1318 lines
38 KiB
C
1318 lines
38 KiB
C
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <complex.h>
|
|
#ifdef complex
|
|
#undef complex
|
|
#endif
|
|
#ifdef I
|
|
#undef I
|
|
#endif
|
|
|
|
#if defined(_WIN64)
|
|
typedef long long BLASLONG;
|
|
typedef unsigned long long BLASULONG;
|
|
#else
|
|
typedef long BLASLONG;
|
|
typedef unsigned long BLASULONG;
|
|
#endif
|
|
|
|
#ifdef LAPACK_ILP64
|
|
typedef BLASLONG blasint;
|
|
#if defined(_WIN64)
|
|
#define blasabs(x) llabs(x)
|
|
#else
|
|
#define blasabs(x) labs(x)
|
|
#endif
|
|
#else
|
|
typedef int blasint;
|
|
#define blasabs(x) abs(x)
|
|
#endif
|
|
|
|
typedef blasint integer;
|
|
|
|
typedef unsigned int uinteger;
|
|
typedef char *address;
|
|
typedef short int shortint;
|
|
typedef float real;
|
|
typedef double doublereal;
|
|
typedef struct { real r, i; } complex;
|
|
typedef struct { doublereal r, i; } doublecomplex;
|
|
#ifdef _MSC_VER
|
|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
|
|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
|
|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
|
|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
|
|
#else
|
|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
|
|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
|
|
#endif
|
|
#define pCf(z) (*_pCf(z))
|
|
#define pCd(z) (*_pCd(z))
|
|
typedef blasint logical;
|
|
|
|
typedef char logical1;
|
|
typedef char integer1;
|
|
|
|
#define TRUE_ (1)
|
|
#define FALSE_ (0)
|
|
|
|
/* Extern is for use with -E */
|
|
#ifndef Extern
|
|
#define Extern extern
|
|
#endif
|
|
|
|
/* I/O stuff */
|
|
|
|
typedef int flag;
|
|
typedef int ftnlen;
|
|
typedef int ftnint;
|
|
|
|
/*external read, write*/
|
|
typedef struct
|
|
{ flag cierr;
|
|
ftnint ciunit;
|
|
flag ciend;
|
|
char *cifmt;
|
|
ftnint cirec;
|
|
} cilist;
|
|
|
|
/*internal read, write*/
|
|
typedef struct
|
|
{ flag icierr;
|
|
char *iciunit;
|
|
flag iciend;
|
|
char *icifmt;
|
|
ftnint icirlen;
|
|
ftnint icirnum;
|
|
} icilist;
|
|
|
|
/*open*/
|
|
typedef struct
|
|
{ flag oerr;
|
|
ftnint ounit;
|
|
char *ofnm;
|
|
ftnlen ofnmlen;
|
|
char *osta;
|
|
char *oacc;
|
|
char *ofm;
|
|
ftnint orl;
|
|
char *oblnk;
|
|
} olist;
|
|
|
|
/*close*/
|
|
typedef struct
|
|
{ flag cerr;
|
|
ftnint cunit;
|
|
char *csta;
|
|
} cllist;
|
|
|
|
/*rewind, backspace, endfile*/
|
|
typedef struct
|
|
{ flag aerr;
|
|
ftnint aunit;
|
|
} alist;
|
|
|
|
/* inquire */
|
|
typedef struct
|
|
{ flag inerr;
|
|
ftnint inunit;
|
|
char *infile;
|
|
ftnlen infilen;
|
|
ftnint *inex; /*parameters in standard's order*/
|
|
ftnint *inopen;
|
|
ftnint *innum;
|
|
ftnint *innamed;
|
|
char *inname;
|
|
ftnlen innamlen;
|
|
char *inacc;
|
|
ftnlen inacclen;
|
|
char *inseq;
|
|
ftnlen inseqlen;
|
|
char *indir;
|
|
ftnlen indirlen;
|
|
char *infmt;
|
|
ftnlen infmtlen;
|
|
char *inform;
|
|
ftnint informlen;
|
|
char *inunf;
|
|
ftnlen inunflen;
|
|
ftnint *inrecl;
|
|
ftnint *innrec;
|
|
char *inblank;
|
|
ftnlen inblanklen;
|
|
} inlist;
|
|
|
|
#define VOID void
|
|
|
|
union Multitype { /* for multiple entry points */
|
|
integer1 g;
|
|
shortint h;
|
|
integer i;
|
|
/* longint j; */
|
|
real r;
|
|
doublereal d;
|
|
complex c;
|
|
doublecomplex z;
|
|
};
|
|
|
|
typedef union Multitype Multitype;
|
|
|
|
struct Vardesc { /* for Namelist */
|
|
char *name;
|
|
char *addr;
|
|
ftnlen *dims;
|
|
int type;
|
|
};
|
|
typedef struct Vardesc Vardesc;
|
|
|
|
struct Namelist {
|
|
char *name;
|
|
Vardesc **vars;
|
|
int nvars;
|
|
};
|
|
typedef struct Namelist Namelist;
|
|
|
|
#define abs(x) ((x) >= 0 ? (x) : -(x))
|
|
#define dabs(x) (fabs(x))
|
|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
|
|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
|
|
#define dmin(a,b) (f2cmin(a,b))
|
|
#define dmax(a,b) (f2cmax(a,b))
|
|
#define bit_test(a,b) ((a) >> (b) & 1)
|
|
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
|
|
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
|
|
|
|
#define abort_() { sig_die("Fortran abort routine called", 1); }
|
|
#define c_abs(z) (cabsf(Cf(z)))
|
|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
|
|
#ifdef _MSC_VER
|
|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
|
|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
|
|
#else
|
|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
|
|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
|
|
#endif
|
|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
|
|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
|
|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
|
|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
|
|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
|
|
#define d_abs(x) (fabs(*(x)))
|
|
#define d_acos(x) (acos(*(x)))
|
|
#define d_asin(x) (asin(*(x)))
|
|
#define d_atan(x) (atan(*(x)))
|
|
#define d_atn2(x, y) (atan2(*(x),*(y)))
|
|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
|
|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
|
|
#define d_cos(x) (cos(*(x)))
|
|
#define d_cosh(x) (cosh(*(x)))
|
|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
|
|
#define d_exp(x) (exp(*(x)))
|
|
#define d_imag(z) (cimag(Cd(z)))
|
|
#define r_imag(z) (cimagf(Cf(z)))
|
|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define d_log(x) (log(*(x)))
