1605 lines
43 KiB
C
1605 lines
43 KiB
C
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <complex.h>
|
|
#ifdef complex
|
|
#undef complex
|
|
#endif
|
|
#ifdef I
|
|
#undef I
|
|
#endif
|
|
|
|
#if defined(_WIN64)
|
|
typedef long long BLASLONG;
|
|
typedef unsigned long long BLASULONG;
|
|
#else
|
|
typedef long BLASLONG;
|
|
typedef unsigned long BLASULONG;
|
|
#endif
|
|
|
|
#ifdef LAPACK_ILP64
|
|
typedef BLASLONG blasint;
|
|
#if defined(_WIN64)
|
|
#define blasabs(x) llabs(x)
|
|
#else
|
|
#define blasabs(x) labs(x)
|
|
#endif
|
|
#else
|
|
typedef int blasint;
|
|
#define blasabs(x) abs(x)
|
|
#endif
|
|
|
|
typedef blasint integer;
|
|
|
|
typedef unsigned int uinteger;
|
|
typedef char *address;
|
|
typedef short int shortint;
|
|
typedef float real;
|
|
typedef double doublereal;
|
|
typedef struct { real r, i; } complex;
|
|
typedef struct { doublereal r, i; } doublecomplex;
|
|
#ifdef _MSC_VER
|
|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
|
|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
|
|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
|
|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
|
|
#else
|
|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
|
|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
|
|
#endif
|
|
#define pCf(z) (*_pCf(z))
|
|
#define pCd(z) (*_pCd(z))
|
|
typedef blasint logical;
|
|
|
|
typedef char logical1;
|
|
typedef char integer1;
|
|
|
|
#define TRUE_ (1)
|
|
#define FALSE_ (0)
|
|
|
|
/* Extern is for use with -E */
|
|
#ifndef Extern
|
|
#define Extern extern
|
|
#endif
|
|
|
|
/* I/O stuff */
|
|
|
|
typedef int flag;
|
|
typedef int ftnlen;
|
|
typedef int ftnint;
|
|
|
|
/*external read, write*/
|
|
typedef struct
|
|
{ flag cierr;
|
|
ftnint ciunit;
|
|
flag ciend;
|
|
char *cifmt;
|
|
ftnint cirec;
|
|
} cilist;
|
|
|
|
/*internal read, write*/
|
|
typedef struct
|
|
{ flag icierr;
|
|
char *iciunit;
|
|
flag iciend;
|
|
char *icifmt;
|
|
ftnint icirlen;
|
|
ftnint icirnum;
|
|
} icilist;
|
|
|
|
/*open*/
|
|
typedef struct
|
|
{ flag oerr;
|
|
ftnint ounit;
|
|
char *ofnm;
|
|
ftnlen ofnmlen;
|
|
char *osta;
|
|
char *oacc;
|
|
char *ofm;
|
|
ftnint orl;
|
|
char *oblnk;
|
|
} olist;
|
|
|
|
/*close*/
|
|
typedef struct
|
|
{ flag cerr;
|
|
ftnint cunit;
|
|
char *csta;
|
|
} cllist;
|
|
|
|
/*rewind, backspace, endfile*/
|
|
typedef struct
|
|
{ flag aerr;
|
|
ftnint aunit;
|
|
} alist;
|
|
|
|
/* inquire */
|
|
typedef struct
|
|
{ flag inerr;
|
|
ftnint inunit;
|
|
char *infile;
|
|
ftnlen infilen;
|
|
ftnint *inex; /*parameters in standard's order*/
|
|
ftnint *inopen;
|
|
ftnint *innum;
|
|
ftnint *innamed;
|
|
char *inname;
|
|
ftnlen innamlen;
|
|
char *inacc;
|
|
ftnlen inacclen;
|
|
char *inseq;
|
|
ftnlen inseqlen;
|
|
char *indir;
|
|
ftnlen indirlen;
|
|
char *infmt;
|
|
ftnlen infmtlen;
|
|
char *inform;
|
|
ftnint informlen;
|
|
char *inunf;
|
|
ftnlen inunflen;
|
|
ftnint *inrecl;
|
|
ftnint *innrec;
|
|
char *inblank;
|
|
ftnlen inblanklen;
|
|
} inlist;
|
|
|
|
#define VOID void
|
|
|
|
union Multitype { /* for multiple entry points */
|
|
integer1 g;
|
|
shortint h;
|
|
integer i;
|
|
/* longint j; */
|
|
real r;
|
|
doublereal d;
|
|
complex c;
|
|
doublecomplex z;
|
|
};
|
|
|
|
typedef union Multitype Multitype;
|
|
|
|
struct Vardesc { /* for Namelist */
|
|
char *name;
|
|
char *addr;
|
|
ftnlen *dims;
|
|
int type;
|
|
};
|
|
typedef struct Vardesc Vardesc;
|
|
|
|
struct Namelist {
|
|
char *name;
|
|
Vardesc **vars;
|
|
int nvars;
|
|
};
|
|
typedef struct Namelist Namelist;
|
|
|
|
#define abs(x) ((x) >= 0 ? (x) : -(x))
|
|
#define dabs(x) (fabs(x))
|
|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
|
|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
|
|
#define dmin(a,b) (f2cmin(a,b))
|
|
#define dmax(a,b) (f2cmax(a,b))
|
|
#define bit_test(a,b) ((a) >> (b) & 1)
|
|
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
|
|
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
|
|
|
|
#define abort_() { sig_die("Fortran abort routine called", 1); }
|
|
#define c_abs(z) (cabsf(Cf(z)))
|
|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
|
|
#ifdef _MSC_VER
|
|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
|
|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
|
|
#else
|
|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
|
|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
|
|
#endif
|
|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
|
|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
|
|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
|
|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
|
|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
|
|
#define d_abs(x) (fabs(*(x)))
|
|
#define d_acos(x) (acos(*(x)))
|
|
#define d_asin(x) (asin(*(x)))
|
|
#define d_atan(x) (atan(*(x)))
|
|
#define d_atn2(x, y) (atan2(*(x),*(y)))
|
|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
|
|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
|
|
#define d_cos(x) (cos(*(x)))
|
|
#define d_cosh(x) (cosh(*(x)))
|
|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
|
|
#define d_exp(x) (exp(*(x)))
|
|
#define d_imag(z) (cimag(Cd(z)))
|
|
#define r_imag(z) (cimagf(Cf(z)))
|
|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define d_log(x) (log(*(x)))
|
|
#define d_mod(x, y) (fmod(*(x), *(y)))
