OpenBLAS/lapack-netlib/SRC/dlalsa.c

1076 lines
31 KiB
C

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif
#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif
#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif
typedef blasint integer;
typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
#ifdef _MSC_VER
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
#else
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#endif
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef blasint logical;
typedef char logical1;
typedef char integer1;
#define TRUE_ (1)
#define FALSE_ (0)
/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif
/* I/O stuff */
typedef int flag;
typedef int ftnlen;
typedef int ftnint;
/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;
/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;
/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;
/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;
/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;
/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;
#define VOID void
union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};
typedef union Multitype Multitype;
struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;
struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;
#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#ifdef _MSC_VER
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
#else
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#endif
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimagf(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
/* procedure parameter types for -A and -C++ */
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif
static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#ifdef _MSC_VER
static _Fcomplex cpow_ui(complex x, integer n) {
complex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
for(u = n; ; ) {
if(u & 01) pow.r *= x.r, pow.i *= x.i;
if(u >>= 1) x.r *= x.r, x.i *= x.i;
else break;
}
}
_Fcomplex p={pow.r, pow.i};
return p;
}
#else
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
#ifdef _MSC_VER
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
_Dcomplex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
for(u = n; ; ) {
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
else break;
}
}
_Dcomplex p = {pow._Val[0], pow._Val[1]};
return p;
}
#else
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
/* Table of constant values */
static doublereal c_b7 = 1.;
static doublereal c_b8 = 0.;
static integer c__2 = 2;
/* > \brief \b DLALSA computes the SVD of the coefficient matrix in compact form. Used by sgelsd. */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download DLALSA + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlalsa.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlalsa.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlalsa.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE DLALSA( ICOMPQ, SMLSIZ, N, NRHS, B, LDB, BX, LDBX, U, */
/* LDU, VT, K, DIFL, DIFR, Z, POLES, GIVPTR, */
/* GIVCOL, LDGCOL, PERM, GIVNUM, C, S, WORK, */
/* IWORK, INFO ) */
/* INTEGER ICOMPQ, INFO, LDB, LDBX, LDGCOL, LDU, N, NRHS, */
/* $ SMLSIZ */
/* INTEGER GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ), */
/* $ K( * ), PERM( LDGCOL, * ) */
/* DOUBLE PRECISION B( LDB, * ), BX( LDBX, * ), C( * ), */
/* $ DIFL( LDU, * ), DIFR( LDU, * ), */
/* $ GIVNUM( LDU, * ), POLES( LDU, * ), S( * ), */
/* $ U( LDU, * ), VT( LDU, * ), WORK( * ), */
/* $ Z( LDU, * ) */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > DLALSA is an itermediate step in solving the least squares problem */