|
|
#define d_mod(x, y) (fmod(*(x), *(y)))
|
|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
|
|
#define d_nint(x) u_nint(*(x))
|
|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
|
|
#define d_sign(a,b) u_sign(*(a),*(b))
|
|
#define r_sign(a,b) u_sign(*(a),*(b))
|
|
#define d_sin(x) (sin(*(x)))
|
|
#define d_sinh(x) (sinh(*(x)))
|
|
#define d_sqrt(x) (sqrt(*(x)))
|
|
#define d_tan(x) (tan(*(x)))
|
|
#define d_tanh(x) (tanh(*(x)))
|
|
#define i_abs(x) abs(*(x))
|
|
#define i_dnnt(x) ((integer)u_nint(*(x)))
|
|
#define i_len(s, n) (n)
|
|
#define i_nint(x) ((integer)u_nint(*(x)))
|
|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
|
|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
|
|
#define pow_si(B,E) spow_ui(*(B),*(E))
|
|
#define pow_ri(B,E) spow_ui(*(B),*(E))
|
|
#define pow_di(B,E) dpow_ui(*(B),*(E))
|
|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
|
|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
|
|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
|
|
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
|
|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
|
|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
|
|
#define sig_die(s, kill) { exit(1); }
|
|
#define s_stop(s, n) {exit(0);}
|
|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
|
|
#define z_abs(z) (cabs(Cd(z)))
|
|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
|
|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
|
|
#define myexit_() break;
|
|
#define mycycle() continue;
|
|
#define myceiling(w) {ceil(w)}
|
|
#define myhuge(w) {HUGE_VAL}
|
|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
|
|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
|
|
|
|
/* procedure parameter types for -A and -C++ */
|
|
|
|
|
|
#ifdef __cplusplus
|
|
typedef logical (*L_fp)(...);
|
|
#else
|
|
typedef logical (*L_fp)();
|
|
#endif
|
|
|
|
static float spow_ui(float x, integer n) {
|
|
float pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
static double dpow_ui(double x, integer n) {
|
|
double pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#ifdef _MSC_VER
|
|
static _Fcomplex cpow_ui(complex x, integer n) {
|
|
complex pow={1.0,0.0}; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow.r *= x.r, pow.i *= x.i;
|
|
if(u >>= 1) x.r *= x.r, x.i *= x.i;
|
|
else break;
|
|
}
|
|
}
|
|
_Fcomplex p={pow.r, pow.i};
|
|
return p;
|
|
}
|
|
#else
|
|
static _Complex float cpow_ui(_Complex float x, integer n) {
|
|
_Complex float pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#endif
|
|
#ifdef _MSC_VER
|
|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
|
|
_Dcomplex pow={1.0,0.0}; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
|
|
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
|
|
else break;
|
|
}
|
|
}
|
|
_Dcomplex p = {pow._Val[0], pow._Val[1]};
|
|
return p;
|
|
}
|
|
#else
|
|
static _Complex double zpow_ui(_Complex double x, integer n) {
|
|
_Complex double pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#endif
|
|
static integer pow_ii(integer x, integer n) {
|
|
integer pow; unsigned long int u;
|
|
if (n <= 0) {
|
|
if (n == 0 || x == 1) pow = 1;
|
|
else if (x != -1) pow = x == 0 ? 1/x : 0;
|
|
else n = -n;
|
|
}
|
|
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
|
|
u = n;
|
|
for(pow = 1; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
|
|
{
|
|
double m; integer i, mi;
|
|
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
|
if (w[i-1]>m) mi=i ,m=w[i-1];
|
|
return mi-s+1;
|
|
}
|
|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
|
|
{
|
|
float m; integer i, mi;
|
|
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
|
if (w[i-1]>m) mi=i ,m=w[i-1];
|
|
return mi-s+1;
|
|
}
|
|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Fcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
|
|
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex float zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Dcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
|
|
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex double zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Fcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
|
|
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex float zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cf(&x[i]) * Cf(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Dcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
|
|
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex double zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cd(&x[i]) * Cd(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#endif
|
|
/* -- translated by f2c (version 20000121).
|
|
You must link the resulting object file with the libraries:
|
|
-lf2c -lm (in that order)
|
|
*/
|
|
|
|
|
|
|
|
|
|
/* Table of constant values */
|
|
|
|
static integer c__1 = 1;
|
|
static integer c_n1 = -1;
|
|
static doublereal c_b12 = 0.;
|
|
static doublereal c_b13 = 1.;
|
|
static logical c_true = TRUE_;
|
|
|
|
/* > \brief \b DLAQR2 performs the orthogonal similarity transformation of a Hessenberg matrix to detect and d
|
|
eflate fully converged eigenvalues from a trailing principal submatrix (aggressive early deflation).