|
|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
|
|
#define d_nint(x) u_nint(*(x))
|
|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
|
|
#define d_sign(a,b) u_sign(*(a),*(b))
|
|
#define r_sign(a,b) u_sign(*(a),*(b))
|
|
#define d_sin(x) (sin(*(x)))
|
|
#define d_sinh(x) (sinh(*(x)))
|
|
#define d_sqrt(x) (sqrt(*(x)))
|
|
#define d_tan(x) (tan(*(x)))
|
|
#define d_tanh(x) (tanh(*(x)))
|
|
#define i_abs(x) abs(*(x))
|
|
#define i_dnnt(x) ((integer)u_nint(*(x)))
|
|
#define i_len(s, n) (n)
|
|
#define i_nint(x) ((integer)u_nint(*(x)))
|
|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
|
|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
|
|
#define pow_si(B,E) spow_ui(*(B),*(E))
|
|
#define pow_ri(B,E) spow_ui(*(B),*(E))
|
|
#define pow_di(B,E) dpow_ui(*(B),*(E))
|
|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
|
|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
|
|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
|
|
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
|
|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
|
|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
|
|
#define sig_die(s, kill) { exit(1); }
|
|
#define s_stop(s, n) {exit(0);}
|
|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
|
|
#define z_abs(z) (cabs(Cd(z)))
|
|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
|
|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
|
|
#define myexit_() break;
|
|
#define mycycle() continue;
|
|
#define myceiling(w) {ceil(w)}
|
|
#define myhuge(w) {HUGE_VAL}
|
|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
|
|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
|
|
|
|
/* procedure parameter types for -A and -C++ */
|
|
|
|
|
|
#ifdef __cplusplus
|
|
typedef logical (*L_fp)(...);
|
|
#else
|
|
typedef logical (*L_fp)();
|
|
#endif
|
|
|
|
static float spow_ui(float x, integer n) {
|
|
float pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
static double dpow_ui(double x, integer n) {
|
|
double pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#ifdef _MSC_VER
|
|
static _Fcomplex cpow_ui(complex x, integer n) {
|
|
complex pow={1.0,0.0}; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow.r *= x.r, pow.i *= x.i;
|
|
if(u >>= 1) x.r *= x.r, x.i *= x.i;
|
|
else break;
|
|
}
|
|
}
|
|
_Fcomplex p={pow.r, pow.i};
|
|
return p;
|
|
}
|
|
#else
|
|
static _Complex float cpow_ui(_Complex float x, integer n) {
|
|
_Complex float pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#endif
|
|
#ifdef _MSC_VER
|
|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
|
|
_Dcomplex pow={1.0,0.0}; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
|
|
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
|
|
else break;
|
|
}
|
|
}
|
|
_Dcomplex p = {pow._Val[0], pow._Val[1]};
|
|
return p;
|
|
}
|
|
#else
|
|
static _Complex double zpow_ui(_Complex double x, integer n) {
|
|
_Complex double pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#endif
|
|
static integer pow_ii(integer x, integer n) {
|
|
integer pow; unsigned long int u;
|
|
if (n <= 0) {
|
|
if (n == 0 || x == 1) pow = 1;
|
|
else if (x != -1) pow = x == 0 ? 1/x : 0;
|
|
else n = -n;
|
|
}
|
|
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
|
|
u = n;
|
|
for(pow = 1; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
|
|
{
|
|
double m; integer i, mi;
|
|
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
|
if (w[i-1]>m) mi=i ,m=w[i-1];
|
|
return mi-s+1;
|
|
}
|
|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
|
|
{
|
|
float m; integer i, mi;
|
|
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
|
if (w[i-1]>m) mi=i ,m=w[i-1];
|
|
return mi-s+1;
|
|
}
|
|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Fcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
|
|
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex float zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Dcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
|
|
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex double zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Fcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
|
|
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex float zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cf(&x[i]) * Cf(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Dcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
|
|
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex double zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cd(&x[i]) * Cd(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#endif
|
|
/* -- translated by f2c (version 20000121).
|
|
You must link the resulting object file with the libraries:
|
|
-lf2c -lm (in that order)
|
|
*/
|
|
|
|
|
|
|
|
|
|
/* Table of constant values */
|
|
|
|
static integer c__1 = 1;
|
|
|
|
/* > \brief \b DLANSF returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the ele
|
|
ment of largest absolute value of a symmetric matrix in RFP format. */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* > \htmlonly */
|
|
/* > Download DLANSF + dependencies */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlansf.
|
|
f"> */
|
|
/* > [TGZ]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlansf.
|
|
f"> */
|
|
/* > [ZIP]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlansf.