/* > by computing the SVD of the coefficient matrix in compact form (The */
/* > singular vectors are computed as products of simple orthorgonal */
/* > matrices.). */
/* > */
/* > If ICOMPQ = 0, DLALSA applies the inverse of the left singular vector */
/* > matrix of an upper bidiagonal matrix to the right hand side; and if */
/* > ICOMPQ = 1, DLALSA applies the right singular vector matrix to the */
/* > right hand side. The singular vector matrices were generated in */
/* > compact form by DLALSA. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] ICOMPQ */
/* > \verbatim */
/* > ICOMPQ is INTEGER */
/* > Specifies whether the left or the right singular vector */
/* > matrix is involved. */
/* > = 0: Left singular vector matrix */
/* > = 1: Right singular vector matrix */
/* > \endverbatim */
/* > */
/* > \param[in] SMLSIZ */
/* > \verbatim */
/* > SMLSIZ is INTEGER */
/* > The maximum size of the subproblems at the bottom of the */
/* > computation tree. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The row and column dimensions of the upper bidiagonal matrix. */
/* > \endverbatim */
/* > */
/* > \param[in] NRHS */
/* > \verbatim */
/* > NRHS is INTEGER */
/* > The number of columns of B and BX. NRHS must be at least 1. */
/* > \endverbatim */
/* > */
/* > \param[in,out] B */
/* > \verbatim */
/* > B is DOUBLE PRECISION array, dimension ( LDB, NRHS ) */
/* > On input, B contains the right hand sides of the least */
/* > squares problem in rows 1 through M. */
/* > On output, B contains the solution X in rows 1 through N. */
/* > \endverbatim */
/* > */
/* > \param[in] LDB */
/* > \verbatim */
/* > LDB is INTEGER */
/* > The leading dimension of B in the calling subprogram. */
/* > LDB must be at least f2cmax(1,MAX( M, N ) ). */
/* > \endverbatim */
/* > */
/* > \param[out] BX */
/* > \verbatim */
/* > BX is DOUBLE PRECISION array, dimension ( LDBX, NRHS ) */
/* > On exit, the result of applying the left or right singular */
/* > vector matrix to B. */
/* > \endverbatim */
/* > */
/* > \param[in] LDBX */
/* > \verbatim */
/* > LDBX is INTEGER */
/* > The leading dimension of BX. */
/* > \endverbatim */
/* > */
/* > \param[in] U */
/* > \verbatim */
/* > U is DOUBLE PRECISION array, dimension ( LDU, SMLSIZ ). */
/* > On entry, U contains the left singular vector matrices of all */
/* > subproblems at the bottom level. */
/* > \endverbatim */
/* > */
/* > \param[in] LDU */
/* > \verbatim */
/* > LDU is INTEGER, LDU = > N. */
/* > The leading dimension of arrays U, VT, DIFL, DIFR, */
/* > POLES, GIVNUM, and Z. */
/* > \endverbatim */
/* > */
/* > \param[in] VT */
/* > \verbatim */
/* > VT is DOUBLE PRECISION array, dimension ( LDU, SMLSIZ+1 ). */
/* > On entry, VT**T contains the right singular vector matrices of */
/* > all subproblems at the bottom level. */
/* > \endverbatim */
/* > */
/* > \param[in] K */
/* > \verbatim */
/* > K is INTEGER array, dimension ( N ). */
/* > \endverbatim */
/* > */
/* > \param[in] DIFL */
/* > \verbatim */
/* > DIFL is DOUBLE PRECISION array, dimension ( LDU, NLVL ). */
/* > where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1. */
/* > \endverbatim */
/* > */
/* > \param[in] DIFR */
/* > \verbatim */
/* > DIFR is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ). */
/* > On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record */
/* > distances between singular values on the I-th level and */
/* > singular values on the (I -1)-th level, and DIFR(*, 2 * I) */