|
|
*/
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* > \htmlonly */
|
|
/* > Download DLAQR2 + dependencies */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqr2.
|
|
f"> */
|
|
/* > [TGZ]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqr2.
|
|
f"> */
|
|
/* > [ZIP]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqr2.
|
|
f"> */
|
|
/* > [TXT]</a> */
|
|
/* > \endhtmlonly */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* SUBROUTINE DLAQR2( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ, */
|
|
/* IHIZ, Z, LDZ, NS, ND, SR, SI, V, LDV, NH, T, */
|
|
/* LDT, NV, WV, LDWV, WORK, LWORK ) */
|
|
|
|
/* INTEGER IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV, */
|
|
/* $ LDZ, LWORK, N, ND, NH, NS, NV, NW */
|
|
/* LOGICAL WANTT, WANTZ */
|
|
/* DOUBLE PRECISION H( LDH, * ), SI( * ), SR( * ), T( LDT, * ), */
|
|
/* $ V( LDV, * ), WORK( * ), WV( LDWV, * ), */
|
|
/* $ Z( LDZ, * ) */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > DLAQR2 is identical to DLAQR3 except that it avoids */
|
|
/* > recursion by calling DLAHQR instead of DLAQR4. */
|
|
/* > */
|
|
/* > Aggressive early deflation: */
|
|
/* > */
|
|
/* > This subroutine accepts as input an upper Hessenberg matrix */
|
|
/* > H and performs an orthogonal similarity transformation */
|
|
/* > designed to detect and deflate fully converged eigenvalues from */
|
|
/* > a trailing principal submatrix. On output H has been over- */
|
|
/* > written by a new Hessenberg matrix that is a perturbation of */
|
|
/* > an orthogonal similarity transformation of H. It is to be */
|
|
/* > hoped that the final version of H has many zero subdiagonal */
|
|
/* > entries. */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] WANTT */
|
|
/* > \verbatim */
|
|
/* > WANTT is LOGICAL */
|
|
/* > If .TRUE., then the Hessenberg matrix H is fully updated */
|
|
/* > so that the quasi-triangular Schur factor may be */
|
|
/* > computed (in cooperation with the calling subroutine). */
|
|
/* > If .FALSE., then only enough of H is updated to preserve */
|
|
/* > the eigenvalues. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] WANTZ */
|
|
/* > \verbatim */
|
|
/* > WANTZ is LOGICAL */
|
|
/* > If .TRUE., then the orthogonal matrix Z is updated so */
|
|
/* > so that the orthogonal Schur factor may be computed */
|
|
/* > (in cooperation with the calling subroutine). */
|
|
/* > If .FALSE., then Z is not referenced. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > The order of the matrix H and (if WANTZ is .TRUE.) the */
|
|
/* > order of the orthogonal matrix Z. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] KTOP */
|
|
/* > \verbatim */
|
|
/* > KTOP is INTEGER */
|
|
/* > It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0. */
|
|
/* > KBOT and KTOP together determine an isolated block */
|
|
/* > along the diagonal of the Hessenberg matrix. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] KBOT */
|
|
/* > \verbatim */
|
|
/* > KBOT is INTEGER */
|
|
/* > It is assumed without a check that either */
|
|
/* > KBOT = N or H(KBOT+1,KBOT)=0. KBOT and KTOP together */
|
|
/* > determine an isolated block along the diagonal of the */
|
|
/* > Hessenberg matrix. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] NW */
|
|
/* > \verbatim */
|
|
/* > NW is INTEGER */
|
|
/* > Deflation window size. 1 <= NW <= (KBOT-KTOP+1). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] H */
|
|
/* > \verbatim */
|
|
/* > H is DOUBLE PRECISION array, dimension (LDH,N) */
|
|
/* > On input the initial N-by-N section of H stores the */
|
|
/* > Hessenberg matrix undergoing aggressive early deflation. */
|
|
/* > On output H has been transformed by an orthogonal */
|
|
/* > similarity transformation, perturbed, and the returned */
|
|
/* > to Hessenberg form that (it is to be hoped) has some */
|
|
/* > zero subdiagonal entries. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDH */
|
|
/* > \verbatim */
|
|
/* > LDH is INTEGER */
|
|
/* > Leading dimension of H just as declared in the calling */
|
|
/* > subroutine. N <= LDH */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] ILOZ */
|
|
/* > \verbatim */
|
|
/* > ILOZ is INTEGER */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] IHIZ */
|
|
/* > \verbatim */
|
|
/* > IHIZ is INTEGER */
|
|
/* > Specify the rows of Z to which transformations must be */
|
|
/* > applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] Z */
|
|
/* > \verbatim */
|
|
/* > Z is DOUBLE PRECISION array, dimension (LDZ,N) */
|
|
/* > IF WANTZ is .TRUE., then on output, the orthogonal */
|
|
/* > similarity transformation mentioned above has been */
|
|
/* > accumulated into Z(ILOZ:IHIZ,ILOZ:IHIZ) from the right. */
|
|
/* > If WANTZ is .FALSE., then Z is unreferenced. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDZ */
|
|
/* > \verbatim */
|
|
/* > LDZ is INTEGER */
|
|
/* > The leading dimension of Z just as declared in the */
|
|
/* > calling subroutine. 1 <= LDZ. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] NS */
|
|
/* > \verbatim */
|
|
/* > NS is INTEGER */
|
|
/* > The number of unconverged (ie approximate) eigenvalues */
|
|
/* > returned in SR and SI that may be used as shifts by the */
|
|
/* > calling subroutine. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] ND */
|
|
/* > \verbatim */
|
|
/* > ND is INTEGER */
|
|
/* > The number of converged eigenvalues uncovered by this */
|
|
/* > subroutine. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] SR */
|
|
/* > \verbatim */
|
|
/* > SR is DOUBLE PRECISION array, dimension (KBOT) */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] SI */
|
|
/* > \verbatim */
|
|
/* > SI is DOUBLE PRECISION array, dimension (KBOT) */
|
|
/* > On output, the real and imaginary parts of approximate */
|
|
/* > eigenvalues that may be used for shifts are stored in */
|
|
/* > SR(KBOT-ND-NS+1) through SR(KBOT-ND) and */
|
|
/* > SI(KBOT-ND-NS+1) through SI(KBOT-ND), respectively. */
|
|
/* > The real and imaginary parts of converged eigenvalues */
|
|
/* > are stored in SR(KBOT-ND+1) through SR(KBOT) and */
|
|
/* > SI(KBOT-ND+1) through SI(KBOT), respectively. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] V */
|
|
/* > \verbatim */
|
|
/* > V is DOUBLE PRECISION array, dimension (LDV,NW) */
|
|
/* > An NW-by-NW work array. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDV */
|
|
/* > \verbatim */
|
|
/* > LDV is INTEGER */
|
|
/* > The leading dimension of V just as declared in the */
|
|
/* > calling subroutine. NW <= LDV */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] NH */
|
|
/* > \verbatim */
|
|
/* > NH is INTEGER */
|
|
/* > The number of columns of T. NH >= NW. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] T */
|
|
/* > \verbatim */
|
|
/* > T is DOUBLE PRECISION array, dimension (LDT,NW) */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDT */
|
|
/* > \verbatim */
|
|
/* > LDT is INTEGER */
|
|
/* > The leading dimension of T just as declared in the */
|
|
/* > calling subroutine. NW <= LDT */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] NV */
|
|
/* > \verbatim */
|
|
/* > NV is INTEGER */
|
|
/* > The number of rows of work array WV available for */
|
|
/* > workspace. NV >= NW. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] WV */
|
|
/* > \verbatim */
|
|
/* > WV is DOUBLE PRECISION array, dimension (LDWV,NW) */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDWV */
|
|
/* > \verbatim */
|
|
/* > LDWV is INTEGER */
|
|
/* > The leading dimension of W just as declared in the */
|
|
/* > calling subroutine. NW <= LDV */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] WORK */
|
|
/* > \verbatim */
|
|
/* > WORK is DOUBLE PRECISION array, dimension (LWORK) */
|
|
/* > On exit, WORK(1) is set to an estimate of the optimal value */