|
|
f"> */
|
|
/* > [TXT]</a> */
|
|
/* > \endhtmlonly */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* DOUBLE PRECISION FUNCTION DLANSF( NORM, TRANSR, UPLO, N, A, WORK ) */
|
|
|
|
/* CHARACTER NORM, TRANSR, UPLO */
|
|
/* INTEGER N */
|
|
/* DOUBLE PRECISION A( 0: * ), WORK( 0: * ) */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > DLANSF returns the value of the one norm, or the Frobenius norm, or */
|
|
/* > the infinity norm, or the element of largest absolute value of a */
|
|
/* > real symmetric matrix A in RFP format. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \return DLANSF */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > DLANSF = ( f2cmax(abs(A(i,j))), NORM = 'M' or 'm' */
|
|
/* > ( */
|
|
/* > ( norm1(A), NORM = '1', 'O' or 'o' */
|
|
/* > ( */
|
|
/* > ( normI(A), NORM = 'I' or 'i' */
|
|
/* > ( */
|
|
/* > ( normF(A), NORM = 'F', 'f', 'E' or 'e' */
|
|
/* > */
|
|
/* > where norm1 denotes the one norm of a matrix (maximum column sum), */
|
|
/* > normI denotes the infinity norm of a matrix (maximum row sum) and */
|
|
/* > normF denotes the Frobenius norm of a matrix (square root of sum of */
|
|
/* > squares). Note that f2cmax(abs(A(i,j))) is not a matrix norm. */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] NORM */
|
|
/* > \verbatim */
|
|
/* > NORM is CHARACTER*1 */
|
|
/* > Specifies the value to be returned in DLANSF as described */
|
|
/* > above. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] TRANSR */
|
|
/* > \verbatim */
|
|
/* > TRANSR is CHARACTER*1 */
|
|
/* > Specifies whether the RFP format of A is normal or */
|
|
/* > transposed format. */
|
|
/* > = 'N': RFP format is Normal; */
|
|
/* > = 'T': RFP format is Transpose. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] UPLO */
|
|
/* > \verbatim */
|
|
/* > UPLO is CHARACTER*1 */
|
|
/* > On entry, UPLO specifies whether the RFP matrix A came from */
|
|
/* > an upper or lower triangular matrix as follows: */
|
|
/* > = 'U': RFP A came from an upper triangular matrix; */
|
|
/* > = 'L': RFP A came from a lower triangular matrix. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > The order of the matrix A. N >= 0. When N = 0, DLANSF is */
|
|
/* > set to zero. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] A */
|
|
/* > \verbatim */
|
|
/* > A is DOUBLE PRECISION array, dimension ( N*(N+1)/2 ); */
|
|
/* > On entry, the upper (if UPLO = 'U') or lower (if UPLO = 'L') */
|
|
/* > part of the symmetric matrix A stored in RFP format. See the */
|
|
/* > "Notes" below for more details. */
|
|
/* > Unchanged on exit. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] WORK */
|
|
/* > \verbatim */
|
|
/* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)), */
|
|
/* > where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, */
|
|
/* > WORK is not referenced. */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \date December 2016 */
|
|
|
|
/* > \ingroup doubleOTHERcomputational */
|
|
|
|
/* > \par Further Details: */
|
|
/* ===================== */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > We first consider Rectangular Full Packed (RFP) Format when N is */
|
|
/* > even. We give an example where N = 6. */
|
|
/* > */
|
|
/* > AP is Upper AP is Lower */
|
|
/* > */
|
|
/* > 00 01 02 03 04 05 00 */
|
|
/* > 11 12 13 14 15 10 11 */
|
|
/* > 22 23 24 25 20 21 22 */
|
|
/* > 33 34 35 30 31 32 33 */
|
|
/* > 44 45 40 41 42 43 44 */
|
|
/* > 55 50 51 52 53 54 55 */
|
|
/* > */
|
|
/* > */
|
|
/* > Let TRANSR = 'N'. RFP holds AP as follows: */
|
|
/* > For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last */
|
|
/* > three columns of AP upper. The lower triangle A(4:6,0:2) consists of */
|
|
/* > the transpose of the first three columns of AP upper. */
|
|
/* > For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first */
|
|
/* > three columns of AP lower. The upper triangle A(0:2,0:2) consists of */
|
|
/* > the transpose of the last three columns of AP lower. */
|
|
/* > This covers the case N even and TRANSR = 'N'. */
|
|
/* > */
|
|
/* > RFP A RFP A */
|
|
/* > */
|
|
/* > 03 04 05 33 43 53 */
|
|
/* > 13 14 15 00 44 54 */
|
|
/* > 23 24 25 10 11 55 */
|
|
/* > 33 34 35 20 21 22 */
|
|
/* > 00 44 45 30 31 32 */
|
|
/* > 01 11 55 40 41 42 */
|
|
/* > 02 12 22 50 51 52 */
|
|
/* > */
|
|
/* > Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */
|
|
/* > transpose of RFP A above. One therefore gets: */