/* > record the normalizing factors of the right singular vectors */
/* > matrices of subproblems on I-th level. */
/* > \endverbatim */
/* > */
/* > \param[in] Z */
/* > \verbatim */
/* > Z is DOUBLE PRECISION array, dimension ( LDU, NLVL ). */
/* > On entry, Z(1, I) contains the components of the deflation- */
/* > adjusted updating row vector for subproblems on the I-th */
/* > level. */
/* > \endverbatim */
/* > */
/* > \param[in] POLES */
/* > \verbatim */
/* > POLES is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ). */
/* > On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old */
/* > singular values involved in the secular equations on the I-th */
/* > level. */
/* > \endverbatim */
/* > */
/* > \param[in] GIVPTR */
/* > \verbatim */
/* > GIVPTR is INTEGER array, dimension ( N ). */
/* > On entry, GIVPTR( I ) records the number of Givens */
/* > rotations performed on the I-th problem on the computation */
/* > tree. */
/* > \endverbatim */
/* > */
/* > \param[in] GIVCOL */
/* > \verbatim */
/* > GIVCOL is INTEGER array, dimension ( LDGCOL, 2 * NLVL ). */
/* > On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the */
/* > locations of Givens rotations performed on the I-th level on */
/* > the computation tree. */
/* > \endverbatim */
/* > */
/* > \param[in] LDGCOL */
/* > \verbatim */
/* > LDGCOL is INTEGER, LDGCOL = > N. */
/* > The leading dimension of arrays GIVCOL and PERM. */
/* > \endverbatim */
/* > */
/* > \param[in] PERM */
/* > \verbatim */
/* > PERM is INTEGER array, dimension ( LDGCOL, NLVL ). */
/* > On entry, PERM(*, I) records permutations done on the I-th */
/* > level of the computation tree. */
/* > \endverbatim */
/* > */
/* > \param[in] GIVNUM */
/* > \verbatim */
/* > GIVNUM is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ). */
/* > On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S- */
/* > values of Givens rotations performed on the I-th level on the */
/* > computation tree. */
/* > \endverbatim */
/* > */
/* > \param[in] C */
/* > \verbatim */
/* > C is DOUBLE PRECISION array, dimension ( N ). */
/* > On entry, if the I-th subproblem is not square, */
/* > C( I ) contains the C-value of a Givens rotation related to */
/* > the right null space of the I-th subproblem. */
/* > \endverbatim */
/* > */
/* > \param[in] S */
/* > \verbatim */
/* > S is DOUBLE PRECISION array, dimension ( N ). */
/* > On entry, if the I-th subproblem is not square, */
/* > S( I ) contains the S-value of a Givens rotation related to */
/* > the right null space of the I-th subproblem. */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is DOUBLE PRECISION array, dimension (N) */
/* > \endverbatim */
/* > */
/* > \param[out] IWORK */
/* > \verbatim */
/* > IWORK is INTEGER array, dimension (3*N) */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit. */
/* > < 0: if INFO = -i, the i-th argument had an illegal value. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date June 2017 */
/* > \ingroup doubleOTHERcomputational */
/* > \par Contributors: */
/* ================== */
/* > */
/* > Ming Gu and Ren-Cang Li, Computer Science Division, University of */
/* > California at Berkeley, USA \n */
/* > Osni Marques, LBNL/NERSC, USA \n */
/* ===================================================================== */
/* Subroutine */ void dlalsa_(integer *icompq, integer *smlsiz, integer *n,
integer *nrhs, doublereal *b, integer *ldb, doublereal *bx, integer *
ldbx, doublereal *u, integer *ldu, doublereal *vt, integer *k,
doublereal *difl, doublereal *difr, doublereal *z__, doublereal *