|
|
/* > of LWORK for the given values of N, NW, KTOP and KBOT. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LWORK */
|
|
/* > \verbatim */
|
|
/* > LWORK is INTEGER */
|
|
/* > The dimension of the work array WORK. LWORK = 2*NW */
|
|
/* > suffices, but greater efficiency may result from larger */
|
|
/* > values of LWORK. */
|
|
/* > */
|
|
/* > If LWORK = -1, then a workspace query is assumed; DLAQR2 */
|
|
/* > only estimates the optimal workspace size for the given */
|
|
/* > values of N, NW, KTOP and KBOT. The estimate is returned */
|
|
/* > in WORK(1). No error message related to LWORK is issued */
|
|
/* > by XERBLA. Neither H nor Z are accessed. */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \date June 2017 */
|
|
|
|
/* > \ingroup doubleOTHERauxiliary */
|
|
|
|
/* > \par Contributors: */
|
|
/* ================== */
|
|
/* > */
|
|
/* > Karen Braman and Ralph Byers, Department of Mathematics, */
|
|
/* > University of Kansas, USA */
|
|
/* > */
|
|
/* ===================================================================== */
|
|
/* Subroutine */ void dlaqr2_(logical *wantt, logical *wantz, integer *n,
|
|
integer *ktop, integer *kbot, integer *nw, doublereal *h__, integer *
|
|
ldh, integer *iloz, integer *ihiz, doublereal *z__, integer *ldz,
|
|
integer *ns, integer *nd, doublereal *sr, doublereal *si, doublereal *
|
|
v, integer *ldv, integer *nh, doublereal *t, integer *ldt, integer *
|
|
nv, doublereal *wv, integer *ldwv, doublereal *work, integer *lwork)
|
|
{
|
|
/* System generated locals */
|
|
integer h_dim1, h_offset, t_dim1, t_offset, v_dim1, v_offset, wv_dim1,
|
|
wv_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4;
|
|
doublereal d__1, d__2, d__3, d__4, d__5, d__6;
|
|
|
|
/* Local variables */
|
|
doublereal beta;
|
|
integer kend, kcol, info, ifst, ilst, ltop, krow, i__, j, k;
|
|
doublereal s;
|
|
extern /* Subroutine */ void dlarf_(char *, integer *, integer *,
|
|
doublereal *, integer *, doublereal *, doublereal *, integer *,
|
|
doublereal *), dgemm_(char *, char *, integer *, integer *
|
|
, integer *, doublereal *, doublereal *, integer *, doublereal *,
|
|
integer *, doublereal *, doublereal *, integer *);
|
|
logical bulge;
|
|
extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *,
|
|
doublereal *, integer *);
|
|
integer infqr, kwtop;
|
|
extern /* Subroutine */ void dlanv2_(doublereal *, doublereal *,
|
|
doublereal *, doublereal *, doublereal *, doublereal *,
|
|
doublereal *, doublereal *, doublereal *, doublereal *);
|
|
doublereal aa, bb, cc;
|
|
extern /* Subroutine */ void dlabad_(doublereal *, doublereal *);
|
|
doublereal dd, cs;
|
|
extern doublereal dlamch_(char *);
|
|
extern /* Subroutine */ void dgehrd_(integer *, integer *, integer *,
|
|
doublereal *, integer *, doublereal *, doublereal *, integer *,
|
|
integer *), dlarfg_(integer *, doublereal *, doublereal *,
|
|
integer *, doublereal *);
|
|
doublereal sn;
|
|
integer jw;
|
|
extern /* Subroutine */ void dlahqr_(logical *, logical *, integer *,
|
|
integer *, integer *, doublereal *, integer *, doublereal *,
|
|
doublereal *, integer *, integer *, doublereal *, integer *,
|
|
integer *), dlacpy_(char *, integer *, integer *, doublereal *,
|
|
integer *, doublereal *, integer *);
|
|
doublereal safmin, safmax;
|
|
extern /* Subroutine */ void dlaset_(char *, integer *, integer *,
|
|
doublereal *, doublereal *, doublereal *, integer *),
|
|
dtrexc_(char *, integer *, doublereal *, integer *, doublereal *,
|
|
integer *, integer *, integer *, doublereal *, integer *),
|
|
dormhr_(char *, char *, integer *, integer *, integer *, integer
|
|
*, doublereal *, integer *, doublereal *, doublereal *, integer *,
|
|
doublereal *, integer *, integer *);
|
|
logical sorted;
|
|
doublereal smlnum;
|
|
integer lwkopt;
|
|
doublereal evi, evk, foo;
|
|
integer kln;
|
|
doublereal tau, ulp;
|
|
integer lwk1, lwk2;
