwork;
|
|
--ifail;
|
|
|
|
/* Function Body */
|
|
upper = lsame_(uplo, "U");
|
|
wantz = lsame_(jobz, "V");
|
|
alleig = lsame_(range, "A");
|
|
valeig = lsame_(range, "V");
|
|
indeig = lsame_(range, "I");
|
|
|
|
*info = 0;
|
|
if (*itype < 1 || *itype > 3) {
|
|
*info = -1;
|
|
} else if (! (wantz || lsame_(jobz, "N"))) {
|
|
*info = -2;
|
|
} else if (! (alleig || valeig || indeig)) {
|
|
*info = -3;
|
|
} else if (! (upper || lsame_(uplo, "L"))) {
|
|
*info = -4;
|
|
} else if (*n < 0) {
|
|
*info = -5;
|
|
} else {
|
|
if (valeig) {
|
|
if (*n > 0 && *vu <= *vl) {
|
|
*info = -9;
|
|
}
|
|
} else if (indeig) {
|
|
if (*il < 1) {
|
|
*info = -10;
|
|
} else if (*iu < f2cmin(*n,*il) || *iu > *n) {
|
|
*info = -11;
|
|
}
|
|
}
|
|
}
|
|
if (*info == 0) {
|
|
if (*ldz < 1 || wantz && *ldz < *n) {
|
|
*info = -16;
|
|
}
|
|
}
|
|
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_("DSPGVX", &i__1, (ftnlen)6);
|
|
return;
|
|
}
|
|
|
|
/* Quick return if possible */
|
|
|
|
*m = 0;
|
|
if (*n == 0) {
|
|
return;
|
|
}
|
|
|
|
/* Form a Cholesky factorization of B. */
|
|
|
|
dpptrf_(uplo, n, &bp[1], info);
|
|
if (*info != 0) {
|
|
*info = *n + *info;
|
|
return;
|
|
}
|
|
|
|
/* Transform problem to standard eigenvalue problem and solve. */
|
|
|
|
dspgst_(itype, uplo, n, &ap[1], &bp[1], info);
|
|
dspevx_(jobz, range, uplo, n, &ap[1], vl, vu, il, iu, abstol, m, &w[1], &
|
|
z__[z_offset], ldz, &work[1], &iwork[1], &ifail[1], info);
|
|
|
|
if (wantz) {
|
|
|
|
/* Backtransform eigenvectors to the original problem. */
|
|
|
|
if (*info > 0) {
|
|
*m = *info - 1;
|
|
}
|
|
if (*itype == 1 || *itype == 2) {
|
|
|
|
/* For A*x=(lambda)*B*x and A*B*x=(lambda)*x; */
|
|
/* backtransform eigenvectors: x = inv(L)**T*y or inv(U)*y */
|
|
|
|
if (upper) {
|
|
*(unsigned char *)trans = 'N';
|
|
} else {
|
|
*(unsigned char *)trans = 'T';
|
|
}
|
|
|
|
i__1 = *m;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
dtpsv_(uplo, trans, "Non-unit", n, &bp[1], &z__[j * z_dim1 +
|
|
1], &c__1);
|
|
/* L10: */
|
|
}
|
|
|
|
} else if (*itype == 3) {
|
|
|
|
/* For B*A*x=(lambda)*x; */
|
|
/* backtransform eigenvectors: x = L*y or U**T*y */
|
|
|
|
if (upper) {
|
|
*(unsigned char *)trans = 'T';
|
|
} else {
|
|
*(unsigned char *)trans = 'N';
|
|
}
|
|
|
|
i__1 = *m;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
dtpmv_(uplo, trans, "Non-unit", n, &bp[1], &z__[j * z_dim1 +
|
|
1], &c__1);
|
|
/* L20: */
|
|
}
|
|
}
|
|
}
|
|
|
|
return;
|
|
|
|
/* End of DSPGVX */
|
|
|
|
} /* dspgvx_ */
|
|
|