poles, integer *givptr, integer *givcol, integer *ldgcol, integer *
perm, doublereal *givnum, doublereal *c__, doublereal *s, doublereal *
work, integer *iwork, integer *info)
{
/* System generated locals */
integer givcol_dim1, givcol_offset, perm_dim1, perm_offset, b_dim1,
b_offset, bx_dim1, bx_offset, difl_dim1, difl_offset, difr_dim1,
difr_offset, givnum_dim1, givnum_offset, poles_dim1, poles_offset,
u_dim1, u_offset, vt_dim1, vt_offset, z_dim1, z_offset, i__1,
i__2;
/* Local variables */
integer nlvl, sqre, i__, j;
extern /* Subroutine */ void dgemm_(char *, char *, integer *, integer *,
integer *, doublereal *, doublereal *, integer *, doublereal *,
integer *, doublereal *, doublereal *, integer *);
integer inode, ndiml, ndimr;
extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *,
doublereal *, integer *);
integer i1;
extern /* Subroutine */ void dlals0_(integer *, integer *, integer *,
integer *, integer *, doublereal *, integer *, doublereal *,
integer *, integer *, integer *, integer *, integer *, doublereal
*, integer *, doublereal *, doublereal *, doublereal *,
doublereal *, integer *, doublereal *, doublereal *, doublereal *,
integer *);
integer ic, lf, nd, ll, nl, nr;
extern /* Subroutine */ void dlasdt_(integer *, integer *, integer *,
integer *, integer *, integer *, integer *);
extern int xerbla_(char *, integer *, ftnlen);
integer im1, nlf, nrf, lvl, ndb1, nlp1, lvl2, nrp1;
/* -- LAPACK computational routine (version 3.7.1) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* June 2017 */
/* ===================================================================== */
/* Test the input parameters. */
/* Parameter adjustments */
b_dim1 = *ldb;
b_offset = 1 + b_dim1 * 1;
b -= b_offset;
bx_dim1 = *ldbx;
bx_offset = 1 + bx_dim1 * 1;
bx -= bx_offset;
givnum_dim1 = *ldu;
givnum_offset = 1 + givnum_dim1 * 1;
givnum -= givnum_offset;
poles_dim1 = *ldu;
poles_offset = 1 + poles_dim1 * 1;
poles -= poles_offset;
z_dim1 = *ldu;
z_offset = 1 + z_dim1 * 1;
z__ -= z_offset;
difr_dim1 = *ldu;
difr_offset = 1 + difr_dim1 * 1;
difr -= difr_offset;
difl_dim1 = *ldu;
difl_offset = 1 + difl_dim1 * 1;
difl -= difl_offset;
vt_dim1 = *ldu;
vt_offset = 1 + vt_dim1 * 1;
vt -= vt_offset;
u_dim1 = *ldu;
u_offset = 1 + u_dim1 * 1;
u -= u_offset;
--k;
--givptr;
perm_dim1 = *ldgcol;
perm_offset = 1 + perm_dim1 * 1;
perm -= perm_offset;
givcol_dim1 = *ldgcol;
givcol_offset = 1 + givcol_dim1 * 1;
givcol -= givcol_offset;
--c__;
--s;
--work;
--iwork;
/* Function Body */
*info = 0;
if (*icompq < 0 || *icompq > 1) {
*info = -1;
} else if (*smlsiz < 3) {
*info = -2;
} else if (*n < *smlsiz) {
*info = -3;
} else if (*nrhs < 1) {
*info = -4;
} else if (*ldb < *n) {
*info = -6;
} else if (*ldbx < *n) {
*info = -8;
} else if (*ldu < *n) {
*info = -10;
} else if (*ldgcol < *n) {
*info = -19;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DLALSA", &i__1, (ftnlen)6);
return;
}
/* Book-keeping and setting up the computation tree. */
inode = 1;
ndiml = inode + *n;
ndimr = ndiml + *n;
dlasdt_(n, &nlvl, &nd, &iwork[inode], &iwork[ndiml], &iwork[ndimr],
smlsiz);
/* The following code applies back the left singular vector factors. */
/* For applying back the right singular vector factors, go to 50. */
if (*icompq == 1) {
goto L50;
}
/* The nodes on the bottom level of the tree were solved */
/* by DLASDQ. The corresponding left and right singular vector */
/* matrices are in explicit form. First apply back the left */
/* singular vector matrices. */
ndb1 = (nd + 1) / 2;
i__1 = nd;
for (i__ = ndb1; i__ <= i__1; ++i__) {
/* IC : center row of each node */
