OpenBLAS/lapack-netlib/SRC/dlaln2.c

1157 lines
32 KiB
C

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif
#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif
#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif
typedef blasint integer;
typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
#ifdef _MSC_VER
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
#else
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#endif
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef blasint logical;
typedef char logical1;
typedef char integer1;
#define TRUE_ (1)
#define FALSE_ (0)
/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif
/* I/O stuff */
typedef int flag;
typedef int ftnlen;
typedef int ftnint;
/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;
/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;
/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;
/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;
/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;
/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;
#define VOID void
union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};
typedef union Multitype Multitype;
struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;
struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;
#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#ifdef _MSC_VER
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
#else
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#endif
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimagf(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
/* procedure parameter types for -A and -C++ */
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif
static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#ifdef _MSC_VER
static _Fcomplex cpow_ui(complex x, integer n) {
complex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
for(u = n; ; ) {
if(u & 01) pow.r *= x.r, pow.i *= x.i;
if(u >>= 1) x.r *= x.r, x.i *= x.i;
else break;
}
}
_Fcomplex p={pow.r, pow.i};
return p;
}
#else
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
#ifdef _MSC_VER
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
_Dcomplex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
for(u = n; ; ) {
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
else break;
}
}
_Dcomplex p = {pow._Val[0], pow._Val[1]};
return p;
}
#else
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
/* > \brief \b DLALN2 solves a 1-by-1 or 2-by-2 linear system of equations of the specified form. */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download DLALN2 + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaln2.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaln2.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaln2.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE DLALN2( LTRANS, NA, NW, SMIN, CA, A, LDA, D1, D2, B, */
/* LDB, WR, WI, X, LDX, SCALE, XNORM, INFO ) */
/* LOGICAL LTRANS */
/* INTEGER INFO, LDA, LDB, LDX, NA, NW */
/* DOUBLE PRECISION CA, D1, D2, SCALE, SMIN, WI, WR, XNORM */
/* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), X( LDX, * ) */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > DLALN2 solves a system of the form (ca A - w D ) X = s B */
/* > or (ca A**T - w D) X = s B with possible scaling ("s") and */
/* > perturbation of A. (A**T means A-transpose.) */
/* > */
/* > A is an NA x NA real matrix, ca is a real scalar, D is an NA x NA */
/* > real diagonal matrix, w is a real or complex value, and X and B are */
/* > NA x 1 matrices -- real if w is real, complex if w is complex. NA */