|
|
/* > */
|
|
/* > */
|
|
/* > RFP A RFP A */
|
|
/* > */
|
|
/* > 03 13 23 33 00 01 02 33 00 10 20 30 40 50 */
|
|
/* > 04 14 24 34 44 11 12 43 44 11 21 31 41 51 */
|
|
/* > 05 15 25 35 45 55 22 53 54 55 22 32 42 52 */
|
|
/* > */
|
|
/* > */
|
|
/* > We then consider Rectangular Full Packed (RFP) Format when N is */
|
|
/* > odd. We give an example where N = 5. */
|
|
/* > */
|
|
/* > AP is Upper AP is Lower */
|
|
/* > */
|
|
/* > 00 01 02 03 04 00 */
|
|
/* > 11 12 13 14 10 11 */
|
|
/* > 22 23 24 20 21 22 */
|
|
/* > 33 34 30 31 32 33 */
|
|
/* > 44 40 41 42 43 44 */
|
|
/* > */
|
|
/* > */
|
|
/* > Let TRANSR = 'N'. RFP holds AP as follows: */
|
|
/* > For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last */
|
|
/* > three columns of AP upper. The lower triangle A(3:4,0:1) consists of */
|
|
/* > the transpose of the first two columns of AP upper. */
|
|
/* > For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first */
|
|
/* > three columns of AP lower. The upper triangle A(0:1,1:2) consists of */
|
|
/* > the transpose of the last two columns of AP lower. */
|
|
/* > This covers the case N odd and TRANSR = 'N'. */
|
|
/* > */
|
|
/* > RFP A RFP A */
|
|
/* > */
|
|
/* > 02 03 04 00 33 43 */
|
|
/* > 12 13 14 10 11 44 */
|
|
/* > 22 23 24 20 21 22 */
|
|
/* > 00 33 34 30 31 32 */
|
|
/* > 01 11 44 40 41 42 */
|
|
/* > */
|
|
/* > Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */
|
|
/* > transpose of RFP A above. One therefore gets: */
|
|
/* > */
|
|
/* > RFP A RFP A */
|
|
/* > */
|
|
/* > 02 12 22 00 01 00 10 20 30 40 50 */
|
|
/* > 03 13 23 33 11 33 11 21 31 41 51 */
|
|
/* > 04 14 24 34 44 43 44 22 32 42 52 */
|
|
/* > \endverbatim */
|
|
|
|
/* ===================================================================== */
|
|
doublereal dlansf_(char *norm, char *transr, char *uplo, integer *n,
|
|
doublereal *a, doublereal *work)
|
|
{
|
|
/* System generated locals */
|
|
integer i__1, i__2;
|
|
doublereal ret_val, d__1;
|
|
|
|
/* Local variables */
|
|
doublereal temp;
|
|
integer i__, j, k, l;
|
|
doublereal s, scale;
|
|
extern logical lsame_(char *, char *);
|
|
doublereal value;
|
|
integer n1;
|
|
doublereal aa;
|
|
extern logical disnan_(doublereal *);
|
|
extern /* Subroutine */ void dlassq_(integer *, doublereal *, integer *,
|
|
doublereal *, doublereal *);
|
|
integer lda, ifm, noe, ilu;
|
|
|
|
|
|
/* -- LAPACK computational routine (version 3.7.0) -- */
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
/* December 2016 */
|
|
|
|
|
|
/* ===================================================================== */
|
|
|
|
|
|
if (*n == 0) {
|
|
ret_val = 0.;
|
|
return ret_val;
|
|
} else if (*n == 1) {
|
|
ret_val = abs(a[0]);
|
|
return ret_val;
|
|
}
|
|
|
|
/* set noe = 1 if n is odd. if n is even set noe=0 */
|
|
|
|
noe = 1;
|
|
if (*n % 2 == 0) {
|
|
noe = 0;
|
|
}
|
|
|
|
/* set ifm = 0 when form='T or 't' and 1 otherwise */
|
|
|
|
ifm = 1;
|
|
if (lsame_(transr, "T")) {
|
|
ifm = 0;
|
|
}
|
|
|
|
/* set ilu = 0 when uplo='U or 'u' and 1 otherwise */
|
|
|
|
ilu = 1;
|
|
if (lsame_(uplo, "U")) {
|
|
ilu = 0;
|
|
}
|
|
|
|
/* set lda = (n+1)/2 when ifm = 0 */
|
|
/* set lda = n when ifm = 1 and noe = 1 */
|
|
/* set lda = n+1 when ifm = 1 and noe = 0 */
|
|
|
|
if (ifm == 1) {
|
|
if (noe == 1) {
|
|
lda = *n;
|
|
} else {
|
|
/* noe=0 */
|
|
lda = *n + 1;
|
|
}
|
|
} else {
|
|
/* ifm=0 */
|
|
lda = (*n + 1) / 2;
|
|
}
|
|
|
|
if (lsame_(norm, "M")) {
|
|
|
|
/* Find f2cmax(abs(A(i,j))). */
|
|
|
|
k = (*n + 1) / 2;
|
|
value = 0.;
|
|
if (noe == 1) {
|
|
/* n is odd */
|
|
if (ifm == 1) {
|
|
/* A is n by k */
|
|
i__1 = k - 1;
|
|
for (j = 0; j <= i__1; ++j) {
|
|
i__2 = *n - 1;
|
|
for (i__ = 0; i__ <= i__2; ++i__) {
|
|
temp = (d__1 = a[i__ + j * lda], abs(d__1));
|
|
if (value < temp || disnan_(&temp)) {
|
|
value = temp;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
/* xpose case; A is k by n */
|
|
i__1 = *n - 1;
|
|
for (j = 0; j <= i__1; ++j) {
|
|
i__2 = k - 1;
|
|
for (i__ = 0; i__ <= i__2; ++i__) {
|
|
temp = (d__1 = a[i__ + j * lda], abs(d__1));
|
|
if (value < temp || disnan_(&temp)) {
|
|
value = temp;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
/* n is even */
|
|
if (ifm == 1) {
|
|
/* A is n+1 by k */
|
|
i__1 = k - 1;
|
|
for (j = 0; j <= i__1; ++j) {
|
|
i__2 = *n;
|
|
for (i__ = 0; i__ <= i__2; ++i__) {
|
|
temp = (d__1 = a[i__ + j * lda], abs(d__1));
|
|