|
|
|
|
|
|
/* -- LAPACK auxiliary routine (version 3.7.1) -- */
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
/* June 2017 */
|
|
|
|
|
|
/* ================================================================ */
|
|
|
|
/* ==== Estimate optimal workspace. ==== */
|
|
|
|
/* Parameter adjustments */
|
|
h_dim1 = *ldh;
|
|
h_offset = 1 + h_dim1 * 1;
|
|
h__ -= h_offset;
|
|
z_dim1 = *ldz;
|
|
z_offset = 1 + z_dim1 * 1;
|
|
z__ -= z_offset;
|
|
--sr;
|
|
--si;
|
|
v_dim1 = *ldv;
|
|
v_offset = 1 + v_dim1 * 1;
|
|
v -= v_offset;
|
|
t_dim1 = *ldt;
|
|
t_offset = 1 + t_dim1 * 1;
|
|
t -= t_offset;
|
|
wv_dim1 = *ldwv;
|
|
wv_offset = 1 + wv_dim1 * 1;
|
|
wv -= wv_offset;
|
|
--work;
|
|
|
|
/* Function Body */
|
|
/* Computing MIN */
|
|
i__1 = *nw, i__2 = *kbot - *ktop + 1;
|
|
jw = f2cmin(i__1,i__2);
|
|
if (jw <= 2) {
|
|
lwkopt = 1;
|
|
} else {
|
|
|
|
/* ==== Workspace query call to DGEHRD ==== */
|
|
|
|
i__1 = jw - 1;
|
|
dgehrd_(&jw, &c__1, &i__1, &t[t_offset], ldt, &work[1], &work[1], &
|
|
c_n1, &info);
|
|
lwk1 = (integer) work[1];
|
|
|
|
/* ==== Workspace query call to DORMHR ==== */
|
|
|
|
i__1 = jw - 1;
|
|
dormhr_("R", "N", &jw, &jw, &c__1, &i__1, &t[t_offset], ldt, &work[1],
|
|
&v[v_offset], ldv, &work[1], &c_n1, &info);
|
|
lwk2 = (integer) work[1];
|
|
|
|
/* ==== Optimal workspace ==== */
|
|
|
|
lwkopt = jw + f2cmax(lwk1,lwk2);
|
|
}
|
|
|
|
/* ==== Quick return in case of workspace query. ==== */
|
|
|
|
if (*lwork == -1) {
|
|
work[1] = (doublereal) lwkopt;
|
|
return;
|
|
}
|
|
|
|
/* ==== Nothing to do ... */
|
|
/* ... for an empty active block ... ==== */
|
|
*ns = 0;
|
|
*nd = 0;
|
|
work[1] = 1.;
|
|
if (*ktop > *kbot) {
|
|
return;
|
|
}
|
|
/* ... nor for an empty deflation window. ==== */
|
|
if (*nw < 1) {
|
|
return;
|
|
}
|
|
|
|
/* ==== Machine constants ==== */
|
|
|
|
safmin = dlamch_("SAFE MINIMUM");
|
|
safmax = 1. / safmin;
|
|
dlabad_(&safmin, &safmax);
|
|
ulp = dlamch_("PRECISION");
|
|
smlnum = safmin * ((doublereal) (*n) / ulp);
|
|
|
|
/* ==== Setup deflation window ==== */
|
|
|
|
/* Computing MIN */
|
|
i__1 = *nw, i__2 = *kbot - *ktop + 1;
|
|
jw = f2cmin(i__1,i__2);
|
|
kwtop = *kbot - jw + 1;
|
|
if (kwtop == *ktop) {
|
|
s = 0.;
|
|
} else {
|
|
s = h__[kwtop + (kwtop - 1) * h_dim1];
|
|
}
|
|
|
|
if (*kbot == kwtop) {
|
|
|
|
/* ==== 1-by-1 deflation window: not much to do ==== */
|
|
|
|
sr[kwtop] = h__[kwtop + kwtop * h_dim1];
|
|
si[kwtop] = 0.;
|
|
*ns = 1;
|
|
*nd = 0;
|
|
/* Computing MAX */
|
|
d__2 = smlnum, d__3 = ulp * (d__1 = h__[kwtop + kwtop * h_dim1], abs(
|
|
d__1));
|
|
if (abs(s) <= f2cmax(d__2,d__3)) {
|
|
*ns = 0;
|
|
*nd = 1;
|
|
if (kwtop > *ktop) {
|
|
h__[kwtop + (kwtop - 1) * h_dim1] = 0.;
|
|
}
|
|
}
|
|
work[1] = 1.;
|
|
return;
|
|
}
|
|
|
|
/* ==== Convert to spike-triangular form. (In case of a */
|
|
/* . rare QR failure, this routine continues to do */
|
|
/* . aggressive early deflation using that part of */
|
|
/* . the deflation window that converged using INFQR */
|
|
/* . here and there to keep track.) ==== */
|
|
|
|
dlacpy_("U", &jw, &jw, &h__[kwtop + kwtop * h_dim1], ldh, &t[t_offset],
|
|
ldt);
|
|
i__1 = jw - 1;
|
|
i__2 = *ldh + 1;
|
|
i__3 = *ldt + 1;
|
|
dcopy_(&i__1, &h__[kwtop + 1 + kwtop * h_dim1], &i__2, &t[t_dim1 + 2], &
|
|
i__3);
|
|
|
|
dlaset_("A", &jw, &jw, &c_b12, &c_b13, &v[v_offset], ldv);
|
|
dlahqr_(&c_true, &c_true, &jw, &c__1, &jw, &t[t_offset], ldt, &sr[kwtop],
|
|
&si[kwtop], &c__1, &jw, &v[v_offset], ldv, &infqr);
|
|
|
|
/* ==== DTREXC needs a clean margin near the diagonal ==== */
|
|
|
|
i__1 = jw - 3;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
t[j + 2 + j * t_dim1] = 0.;
|
|
t[j + 3 + j * t_dim1] = 0.;
|
|
/* L10: */
|
|
}
|
|
if (jw > 2) {
|
|
t[jw + (jw - 2) * t_dim1] = 0.;
|
|
}
|
|
|
|
/* ==== Deflation detection loop ==== */
|
|
|
|
*ns = jw;
|
|
ilst = infqr + 1;
|
|
L20:
|
|
if (ilst <= *ns) {
|
|