/* > may be 1 or 2. */
/* > */
/* > If w is complex, X and B are represented as NA x 2 matrices, */
/* > the first column of each being the real part and the second */
/* > being the imaginary part. */
/* > */
/* > "s" is a scaling factor (<= 1), computed by DLALN2, which is */
/* > so chosen that X can be computed without overflow. X is further */
/* > scaled if necessary to assure that norm(ca A - w D)*norm(X) is less */
/* > than overflow. */
/* > */
/* > If both singular values of (ca A - w D) are less than SMIN, */
/* > SMIN*identity will be used instead of (ca A - w D). If only one */
/* > singular value is less than SMIN, one element of (ca A - w D) will be */
/* > perturbed enough to make the smallest singular value roughly SMIN. */
/* > If both singular values are at least SMIN, (ca A - w D) will not be */
/* > perturbed. In any case, the perturbation will be at most some small */
/* > multiple of f2cmax( SMIN, ulp*norm(ca A - w D) ). The singular values */
/* > are computed by infinity-norm approximations, and thus will only be */
/* > correct to a factor of 2 or so. */
/* > */
/* > Note: all input quantities are assumed to be smaller than overflow */
/* > by a reasonable factor. (See BIGNUM.) */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] LTRANS */
/* > \verbatim */
/* > LTRANS is LOGICAL */
/* > =.TRUE.: A-transpose will be used. */
/* > =.FALSE.: A will be used (not transposed.) */
/* > \endverbatim */
/* > */
/* > \param[in] NA */
/* > \verbatim */
/* > NA is INTEGER */
/* > The size of the matrix A. It may (only) be 1 or 2. */
/* > \endverbatim */
/* > */
/* > \param[in] NW */
/* > \verbatim */
/* > NW is INTEGER */
/* > 1 if "w" is real, 2 if "w" is complex. It may only be 1 */
/* > or 2. */
/* > \endverbatim */
/* > */
/* > \param[in] SMIN */
/* > \verbatim */
/* > SMIN is DOUBLE PRECISION */
/* > The desired lower bound on the singular values of A. This */
/* > should be a safe distance away from underflow or overflow, */
/* > say, between (underflow/machine precision) and (machine */
/* > precision * overflow ). (See BIGNUM and ULP.) */
/* > \endverbatim */
/* > */
/* > \param[in] CA */
/* > \verbatim */
/* > CA is DOUBLE PRECISION */
/* > The coefficient c, which A is multiplied by. */
/* > \endverbatim */
/* > */
/* > \param[in] A */
/* > \verbatim */
/* > A is DOUBLE PRECISION array, dimension (LDA,NA) */
/* > The NA x NA matrix A. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of A. It must be at least NA. */
/* > \endverbatim */
/* > */
/* > \param[in] D1 */
/* > \verbatim */
/* > D1 is DOUBLE PRECISION */
/* > The 1,1 element in the diagonal matrix D. */
/* > \endverbatim */
/* > */
/* > \param[in] D2 */
/* > \verbatim */
/* > D2 is DOUBLE PRECISION */
/* > The 2,2 element in the diagonal matrix D. Not used if NA=1. */
/* > \endverbatim */
/* > */
/* > \param[in] B */
/* > \verbatim */
/* > B is DOUBLE PRECISION array, dimension (LDB,NW) */
/* > The NA x NW matrix B (right-hand side). If NW=2 ("w" is */
/* > complex), column 1 contains the real part of B and column 2 */
/* > contains the imaginary part. */
/* > \endverbatim */
/* > */
/* > \param[in] LDB */
/* > \verbatim */
/* > LDB is INTEGER */
/* > The leading dimension of B. It must be at least NA. */
/* > \endverbatim */
/* > */
/* > \param[in] WR */
/* > \verbatim */
/* > WR is DOUBLE PRECISION */
/* > The real part of the scalar "w". */
/* > \endverbatim */
/* > */
/* > \param[in] WI */
/* > \verbatim */
/* > WI is DOUBLE PRECISION */
/* > The imaginary part of the scalar "w". Not used if NW=1. */
/* > \endverbatim */
/* > */
/* > \param[out] X */