if (value < temp || disnan_(&temp)) {
|
|
value = temp;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
/* xpose case; A is k by n+1 */
|
|
i__1 = *n;
|
|
for (j = 0; j <= i__1; ++j) {
|
|
i__2 = k - 1;
|
|
for (i__ = 0; i__ <= i__2; ++i__) {
|
|
temp = (d__1 = a[i__ + j * lda], abs(d__1));
|
|
if (value < temp || disnan_(&temp)) {
|
|
value = temp;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else if (lsame_(norm, "I") || lsame_(norm, "O") || *(unsigned char *)norm == '1') {
|
|
|
|
/* Find normI(A) ( = norm1(A), since A is symmetric). */
|
|
|
|
if (ifm == 1) {
|
|
k = *n / 2;
|
|
if (noe == 1) {
|
|
/* n is odd */
|
|
if (ilu == 0) {
|
|
i__1 = k - 1;
|
|
for (i__ = 0; i__ <= i__1; ++i__) {
|
|
work[i__] = 0.;
|
|
}
|
|
i__1 = k;
|
|
for (j = 0; j <= i__1; ++j) {
|
|
s = 0.;
|
|
i__2 = k + j - 1;
|
|
for (i__ = 0; i__ <= i__2; ++i__) {
|
|
aa = (d__1 = a[i__ + j * lda], abs(d__1));
|
|
/* -> A(i,j+k) */
|
|
s += aa;
|
|
work[i__] += aa;
|
|
}
|
|
aa = (d__1 = a[i__ + j * lda], abs(d__1));
|
|
/* -> A(j+k,j+k) */
|
|
work[j + k] = s + aa;
|
|
if (i__ == k + k) {
|
|
goto L10;
|
|
}
|
|
++i__;
|
|
aa = (d__1 = a[i__ + j * lda], abs(d__1));
|
|
/* -> A(j,j) */
|
|
work[j] += aa;
|
|
s = 0.;
|
|
i__2 = k - 1;
|
|
for (l = j + 1; l <= i__2; ++l) {
|
|
++i__;
|
|
aa = (d__1 = a[i__ + j * lda], abs(d__1));
|
|
/* -> A(l,j) */
|
|
s += aa;
|
|
work[l] += aa;
|
|
}
|
|
work[j] += s;
|
|
}
|
|
L10:
|
|
value = work[0];
|
|
i__1 = *n - 1;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
temp = work[i__];
|
|
if (value < temp || disnan_(&temp)) {
|
|
value = temp;
|
|
}
|
|
}
|
|
} else {
|
|
/* ilu = 1 */
|
|
++k;
|
|
/* k=(n+1)/2 for n odd and ilu=1 */
|
|
i__1 = *n - 1;
|
|
for (i__ = k; i__ <= i__1; ++i__) {
|
|
work[i__] = 0.;
|
|
}
|
|
for (j = k - 1; j >= 0; --j) {
|
|
s = 0.;
|
|
i__1 = j - 2;
|
|
for (i__ = 0; i__ <= i__1; ++i__) {
|
|
aa = (d__1 = a[i__ + j * lda], abs(d__1));
|
|
/* -> A(j+k,i+k) */
|
|
s += aa;
|
|
work[i__ + k] += aa;
|
|
}
|
|
if (j > 0) {
|
|
aa = (d__1 = a[i__ + j * lda], abs(d__1));
|
|
/* -> A(j+k,j+k) */
|
|
s += aa;
|
|
work[i__ + k] += s;
|
|
/* i=j */
|
|
++i__;
|
|
}
|
|
aa = (d__1 = a[i__ + j * lda], abs(d__1));
|
|
/* -> A(j,j) */
|
|
work[j] = aa;
|
|
s = 0.;
|
|
i__1 = *n - 1;
|
|
for (l = j + 1; l <= i__1; ++l) {
|
|
++i__;
|
|
aa = (d__1 = a[i__ + j * lda], abs(d__1));
|
|
/* -> A(l,j) */
|
|
s += aa;
|
|
work[l] += aa;
|
|
}
|
|
work[j] += s;
|
|
}
|
|
value = work[0];
|
|
i__1 = *n - 1;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
temp = work[i__];
|
|
if (value < temp || disnan_(&temp)) {
|
|
value = temp;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
/* n is even */
|
|
if (ilu == 0) {
|
|
i__1 = k - 1;
|
|
for (i__ = 0; i__ <= i__1; ++i__) {
|
|
work[i__] = 0.;
|
|
}
|
|
i__1 = k - 1;
|
|
for (j = 0; j <= i__1; ++j) {
|
|
s = 0.;
|
|
i__2 = k + j - 1;
|
|
for (i__ = 0; i__ <= i__2; ++i__) {
|
|
aa = (d__1 = a[i__ + j * lda], abs(d__1));
|
|
/* -> A(i,j+k) */
|
|
s += aa;
|
|
work[i__] += aa;
|
|
}
|
|
aa = (d__1 = a[i__ + j * lda], abs(d__1));
|
|
/* -> A(j+k,j+k) */
|
|
work[j + k] = s + aa;
|
|
++i__;
|
|
aa = (d__1 = a[i__ + j * lda], abs(d__1));
|
|
/* -> A(j,j) */
|
|
work[j] += aa;
|
|
s = 0.;
|
|
i__2 = k - 1;
|
|
for (l = j + 1; l <= i__2; ++l) {
|
|
++i__;
|
|
aa = (d__1 = a[i__ + j * lda], abs(d__1));
|
|
/* -> A(l,j) */
|
|
s += aa;
|
|
work[l] += aa;
|
|
}
|
|
work[j] += s;
|
|
}
|
|
value = work[0];
|
|
i__1 = *n - 1;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
temp = work[i__];
|
|
if (value < temp || disnan_(&temp)) {
|
|
value = temp;
|
|
}
|
|
}
|
|
} else {
|
|
/* ilu = 1 */
|
|
i__1 = *n - 1;
|
|
for (i__ = k; i__ <= i__1; ++i__) {
|
|
work[i__] = 0.;
|
|
}
|
|
for (j = k - 1; j >= 0; --j) {
|
|
s = 0.;
|
|
i__1 = j - 1;
|
|
for (i__ = 0; i__ <= i__1; ++i__) {
|
|
aa = (d__1 = a[i__ + j * lda], abs(d__1));
|
|
/* -> A(j+k,i+k) */
|
|
s += aa;
|
|
work[i__ + k] += aa;
|
|
}
|
|
aa = (d__1 = a[i__ + j * lda], abs(d__1));
|
|
/* -> A(j+k,j+k) */
|
|
s += aa;
|
|
work[i__ + k] += s;
|
|
/* i=j */
|
|
++i__;
|
|
aa = (d__1 = a[i__ + j * lda], abs(d__1));
|
|
/* -> A(j,j) */
|
|
work[j] = aa;
|
|
s = 0.;
|
|
i__1 = *n - 1;
|
|
for (l = j + 1; l <= i__1; ++l) {
|
|
++i__;
|
|
aa = (d__1 = a[i__ + j * lda], abs(d__1));
|
|
/* -> A(l,j) */
|
|
s += aa;
|
|
work[l] += aa;
|
|
}
|
|
work[j] += s;
|
|
}
|
|
value = work[0];
|
|
i__1 = *n - 1;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