if (*ns == 1) {
|
|
bulge = FALSE_;
|
|
} else {
|
|
bulge = t[*ns + (*ns - 1) * t_dim1] != 0.;
|
|
}
|
|
|
|
/* ==== Small spike tip test for deflation ==== */
|
|
|
|
if (! bulge) {
|
|
|
|
/* ==== Real eigenvalue ==== */
|
|
|
|
foo = (d__1 = t[*ns + *ns * t_dim1], abs(d__1));
|
|
if (foo == 0.) {
|
|
foo = abs(s);
|
|
}
|
|
/* Computing MAX */
|
|
d__2 = smlnum, d__3 = ulp * foo;
|
|
if ((d__1 = s * v[*ns * v_dim1 + 1], abs(d__1)) <= f2cmax(d__2,d__3))
|
|
{
|
|
|
|
/* ==== Deflatable ==== */
|
|
|
|
--(*ns);
|
|
} else {
|
|
|
|
/* ==== Undeflatable. Move it up out of the way. */
|
|
/* . (DTREXC can not fail in this case.) ==== */
|
|
|
|
ifst = *ns;
|
|
dtrexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst,
|
|
&ilst, &work[1], &info);
|
|
++ilst;
|
|
}
|
|
} else {
|
|
|
|
/* ==== Complex conjugate pair ==== */
|
|
|
|
foo = (d__3 = t[*ns + *ns * t_dim1], abs(d__3)) + sqrt((d__1 = t[*
|
|
ns + (*ns - 1) * t_dim1], abs(d__1))) * sqrt((d__2 = t[*
|
|
ns - 1 + *ns * t_dim1], abs(d__2)));
|
|
if (foo == 0.) {
|
|
foo = abs(s);
|
|
}
|
|
/* Computing MAX */
|
|
d__3 = (d__1 = s * v[*ns * v_dim1 + 1], abs(d__1)), d__4 = (d__2 =
|
|
s * v[(*ns - 1) * v_dim1 + 1], abs(d__2));
|
|
/* Computing MAX */
|
|
d__5 = smlnum, d__6 = ulp * foo;
|
|
if (f2cmax(d__3,d__4) <= f2cmax(d__5,d__6)) {
|
|
|
|
/* ==== Deflatable ==== */
|
|
|
|
*ns += -2;
|
|
} else {
|
|
|
|
/* ==== Undeflatable. Move them up out of the way. */
|
|
/* . Fortunately, DTREXC does the right thing with */
|
|
/* . ILST in case of a rare exchange failure. ==== */
|
|
|
|
ifst = *ns;
|
|
dtrexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst,
|
|
&ilst, &work[1], &info);
|
|
ilst += 2;
|
|
}
|
|
}
|
|
|
|
/* ==== End deflation detection loop ==== */
|
|
|
|
goto L20;
|
|
}
|
|
|
|
/* ==== Return to Hessenberg form ==== */
|
|
|
|
if (*ns == 0) {
|
|
s = 0.;
|
|
}
|
|
|
|
if (*ns < jw) {
|
|
|
|
/* ==== sorting diagonal blocks of T improves accuracy for */
|
|
/* . graded matrices. Bubble sort deals well with */
|
|
/* . exchange failures. ==== */
|
|
|
|
sorted = FALSE_;
|
|
i__ = *ns + 1;
|
|
L30:
|
|
if (sorted) {
|
|
goto L50;
|
|
}
|
|
sorted = TRUE_;
|
|
|
|
kend = i__ - 1;
|
|
i__ = infqr + 1;
|
|
if (i__ == *ns) {
|
|
k = i__ + 1;
|
|
} else if (t[i__ + 1 + i__ * t_dim1] == 0.) {
|
|
k = i__ + 1;
|
|
} else {
|
|
k = i__ + 2;
|
|
}
|
|
L40:
|
|
if (k <= kend) {
|
|
if (k == i__ + 1) {
|
|
evi = (d__1 = t[i__ + i__ * t_dim1], abs(d__1));
|
|
} else {
|
|
evi = (d__3 = t[i__ + i__ * t_dim1], abs(d__3)) + sqrt((d__1 =
|
|
t[i__ + 1 + i__ * t_dim1], abs(d__1))) * sqrt((d__2 =
|
|
t[i__ + (i__ + 1) * t_dim1], abs(d__2)));
|
|
}
|
|
|
|
if (k == kend) {
|
|
evk = (d__1 = t[k + k * t_dim1], abs(d__1));
|
|
} else if (t[k + 1 + k * t_dim1] == 0.) {
|
|
evk = (d__1 = t[k + k * t_dim1], abs(d__1));
|
|
} else {
|
|
evk = (d__3 = t[k + k * t_dim1], abs(d__3)) + sqrt((d__1 = t[
|
|
k + 1 + k * t_dim1], abs(d__1))) * sqrt((d__2 = t[k +
|
|
(k + 1) * t_dim1], abs(d__2)));
|
|
}
|
|
|
|
if (evi >= evk) {
|
|
i__ = k;
|
|
} else {
|
|
sorted = FALSE_;
|
|
ifst = i__;
|
|
ilst = k;
|
|
dtrexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst,
|
|
&ilst, &work[1], &info);
|
|
if (info == 0) {
|
|
i__ = ilst;
|
|
} else {
|
|
i__ = k;
|
|
}
|
|
}
|
|
if (i__ == kend) {
|
|
k = i__ + 1;
|
|
} else if (t[i__ + 1 + i__ * t_dim1] == 0.) {
|
|
k = i__ + 1;
|
|
} else {
|
|
k = i__ + 2;
|
|
}
|
|
goto L40;
|
|
}
|
|
goto L30;
|
|
L50:
|
|
;
|
|
}
|
|
|
|
/* ==== Restore shift/eigenvalue array from T ==== */
|
|
|
|
i__ = jw;
|
|
L60:
|
|
if (i__ >= infqr + 1) {
|
|
if (i__ == infqr + 1) {
|
|
sr[kwtop + i__ - 1] = t[i__ + i__ * t_dim1];
|
|
si[kwtop + i__ - 1] = 0.;
|
|
--i__;
|
|
} else if (t[i__ + (i__ - 1) * t_dim1] == 0.) {
|
|
sr[kwtop + i__ - 1] = t[i__ + i__ * t_dim1];
|
|
si[kwtop + i__ - 1] = 0.;
|
|
--i__;
|
|
} else {
|
|
aa = t[i__ - 1 + (i__ - 1) * t_dim1];
|
|