/* > \verbatim */
/* > X is DOUBLE PRECISION array, dimension (LDX,NW) */
/* > The NA x NW matrix X (unknowns), as computed by DLALN2. */
/* > If NW=2 ("w" is complex), on exit, column 1 will contain */
/* > the real part of X and column 2 will contain the imaginary */
/* > part. */
/* > \endverbatim */
/* > */
/* > \param[in] LDX */
/* > \verbatim */
/* > LDX is INTEGER */
/* > The leading dimension of X. It must be at least NA. */
/* > \endverbatim */
/* > */
/* > \param[out] SCALE */
/* > \verbatim */
/* > SCALE is DOUBLE PRECISION */
/* > The scale factor that B must be multiplied by to insure */
/* > that overflow does not occur when computing X. Thus, */
/* > (ca A - w D) X will be SCALE*B, not B (ignoring */
/* > perturbations of A.) It will be at most 1. */
/* > \endverbatim */
/* > */
/* > \param[out] XNORM */
/* > \verbatim */
/* > XNORM is DOUBLE PRECISION */
/* > The infinity-norm of X, when X is regarded as an NA x NW */
/* > real matrix. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > An error flag. It will be set to zero if no error occurs, */
/* > a negative number if an argument is in error, or a positive */
/* > number if ca A - w D had to be perturbed. */
/* > The possible values are: */
/* > = 0: No error occurred, and (ca A - w D) did not have to be */
/* > perturbed. */
/* > = 1: (ca A - w D) had to be perturbed to make its smallest */
/* > (or only) singular value greater than SMIN. */
/* > NOTE: In the interests of speed, this routine does not */
/* > check the inputs for errors. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date December 2016 */
/* > \ingroup doubleOTHERauxiliary */
/* ===================================================================== */
/* Subroutine */ void dlaln2_(logical *ltrans, integer *na, integer *nw,
doublereal *smin, doublereal *ca, doublereal *a, integer *lda,
doublereal *d1, doublereal *d2, doublereal *b, integer *ldb,
doublereal *wr, doublereal *wi, doublereal *x, integer *ldx,
doublereal *scale, doublereal *xnorm, integer *info)
{
/* Initialized data */
static logical zswap[4] = { FALSE_,FALSE_,TRUE_,TRUE_ };
static logical rswap[4] = { FALSE_,TRUE_,FALSE_,TRUE_ };
static integer ipivot[16] /* was [4][4] */ = { 1,2,3,4,2,1,4,3,3,4,1,2,
4,3,2,1 };
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, x_dim1, x_offset;
doublereal d__1, d__2, d__3, d__4, d__5, d__6;
static doublereal equiv_0[4], equiv_1[4];
/* Local variables */
doublereal bbnd, cmax, ui11r, ui12s, temp, ur11r, ur12s;
integer j;
doublereal u22abs;
integer icmax;
doublereal bnorm, cnorm, smini;
#define ci (equiv_0)
#define cr (equiv_1)
extern doublereal dlamch_(char *);
extern /* Subroutine */ void dladiv_(doublereal *, doublereal *,
doublereal *, doublereal *, doublereal *, doublereal *);
doublereal bignum, bi1, bi2, br1, br2, smlnum, xi1, xi2, xr1, xr2, ci21,
ci22, cr21, cr22, li21, csi, ui11, lr21, ui12, ui22;
#define civ (equiv_0)
doublereal csr, ur11, ur12, ur22;
#define crv (equiv_1)
/* -- LAPACK auxiliary routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */
/* ===================================================================== */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1 * 1;
b -= b_offset;
x_dim1 = *ldx;
x_offset = 1 + x_dim1 * 1;
x -= x_offset;
/* Function Body */
/* Compute BIGNUM */
smlnum = 2. * dlamch_("Safe minimum");
bignum = 1. / smlnum;
smini = f2cmax(*smin,smlnum);
/* Don't check for input errors */
*info = 0;
/* Standard Initializations */
*scale = 1.;
if (*na == 1) {
/* 1 x 1 (i.e., scalar) system C X = B */
if (*nw == 1) {
/* Real 1x1 system. */
/* C = ca A - w D */