temp = work[i__];
|
|
if (value < temp || disnan_(&temp)) {
|
|
value = temp;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
/* ifm=0 */
|
|
k = *n / 2;
|
|
if (noe == 1) {
|
|
/* n is odd */
|
|
if (ilu == 0) {
|
|
n1 = k;
|
|
/* n/2 */
|
|
++k;
|
|
/* k is the row size and lda */
|
|
i__1 = *n - 1;
|
|
for (i__ = n1; i__ <= i__1; ++i__) {
|
|
work[i__] = 0.;
|
|
}
|
|
i__1 = n1 - 1;
|
|
for (j = 0; j <= i__1; ++j) {
|
|
s = 0.;
|
|
i__2 = k - 1;
|
|
for (i__ = 0; i__ <= i__2; ++i__) {
|
|
aa = (d__1 = a[i__ + j * lda], abs(d__1));
|
|
/* A(j,n1+i) */
|
|
work[i__ + n1] += aa;
|
|
s += aa;
|
|
}
|
|
work[j] = s;
|
|
}
|
|
/* j=n1=k-1 is special */
|
|
s = (d__1 = a[j * lda], abs(d__1));
|
|
/* A(k-1,k-1) */
|
|
i__1 = k - 1;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
aa = (d__1 = a[i__ + j * lda], abs(d__1));
|
|
/* A(k-1,i+n1) */
|
|
work[i__ + n1] += aa;
|
|
s += aa;
|
|
}
|
|
work[j] += s;
|
|
i__1 = *n - 1;
|
|
for (j = k; j <= i__1; ++j) {
|
|
s = 0.;
|
|
i__2 = j - k - 1;
|
|
for (i__ = 0; i__ <= i__2; ++i__) {
|
|
aa = (d__1 = a[i__ + j * lda], abs(d__1));
|
|
/* A(i,j-k) */
|
|
work[i__] += aa;
|
|
s += aa;
|
|
}
|
|
/* i=j-k */
|
|
aa = (d__1 = a[i__ + j * lda], abs(d__1));
|
|
/* A(j-k,j-k) */
|
|
s += aa;
|
|
work[j - k] += s;
|
|
++i__;
|
|
s = (d__1 = a[i__ + j * lda], abs(d__1));
|
|
/* A(j,j) */
|
|
i__2 = *n - 1;
|
|
for (l = j + 1; l <= i__2; ++l) {
|
|
++i__;
|
|
aa = (d__1 = a[i__ + j * lda], abs(d__1));
|
|
/* A(j,l) */
|
|
work[l] += aa;
|
|
s += aa;
|
|
}
|
|
work[j] += s;
|
|
}
|
|
value = work[0];
|
|
i__1 = *n - 1;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
temp = work[i__];
|
|
if (value < temp || disnan_(&temp)) {
|
|
value = temp;
|
|
}
|
|
}
|
|
} else {
|
|
/* ilu=1 */
|
|
++k;
|
|
/* k=(n+1)/2 for n odd and ilu=1 */
|
|
i__1 = *n - 1;
|
|
for (i__ = k; i__ <= i__1; ++i__) {
|
|
work[i__] = 0.;
|
|
}
|
|
i__1 = k - 2;
|
|
for (j = 0; j <= i__1; ++j) {
|
|
/* process */
|
|
s = 0.;
|
|
i__2 = j - 1;
|
|
for (i__ = 0; i__ <= i__2; ++i__) {
|
|
aa = (d__1 = a[i__ + j * lda], abs(d__1));
|
|
/* A(j,i) */
|
|
work[i__] += aa;
|
|
s += aa;
|
|
}
|
|
aa = (d__1 = a[i__ + j * lda], abs(d__1));
|
|
/* i=j so process of A(j,j) */
|
|
s += aa;
|
|
work[j] = s;
|
|
/* is initialised here */
|
|
++i__;
|
|
/* i=j process A(j+k,j+k) */
|
|
aa = (d__1 = a[i__ + j * lda], abs(d__1));
|
|
s = aa;
|
|
i__2 = *n - 1;
|
|
for (l = k + j + 1; l <= i__2; ++l) {
|
|
++i__;
|
|
aa = (d__1 = a[i__ + j * lda], abs(d__1));
|
|
/* A(l,k+j) */
|
|
s += aa;
|
|
work[l] += aa;
|
|
}
|
|
work[k + j] += s;
|
|
}
|
|
/* j=k-1 is special :process col A(k-1,0:k-1) */
|
|
s = 0.;
|
|
i__1 = k - 2;
|
|
for (i__ = 0; i__ <= i__1; ++i__) {
|
|
aa = (d__1 = a[i__ + j * lda], abs(d__1));
|
|
/* A(k,i) */
|
|
work[i__] += aa;
|
|
s += aa;
|
|
}
|
|
/* i=k-1 */
|
|
aa = (d__1 = a[i__ + j * lda], abs(d__1));
|
|
/* A(k-1,k-1) */
|
|
s += aa;
|
|
work[i__] = s;
|
|
/* done with col j=k+1 */
|
|
i__1 = *n - 1;
|
|
for (j = k; j <= i__1; ++j) {
|
|
/* process col j of A = A(j,0:k-1) */
|
|
s = 0.;
|
|
i__2 = k - 1;
|
|
for (i__ = 0; i__ <= i__2; ++i__) {
|
|
aa = (d__1 = a[i__ + j * lda], abs(d__1));
|
|
/* A(j,i) */
|
|
work[i__] += aa;
|
|
s += aa;
|
|
}
|
|
work[j] += s;
|
|
}
|
|
value = work[0];
|
|
i__1 = *n - 1;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
temp = work[i__];
|
|
if (value < temp || disnan_(&temp)) {
|
|
value = temp;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
/* n is even */
|
|
if (ilu == 0) {
|
|
i__1 = *n - 1;
|
|
for (i__ = k; i__ <= i__1; ++i__) {
|
|
work[i__] = 0.;
|
|
}
|
|
i__1 = k - 1;
|
|
for (j = 0; j <= i__1; ++j) {
|
|
s = 0.;
|
|
i__2 = k - 1;
|
|
for (i__ = 0; i__ <= i__2; ++i__) {
|
|
aa = (d__1 = a[i__ + j * lda], abs(d__1));
|
|
/* A(j,i+k) */
|
|
work[i__ + k] += aa;
|
|
s += aa;
|
|
}
|
|
work[j] = s;
|
|
}
|
|
/* j=k */
|
|
aa = (d__1 = a[j * lda], abs(d__1));
|
|
/* A(k,k) */
|
|
s = aa;
|
|
i__1 = k - 1;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
aa = (d__1 = a[i__ + j * lda], abs(d__1));
|
|
/* A(k,k+i) */
|
|
work[i__ + k] += aa;
|
|
s += aa;
|
|
}
|
|
work[j] += s;
|
|
i__1 = *n - 1;
|
|
for (j = k + 1; j <= i__1; ++j) {
|
|
s = 0.;
|
|
i__2 = j - 2 - k;
|
|
for (i__ = 0; i__ <= i__2; ++i__) {
|
|
aa = (d__1 = a[i__ + j * lda], abs(d__1));
|
|
/* A(i,j-k-1) */
|
|
work[i__] += aa;
|
|
s += aa;
|
|
}
|
|
/* i=j-1-k */
|
|
aa = (d__1 = a[i__ + j * lda], abs(d__1));