cc = t[i__ + (i__ - 1) * t_dim1];
|
|
bb = t[i__ - 1 + i__ * t_dim1];
|
|
dd = t[i__ + i__ * t_dim1];
|
|
dlanv2_(&aa, &bb, &cc, &dd, &sr[kwtop + i__ - 2], &si[kwtop + i__
|
|
- 2], &sr[kwtop + i__ - 1], &si[kwtop + i__ - 1], &cs, &
|
|
sn);
|
|
i__ += -2;
|
|
}
|
|
goto L60;
|
|
}
|
|
|
|
if (*ns < jw || s == 0.) {
|
|
if (*ns > 1 && s != 0.) {
|
|
|
|
/* ==== Reflect spike back into lower triangle ==== */
|
|
|
|
dcopy_(ns, &v[v_offset], ldv, &work[1], &c__1);
|
|
beta = work[1];
|
|
dlarfg_(ns, &beta, &work[2], &c__1, &tau);
|
|
work[1] = 1.;
|
|
|
|
i__1 = jw - 2;
|
|
i__2 = jw - 2;
|
|
dlaset_("L", &i__1, &i__2, &c_b12, &c_b12, &t[t_dim1 + 3], ldt);
|
|
|
|
dlarf_("L", ns, &jw, &work[1], &c__1, &tau, &t[t_offset], ldt, &
|
|
work[jw + 1]);
|
|
dlarf_("R", ns, ns, &work[1], &c__1, &tau, &t[t_offset], ldt, &
|
|
work[jw + 1]);
|
|
dlarf_("R", &jw, ns, &work[1], &c__1, &tau, &v[v_offset], ldv, &
|
|
work[jw + 1]);
|
|
|
|
i__1 = *lwork - jw;
|
|
dgehrd_(&jw, &c__1, ns, &t[t_offset], ldt, &work[1], &work[jw + 1]
|
|
, &i__1, &info);
|
|
}
|
|
|
|
/* ==== Copy updated reduced window into place ==== */
|
|
|
|
if (kwtop > 1) {
|
|
h__[kwtop + (kwtop - 1) * h_dim1] = s * v[v_dim1 + 1];
|
|
}
|
|
dlacpy_("U", &jw, &jw, &t[t_offset], ldt, &h__[kwtop + kwtop * h_dim1]
|
|
, ldh);
|
|
i__1 = jw - 1;
|
|
i__2 = *ldt + 1;
|
|
i__3 = *ldh + 1;
|
|
dcopy_(&i__1, &t[t_dim1 + 2], &i__2, &h__[kwtop + 1 + kwtop * h_dim1],
|
|
&i__3);
|
|
|
|
/* ==== Accumulate orthogonal matrix in order update */
|
|
/* . H and Z, if requested. ==== */
|
|
|
|
if (*ns > 1 && s != 0.) {
|
|
i__1 = *lwork - jw;
|
|
dormhr_("R", "N", &jw, ns, &c__1, ns, &t[t_offset], ldt, &work[1],
|
|
&v[v_offset], ldv, &work[jw + 1], &i__1, &info);
|
|
}
|
|
|
|
/* ==== Update vertical slab in H ==== */
|
|
|
|
if (*wantt) {
|
|
ltop = 1;
|
|
} else {
|
|
ltop = *ktop;
|
|
}
|
|
i__1 = kwtop - 1;
|
|
i__2 = *nv;
|
|
for (krow = ltop; i__2 < 0 ? krow >= i__1 : krow <= i__1; krow +=
|
|
i__2) {
|
|
/* Computing MIN */
|
|
i__3 = *nv, i__4 = kwtop - krow;
|
|
kln = f2cmin(i__3,i__4);
|
|
dgemm_("N", "N", &kln, &jw, &jw, &c_b13, &h__[krow + kwtop *
|
|
h_dim1], ldh, &v[v_offset], ldv, &c_b12, &wv[wv_offset],
|
|
ldwv);
|
|
dlacpy_("A", &kln, &jw, &wv[wv_offset], ldwv, &h__[krow + kwtop *
|
|
h_dim1], ldh);
|
|
/* L70: */
|
|
}
|
|
|
|
/* ==== Update horizontal slab in H ==== */
|
|
|
|
if (*wantt) {
|
|
i__2 = *n;
|
|
i__1 = *nh;
|
|
for (kcol = *kbot + 1; i__1 < 0 ? kcol >= i__2 : kcol <= i__2;
|
|
kcol += i__1) {
|
|
/* Computing MIN */
|
|
i__3 = *nh, i__4 = *n - kcol + 1;
|
|
kln = f2cmin(i__3,i__4);
|
|
dgemm_("C", "N", &jw, &kln, &jw, &c_b13, &v[v_offset], ldv, &
|
|
h__[kwtop + kcol * h_dim1], ldh, &c_b12, &t[t_offset],
|
|
ldt);
|
|
dlacpy_("A", &jw, &kln, &t[t_offset], ldt, &h__[kwtop + kcol *
|
|
h_dim1], ldh);
|
|
/* L80: */
|
|
}
|
|
}
|
|
|
|
/* ==== Update vertical slab in Z ==== */
|
|
|
|
if (*wantz) {
|
|
i__1 = *ihiz;
|
|
i__2 = *nv;
|
|
for (krow = *iloz; i__2 < 0 ? krow >= i__1 : krow <= i__1; krow +=
|
|
i__2) {
|
|
/* Computing MIN */
|
|
i__3 = *nv, i__4 = *ihiz - krow + 1;
|
|
kln = f2cmin(i__3,i__4);
|
|
dgemm_("N", "N", &kln, &jw, &jw, &c_b13, &z__[krow + kwtop *
|
|
z_dim1], ldz, &v[v_offset], ldv, &c_b12, &wv[
|
|
wv_offset], ldwv);
|
|
dlacpy_("A", &kln, &jw, &wv[wv_offset], ldwv, &z__[krow +
|
|
kwtop * z_dim1], ldz);
|
|
/* L90: */
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ==== Return the number of deflations ... ==== */
|
|
|
|
*nd = jw - *ns;
|
|
|
|
/* ==== ... and the number of shifts. (Subtracting */
|
|
/* . INFQR from the spike length takes care */
|
|
/* . of the case of a rare QR failure while */
|
|
/* . calculating eigenvalues of the deflation */
|
|
/* . window.) ==== */
|
|
|
|
*ns -= infqr;
|
|
|
|
/* ==== Return optimal workspace. ==== */
|
|
|
|
work[1] = (doublereal) lwkopt;
|
|
|
|
/* ==== End of DLAQR2 ==== */
|
|
|
|
return;
|
|
} /* dlaqr2_ */
|
|
|