csr = *ca * a[a_dim1 + 1] - *wr * *d1;
cnorm = abs(csr);
/* If | C | < SMINI, use C = SMINI */
if (cnorm < smini) {
csr = smini;
cnorm = smini;
*info = 1;
}
/* Check scaling for X = B / C */
bnorm = (d__1 = b[b_dim1 + 1], abs(d__1));
if (cnorm < 1. && bnorm > 1.) {
if (bnorm > bignum * cnorm) {
*scale = 1. / bnorm;
}
}
/* Compute X */
x[x_dim1 + 1] = b[b_dim1 + 1] * *scale / csr;
*xnorm = (d__1 = x[x_dim1 + 1], abs(d__1));
} else {
/* Complex 1x1 system (w is complex) */
/* C = ca A - w D */
csr = *ca * a[a_dim1 + 1] - *wr * *d1;
csi = -(*wi) * *d1;
cnorm = abs(csr) + abs(csi);
/* If | C | < SMINI, use C = SMINI */
if (cnorm < smini) {
csr = smini;
csi = 0.;
cnorm = smini;
*info = 1;
}
/* Check scaling for X = B / C */
bnorm = (d__1 = b[b_dim1 + 1], abs(d__1)) + (d__2 = b[(b_dim1 <<
1) + 1], abs(d__2));
if (cnorm < 1. && bnorm > 1.) {
if (bnorm > bignum * cnorm) {
*scale = 1. / bnorm;
}
}
/* Compute X */
d__1 = *scale * b[b_dim1 + 1];
d__2 = *scale * b[(b_dim1 << 1) + 1];
dladiv_(&d__1, &d__2, &csr, &csi, &x[x_dim1 + 1], &x[(x_dim1 << 1)
+ 1]);
*xnorm = (d__1 = x[x_dim1 + 1], abs(d__1)) + (d__2 = x[(x_dim1 <<
1) + 1], abs(d__2));
}
} else {
/* 2x2 System */
/* Compute the real part of C = ca A - w D (or ca A**T - w D ) */
cr[0] = *ca * a[a_dim1 + 1] - *wr * *d1;
cr[3] = *ca * a[(a_dim1 << 1) + 2] - *wr * *d2;
if (*ltrans) {
cr[2] = *ca * a[a_dim1 + 2];
cr[1] = *ca * a[(a_dim1 << 1) + 1];
} else {
cr[1] = *ca * a[a_dim1 + 2];
cr[2] = *ca * a[(a_dim1 << 1) + 1];
}
if (*nw == 1) {
/* Real 2x2 system (w is real) */
/* Find the largest element in C */
cmax = 0.;
icmax = 0;
for (j = 1; j <= 4; ++j) {
if ((d__1 = crv[j - 1], abs(d__1)) > cmax) {
cmax = (d__1 = crv[j - 1], abs(d__1));
icmax = j;
}
/* L10: */
}
/* If norm(C) < SMINI, use SMINI*identity. */
if (cmax < smini) {
/* Computing MAX */
d__3 = (d__1 = b[b_dim1 + 1], abs(d__1)), d__4 = (d__2 = b[
b_dim1 + 2], abs(d__2));
bnorm = f2cmax(d__3,d__4);
if (smini < 1. && bnorm > 1.) {
if (bnorm > bignum * smini) {
*scale = 1. / bnorm;
}
}
temp = *scale / smini;
x[x_dim1 + 1] = temp * b[b_dim1 + 1];
x[x_dim1 + 2] = temp * b[b_dim1 + 2];
*xnorm = temp * bnorm;
*info = 1;
return;
}
/* Gaussian elimination with complete pivoting. */
ur11 = crv[icmax - 1];
cr21 = crv[ipivot[(icmax << 2) - 3] - 1];
ur12 = crv[ipivot[(icmax << 2) - 2] - 1];
cr22 = crv[ipivot[(icmax << 2) - 1] - 1];
ur11r = 1. / ur11;
lr21 = ur11r * cr21;
ur22 = cr22 - ur12 * lr21;
/* If smaller pivot < SMINI, use SMINI */
if (abs(ur22) < smini) {
ur22 = smini;
*info = 1;
}
if (rswap[icmax - 1]) {
br1 = b[b_dim1 + 2];
br2 = b[b_dim1 + 1];
} else {
br1 = b[b_dim1 + 1];
br2 = b[b_dim1 + 2];
}
br2 -= lr21 * br1;
/* Computing MAX */
d__2 = (d__1 = br1 * (ur22 * ur11r), abs(d__1)), d__3 = abs(br2);
bbnd = f2cmax(d__2,d__3);
if (bbnd > 1. && abs(ur22) < 1.) {
if (bbnd >= bignum * abs(ur22)) {
*scale = 1. / bbnd;
}
}
xr2 = br2 * *scale / ur22;
xr1 = *scale * br1 * ur11r - xr2 * (ur11r * ur12);
if (zswap[icmax - 1]) {
x[x_dim1 + 1] = xr2;
x[x_dim1 + 2] = xr1;
} else {
x[x_dim1 + 1] = xr1;
x[x_dim1 + 2] = xr2;
}
/* Computing MAX */
d__1 = abs(xr1), d__2 = abs(xr2);
*xnorm = f2cmax(d__1,d__2);
/* Further scaling if norm(A) norm(X) > overflow */
if (*xnorm > 1. && cmax > 1.) {
if (*xnorm > bignum / cmax) {
temp = cmax / bignum;
x[x_dim1 + 1] = temp * x[x_dim1 + 1];
x[x_dim1 + 2] = temp * x[x_dim1 + 2];
*xnorm = temp * *xnorm;
*scale = temp * *scale;
}
}
} else {
/* Complex 2x2 system (w is complex) */
/* Find the largest element in C */
ci[0] = -(*wi) * *d1;
ci[1] = 0.;
ci[2] = 0.;
ci[3] = -(*wi) * *d2;
cmax = 0.;
icmax = 0;
for (j = 1; j <= 4; ++j) {