|
|
/* A(j-k-1,j-k-1) */
|
|
s += aa;
|
|
work[j - k - 1] += s;
|
|
++i__;
|
|
aa = (d__1 = a[i__ + j * lda], abs(d__1));
|
|
/* A(j,j) */
|
|
s = aa;
|
|
i__2 = *n - 1;
|
|
for (l = j + 1; l <= i__2; ++l) {
|
|
++i__;
|
|
aa = (d__1 = a[i__ + j * lda], abs(d__1));
|
|
/* A(j,l) */
|
|
work[l] += aa;
|
|
s += aa;
|
|
}
|
|
work[j] += s;
|
|
}
|
|
/* j=n */
|
|
s = 0.;
|
|
i__1 = k - 2;
|
|
for (i__ = 0; i__ <= i__1; ++i__) {
|
|
aa = (d__1 = a[i__ + j * lda], abs(d__1));
|
|
/* A(i,k-1) */
|
|
work[i__] += aa;
|
|
s += aa;
|
|
}
|
|
/* i=k-1 */
|
|
aa = (d__1 = a[i__ + j * lda], abs(d__1));
|
|
/* A(k-1,k-1) */
|
|
s += aa;
|
|
work[i__] += s;
|
|
value = work[0];
|
|
i__1 = *n - 1;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
temp = work[i__];
|
|
if (value < temp || disnan_(&temp)) {
|
|
value = temp;
|
|
}
|
|
}
|
|
} else {
|
|
/* ilu=1 */
|
|
i__1 = *n - 1;
|
|
for (i__ = k; i__ <= i__1; ++i__) {
|
|
work[i__] = 0.;
|
|
}
|
|
/* j=0 is special :process col A(k:n-1,k) */
|
|
s = abs(a[0]);
|
|
/* A(k,k) */
|
|
i__1 = k - 1;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
aa = (d__1 = a[i__], abs(d__1));
|
|
/* A(k+i,k) */
|
|
work[i__ + k] += aa;
|
|
s += aa;
|
|
}
|
|
work[k] += s;
|
|
i__1 = k - 1;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
/* process */
|
|
s = 0.;
|
|
i__2 = j - 2;
|
|
for (i__ = 0; i__ <= i__2; ++i__) {
|
|
aa = (d__1 = a[i__ + j * lda], abs(d__1));
|
|
/* A(j-1,i) */
|
|
work[i__] += aa;
|
|
s += aa;
|
|
}
|
|
aa = (d__1 = a[i__ + j * lda], abs(d__1));
|
|
/* i=j-1 so process of A(j-1,j-1) */
|
|
s += aa;
|
|
work[j - 1] = s;
|
|
/* is initialised here */
|
|
++i__;
|
|
/* i=j process A(j+k,j+k) */
|
|
aa = (d__1 = a[i__ + j * lda], abs(d__1));
|
|
s = aa;
|
|
i__2 = *n - 1;
|
|
for (l = k + j + 1; l <= i__2; ++l) {
|
|
++i__;
|
|
aa = (d__1 = a[i__ + j * lda], abs(d__1));
|
|
/* A(l,k+j) */
|
|
s += aa;
|
|
work[l] += aa;
|
|
}
|
|
work[k + j] += s;
|
|
}
|
|
/* j=k is special :process col A(k,0:k-1) */
|
|
s = 0.;
|
|
i__1 = k - 2;
|
|
for (i__ = 0; i__ <= i__1; ++i__) {
|
|
aa = (d__1 = a[i__ + j * lda], abs(d__1));
|
|
/* A(k,i) */
|
|
work[i__] += aa;
|
|
s += aa;
|
|
}
|
|
/* i=k-1 */
|
|
aa = (d__1 = a[i__ + j * lda], abs(d__1));
|
|
/* A(k-1,k-1) */
|
|
s += aa;
|
|
work[i__] = s;
|
|
/* done with col j=k+1 */
|
|
i__1 = *n;
|
|
for (j = k + 1; j <= i__1; ++j) {
|
|
/* process col j-1 of A = A(j-1,0:k-1) */
|
|
s = 0.;
|
|
i__2 = k - 1;
|
|
for (i__ = 0; i__ <= i__2; ++i__) {
|
|
aa = (d__1 = a[i__ + j * lda], abs(d__1));
|
|
/* A(j-1,i) */
|
|
work[i__] += aa;
|
|
s += aa;
|
|
}
|
|
work[j - 1] += s;
|
|
}
|
|
value = work[0];
|
|
i__1 = *n - 1;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
temp = work[i__];
|
|
if (value < temp || disnan_(&temp)) {
|
|
value = temp;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else if (lsame_(norm, "F") || lsame_(norm, "E")) {
|
|
|
|
/* Find normF(A). */
|
|
|
|
k = (*n + 1) / 2;
|
|
scale = 0.;
|
|
s = 1.;
|
|
if (noe == 1) {
|
|
/* n is odd */
|
|
if (ifm == 1) {
|
|
/* A is normal */
|
|
if (ilu == 0) {
|
|
/* A is upper */
|
|
i__1 = k - 3;
|
|
for (j = 0; j <= i__1; ++j) {
|
|
i__2 = k - j - 2;
|
|
dlassq_(&i__2, &a[k + j + 1 + j * lda], &c__1, &scale,
|
|
&s);
|
|
/* L at A(k,0) */
|
|
}
|
|
i__1 = k - 1;
|
|
for (j = 0; j <= i__1; ++j) {
|
|
i__2 = k + j - 1;
|
|
dlassq_(&i__2, &a[j * lda], &c__1, &scale, &s);
|
|
/* trap U at A(0,0) */
|
|
}
|
|
s += s;
|
|
/* double s for the off diagonal elements */
|
|
i__1 = k - 1;
|
|
i__2 = lda + 1;
|
|
dlassq_(&i__1, &a[k], &i__2, &scale, &s);
|
|
/* tri L at A(k,0) */
|
|
i__1 = lda + 1;
|
|
dlassq_(&k, &a[k - 1], &i__1, &scale, &s);
|
|
/* tri U at A(k-1,0) */
|
|
} else {
|
|
/* ilu=1 & A is lower */
|
|
i__1 = k - 1;
|
|
for (j = 0; j <= i__1; ++j) {
|
|
i__2 = *n - j - 1;
|
|
dlassq_(&i__2, &a[j + 1 + j * lda], &c__1, &scale, &s)
|
|
;
|
|
/* trap L at A(0,0) */
|
|
}
|
|
i__1 = k - 2;
|
|
for (j = 0; j <= i__1; ++j) {
|
|
dlassq_(&j, &a[(j + 1) * lda], &c__1, &scale, &s);
|
|
/* U at A(0,1) */
|
|
}
|
|
s += s;
|
|
/* double s for the off diagonal elements */
|
|
i__1 = lda + 1;
|
|
dlassq_(&k, a, &i__1, &scale, &s);
|
|
/* tri L at A(0,0) */
|
|
i__1 = k - 1;
|
|
i__2 = lda + 1;
|
|
dlassq_(&i__1, &a[lda], &i__2, &scale, &s);
|
|
/* tri U at A(0,1) */
|
|
}
|
|
} else {
|
|
/* A is xpose */
|
|
if (ilu == 0) {
|
|
/* A**T is upper */
|
|
i__1 = k - 2;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