/* NL : number of rows of left subproblem */
/* NR : number of rows of right subproblem */
/* NLF: starting row of the left subproblem */
/* NRF: starting row of the right subproblem */
i1 = i__ - 1;
ic = iwork[inode + i1];
nl = iwork[ndiml + i1];
nr = iwork[ndimr + i1];
nlf = ic - nl;
nrf = ic + 1;
dgemm_("T", "N", &nl, nrhs, &nl, &c_b7, &u[nlf + u_dim1], ldu, &b[nlf
+ b_dim1], ldb, &c_b8, &bx[nlf + bx_dim1], ldbx);
dgemm_("T", "N", &nr, nrhs, &nr, &c_b7, &u[nrf + u_dim1], ldu, &b[nrf
+ b_dim1], ldb, &c_b8, &bx[nrf + bx_dim1], ldbx);
/* L10: */
}
/* Next copy the rows of B that correspond to unchanged rows */
/* in the bidiagonal matrix to BX. */
i__1 = nd;
for (i__ = 1; i__ <= i__1; ++i__) {
ic = iwork[inode + i__ - 1];
dcopy_(nrhs, &b[ic + b_dim1], ldb, &bx[ic + bx_dim1], ldbx);
/* L20: */
}
/* Finally go through the left singular vector matrices of all */
/* the other subproblems bottom-up on the tree. */
j = pow_ii(c__2, nlvl);
sqre = 0;
for (lvl = nlvl; lvl >= 1; --lvl) {
lvl2 = (lvl << 1) - 1;
/* find the first node LF and last node LL on */
/* the current level LVL */
if (lvl == 1) {
lf = 1;
ll = 1;
} else {
i__1 = lvl - 1;
lf = pow_ii(c__2, i__1);
ll = (lf << 1) - 1;
}
i__1 = ll;
for (i__ = lf; i__ <= i__1; ++i__) {
im1 = i__ - 1;
ic = iwork[inode + im1];
nl = iwork[ndiml + im1];
nr = iwork[ndimr + im1];
nlf = ic - nl;
nrf = ic + 1;
--j;
dlals0_(icompq, &nl, &nr, &sqre, nrhs, &bx[nlf + bx_dim1], ldbx, &
b[nlf + b_dim1], ldb, &perm[nlf + lvl * perm_dim1], &
givptr[j], &givcol[nlf + lvl2 * givcol_dim1], ldgcol, &
givnum[nlf + lvl2 * givnum_dim1], ldu, &poles[nlf + lvl2 *
poles_dim1], &difl[nlf + lvl * difl_dim1], &difr[nlf +
lvl2 * difr_dim1], &z__[nlf + lvl * z_dim1], &k[j], &c__[
j], &s[j], &work[1], info);
/* L30: */
}
/* L40: */
}
goto L90;
/* ICOMPQ = 1: applying back the right singular vector factors. */
L50:
/* First now go through the right singular vector matrices of all */
/* the tree nodes top-down. */
j = 0;
i__1 = nlvl;
for (lvl = 1; lvl <= i__1; ++lvl) {
lvl2 = (lvl << 1) - 1;
/* Find the first node LF and last node LL on */
/* the current level LVL. */
if (lvl == 1) {
lf = 1;
ll = 1;
} else {
i__2 = lvl - 1;
lf = pow_ii(c__2, i__2);
ll = (lf << 1) - 1;
}
i__2 = lf;
for (i__ = ll; i__ >= i__2; --i__) {
im1 = i__ - 1;
ic = iwork[inode + im1];
nl = iwork[ndiml + im1];
nr = iwork[ndimr + im1];
nlf = ic - nl;
nrf = ic + 1;
if (i__ == ll) {
sqre = 0;
} else {
sqre = 1;
}
++j;
dlals0_(icompq, &nl, &nr, &sqre, nrhs, &b[nlf + b_dim1], ldb, &bx[
nlf + bx_dim1], ldbx, &perm[nlf + lvl * perm_dim1], &
givptr[j], &givcol[nlf + lvl2 * givcol_dim1], ldgcol, &
givnum[nlf + lvl2 * givnum_dim1], ldu, &poles[nlf + lvl2 *
poles_dim1], &difl[nlf + lvl * difl_dim1], &difr[nlf +
lvl2 * difr_dim1], &z__[nlf + lvl * z_dim1], &k[j], &c__[
j], &s[j], &work[1], info);
/* L60: */
}
/* L70: */
}
/* The nodes on the bottom level of the tree were solved */
/* by DLASDQ. The corresponding right singular vector */
/* matrices are in explicit form. Apply them back. */
ndb1 = (nd + 1) / 2;
i__1 = nd;
for (i__ = ndb1; i__ <= i__1; ++i__) {
i1 = i__ - 1;
ic = iwork[inode + i1];
nl = iwork[ndiml + i1];
nr = iwork[ndimr + i1];
nlp1 = nl + 1;
if (i__ == nd) {
nrp1 = nr;
} else {
nrp1 = nr + 1;
}
nlf = ic - nl;
nrf = ic + 1;
dgemm_("T", "N", &nlp1, nrhs, &nlp1, &c_b7, &vt[nlf + vt_dim1], ldu, &
b[nlf + b_dim1], ldb, &c_b8, &bx[nlf + bx_dim1], ldbx);
dgemm_("T", "N", &nrp1, nrhs, &nrp1, &c_b7, &vt[nrf + vt_dim1], ldu, &
b[nrf + b_dim1], ldb, &c_b8, &bx[nrf + bx_dim1], ldbx);
/* L80: */
}
L90:
return;
/* End of DLALSA */
} /* dlalsa_ */