if ((d__1 = crv[j - 1], abs(d__1)) + (d__2 = civ[j - 1], abs(
d__2)) > cmax) {
cmax = (d__1 = crv[j - 1], abs(d__1)) + (d__2 = civ[j - 1]
, abs(d__2));
icmax = j;
}
/* L20: */
}
/* If norm(C) < SMINI, use SMINI*identity. */
if (cmax < smini) {
/* Computing MAX */
d__5 = (d__1 = b[b_dim1 + 1], abs(d__1)) + (d__2 = b[(b_dim1
<< 1) + 1], abs(d__2)), d__6 = (d__3 = b[b_dim1 + 2],
abs(d__3)) + (d__4 = b[(b_dim1 << 1) + 2], abs(d__4));
bnorm = f2cmax(d__5,d__6);
if (smini < 1. && bnorm > 1.) {
if (bnorm > bignum * smini) {
*scale = 1. / bnorm;
}
}
temp = *scale / smini;
x[x_dim1 + 1] = temp * b[b_dim1 + 1];
x[x_dim1 + 2] = temp * b[b_dim1 + 2];
x[(x_dim1 << 1) + 1] = temp * b[(b_dim1 << 1) + 1];
x[(x_dim1 << 1) + 2] = temp * b[(b_dim1 << 1) + 2];
*xnorm = temp * bnorm;
*info = 1;
return;
}
/* Gaussian elimination with complete pivoting. */
ur11 = crv[icmax - 1];
ui11 = civ[icmax - 1];
cr21 = crv[ipivot[(icmax << 2) - 3] - 1];
ci21 = civ[ipivot[(icmax << 2) - 3] - 1];
ur12 = crv[ipivot[(icmax << 2) - 2] - 1];
ui12 = civ[ipivot[(icmax << 2) - 2] - 1];
cr22 = crv[ipivot[(icmax << 2) - 1] - 1];
ci22 = civ[ipivot[(icmax << 2) - 1] - 1];
if (icmax == 1 || icmax == 4) {
/* Code when off-diagonals of pivoted C are real */
if (abs(ur11) > abs(ui11)) {
temp = ui11 / ur11;
/* Computing 2nd power */
d__1 = temp;
ur11r = 1. / (ur11 * (d__1 * d__1 + 1.));
ui11r = -temp * ur11r;
} else {
temp = ur11 / ui11;
/* Computing 2nd power */
d__1 = temp;
ui11r = -1. / (ui11 * (d__1 * d__1 + 1.));
ur11r = -temp * ui11r;
}
lr21 = cr21 * ur11r;
li21 = cr21 * ui11r;
ur12s = ur12 * ur11r;
ui12s = ur12 * ui11r;
ur22 = cr22 - ur12 * lr21;
ui22 = ci22 - ur12 * li21;
} else {
/* Code when diagonals of pivoted C are real */
ur11r = 1. / ur11;
ui11r = 0.;
lr21 = cr21 * ur11r;
li21 = ci21 * ur11r;
ur12s = ur12 * ur11r;
ui12s = ui12 * ur11r;
ur22 = cr22 - ur12 * lr21 + ui12 * li21;
ui22 = -ur12 * li21 - ui12 * lr21;
}
u22abs = abs(ur22) + abs(ui22);
/* If smaller pivot < SMINI, use SMINI */
if (u22abs < smini) {
ur22 = smini;
ui22 = 0.;
*info = 1;
}
if (rswap[icmax - 1]) {
br2 = b[b_dim1 + 1];
br1 = b[b_dim1 + 2];
bi2 = b[(b_dim1 << 1) + 1];
bi1 = b[(b_dim1 << 1) + 2];
} else {
br1 = b[b_dim1 + 1];
br2 = b[b_dim1 + 2];
bi1 = b[(b_dim1 << 1) + 1];
bi2 = b[(b_dim1 << 1) + 2];
}
br2 = br2 - lr21 * br1 + li21 * bi1;
bi2 = bi2 - li21 * br1 - lr21 * bi1;
/* Computing MAX */
d__1 = (abs(br1) + abs(bi1)) * (u22abs * (abs(ur11r) + abs(ui11r))
), d__2 = abs(br2) + abs(bi2);
bbnd = f2cmax(d__1,d__2);
if (bbnd > 1. && u22abs < 1.) {
if (bbnd >= bignum * u22abs) {
*scale = 1. / bbnd;
br1 = *scale * br1;
bi1 = *scale * bi1;
br2 = *scale * br2;
bi2 = *scale * bi2;
}
}
dladiv_(&br2, &bi2, &ur22, &ui22, &xr2, &xi2);
xr1 = ur11r * br1 - ui11r * bi1 - ur12s * xr2 + ui12s * xi2;
xi1 = ui11r * br1 + ur11r * bi1 - ui12s * xr2 - ur12s * xi2;
if (zswap[icmax - 1]) {
x[x_dim1 + 1] = xr2;
x[x_dim1 + 2] = xr1;
x[(x_dim1 << 1) + 1] = xi2;
x[(x_dim1 << 1) + 2] = xi1;
} else {
x[x_dim1 + 1] = xr1;
x[x_dim1 + 2] = xr2;
x[(x_dim1 << 1) + 1] = xi1;
x[(x_dim1 << 1) + 2] = xi2;
}
/* Computing MAX */
d__1 = abs(xr1) + abs(xi1), d__2 = abs(xr2) + abs(xi2);
*xnorm = f2cmax(d__1,d__2);
/* Further scaling if norm(A) norm(X) > overflow */
if (*xnorm > 1. && cmax > 1.) {
if (*xnorm > bignum / cmax) {
temp = cmax / bignum;
x[x_dim1 + 1] = temp * x[x_dim1 + 1];
x[x_dim1 + 2] = temp * x[x_dim1 + 2];
x[(x_dim1 << 1) + 1] = temp * x[(x_dim1 << 1) + 1];
x[(x_dim1 << 1) + 2] = temp * x[(x_dim1 << 1) + 2];
*xnorm = temp * *xnorm;
*scale = temp * *scale;
}
}
}
}
return;
/* End of DLALN2 */
} /* dlaln2_ */
#undef crv
#undef civ
#undef cr
#undef ci