dlassq_(&j, &a[(k + j) * lda], &c__1, &scale, &s);
|
|
/* U at A(0,k) */
|
|
}
|
|
i__1 = k - 2;
|
|
for (j = 0; j <= i__1; ++j) {
|
|
dlassq_(&k, &a[j * lda], &c__1, &scale, &s);
|
|
/* k by k-1 rect. at A(0,0) */
|
|
}
|
|
i__1 = k - 2;
|
|
for (j = 0; j <= i__1; ++j) {
|
|
i__2 = k - j - 1;
|
|
dlassq_(&i__2, &a[j + 1 + (j + k - 1) * lda], &c__1, &
|
|
scale, &s);
|
|
/* L at A(0,k-1) */
|
|
}
|
|
s += s;
|
|
/* double s for the off diagonal elements */
|
|
i__1 = k - 1;
|
|
i__2 = lda + 1;
|
|
dlassq_(&i__1, &a[k * lda], &i__2, &scale, &s);
|
|
/* tri U at A(0,k) */
|
|
i__1 = lda + 1;
|
|
dlassq_(&k, &a[(k - 1) * lda], &i__1, &scale, &s);
|
|
/* tri L at A(0,k-1) */
|
|
} else {
|
|
/* A**T is lower */
|
|
i__1 = k - 1;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
dlassq_(&j, &a[j * lda], &c__1, &scale, &s);
|
|
/* U at A(0,0) */
|
|
}
|
|
i__1 = *n - 1;
|
|
for (j = k; j <= i__1; ++j) {
|
|
dlassq_(&k, &a[j * lda], &c__1, &scale, &s);
|
|
/* k by k-1 rect. at A(0,k) */
|
|
}
|
|
i__1 = k - 3;
|
|
for (j = 0; j <= i__1; ++j) {
|
|
i__2 = k - j - 2;
|
|
dlassq_(&i__2, &a[j + 2 + j * lda], &c__1, &scale, &s)
|
|
;
|
|
/* L at A(1,0) */
|
|
}
|
|
s += s;
|
|
/* double s for the off diagonal elements */
|
|
i__1 = lda + 1;
|
|
dlassq_(&k, a, &i__1, &scale, &s);
|
|
/* tri U at A(0,0) */
|
|
i__1 = k - 1;
|
|
i__2 = lda + 1;
|
|
dlassq_(&i__1, &a[1], &i__2, &scale, &s);
|
|
/* tri L at A(1,0) */
|
|
}
|
|
}
|
|
} else {
|
|
/* n is even */
|
|
if (ifm == 1) {
|
|
/* A is normal */
|
|
if (ilu == 0) {
|
|
/* A is upper */
|
|
i__1 = k - 2;
|
|
for (j = 0; j <= i__1; ++j) {
|
|
i__2 = k - j - 1;
|
|
dlassq_(&i__2, &a[k + j + 2 + j * lda], &c__1, &scale,
|
|
&s);
|
|
/* L at A(k+1,0) */
|
|
}
|
|
i__1 = k - 1;
|
|
for (j = 0; j <= i__1; ++j) {
|
|
i__2 = k + j;
|
|
dlassq_(&i__2, &a[j * lda], &c__1, &scale, &s);
|
|
/* trap U at A(0,0) */
|
|
}
|
|
s += s;
|
|
/* double s for the off diagonal elements */
|
|
i__1 = lda + 1;
|
|
dlassq_(&k, &a[k + 1], &i__1, &scale, &s);
|
|
/* tri L at A(k+1,0) */
|
|
i__1 = lda + 1;
|
|
dlassq_(&k, &a[k], &i__1, &scale, &s);
|
|
/* tri U at A(k,0) */
|
|
} else {
|
|
/* ilu=1 & A is lower */
|
|
i__1 = k - 1;
|
|
for (j = 0; j <= i__1; ++j) {
|
|
i__2 = *n - j - 1;
|
|
dlassq_(&i__2, &a[j + 2 + j * lda], &c__1, &scale, &s)
|
|
;
|
|
/* trap L at A(1,0) */
|
|
}
|
|
i__1 = k - 1;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
dlassq_(&j, &a[j * lda], &c__1, &scale, &s);
|
|
/* U at A(0,0) */
|
|
}
|
|
s += s;
|
|
/* double s for the off diagonal elements */
|
|
i__1 = lda + 1;
|
|
dlassq_(&k, &a[1], &i__1, &scale, &s);
|
|
/* tri L at A(1,0) */
|
|
i__1 = lda + 1;
|
|
dlassq_(&k, a, &i__1, &scale, &s);
|
|
/* tri U at A(0,0) */
|
|
}
|
|
} else {
|
|
/* A is xpose */
|
|
if (ilu == 0) {
|
|
/* A**T is upper */
|
|
i__1 = k - 1;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
dlassq_(&j, &a[(k + 1 + j) * lda], &c__1, &scale, &s);
|
|
/* U at A(0,k+1) */
|
|
}
|
|
i__1 = k - 1;
|
|
for (j = 0; j <= i__1; ++j) {
|
|
dlassq_(&k, &a[j * lda], &c__1, &scale, &s);
|
|
/* k by k rect. at A(0,0) */
|
|
}
|
|
i__1 = k - 2;
|
|
for (j = 0; j <= i__1; ++j) {
|
|
i__2 = k - j - 1;
|
|
dlassq_(&i__2, &a[j + 1 + (j + k) * lda], &c__1, &
|
|
scale, &s);
|
|
/* L at A(0,k) */
|
|
}
|
|
s += s;
|
|
/* double s for the off diagonal elements */
|
|
i__1 = lda + 1;
|
|
dlassq_(&k, &a[(k + 1) * lda], &i__1, &scale, &s);
|
|
/* tri U at A(0,k+1) */
|
|
i__1 = lda + 1;
|
|
dlassq_(&k, &a[k * lda], &i__1, &scale, &s);
|
|
/* tri L at A(0,k) */
|
|
} else {
|
|
/* A**T is lower */
|
|
i__1 = k - 1;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
dlassq_(&j, &a[(j + 1) * lda], &c__1, &scale, &s);
|
|
/* U at A(0,1) */
|
|
}
|
|
i__1 = *n;
|
|
for (j = k + 1; j <= i__1; ++j) {
|
|
dlassq_(&k, &a[j * lda], &c__1, &scale, &s);
|
|
/* k by k rect. at A(0,k+1) */
|
|
}
|
|
i__1 = k - 2;
|
|
for (j = 0; j <= i__1; ++j) {
|
|
i__2 = k - j - 1;
|
|
dlassq_(&i__2, &a[j + 1 + j * lda], &c__1, &scale, &s)
|
|
;
|
|
/* L at A(0,0) */
|
|
}
|
|
s += s;
|
|
/* double s for the off diagonal elements */
|
|
i__1 = lda + 1;
|
|
dlassq_(&k, &a[lda], &i__1, &scale, &s);
|
|
/* tri L at A(0,1) */
|
|
i__1 = lda + 1;
|
|
dlassq_(&k, a, &i__1, &scale, &s);
|
|
/* tri U at A(0,0) */
|
|
}
|
|
}
|
|
}
|
|
value = scale * sqrt(s);
|
|
}
|
|
|
|
ret_val = value;
|
|
return ret_val;
|
|
|
|
/* End of DLANSF */
|
|
|
|
} /* dlansf_ */
|
|
|