1215 lines
35 KiB
C
1215 lines
35 KiB
C
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <complex.h>
|
|
#ifdef complex
|
|
#undef complex
|
|
#endif
|
|
#ifdef I
|
|
#undef I
|
|
#endif
|
|
|
|
#if defined(_WIN64)
|
|
typedef long long BLASLONG;
|
|
typedef unsigned long long BLASULONG;
|
|
#else
|
|
typedef long BLASLONG;
|
|
typedef unsigned long BLASULONG;
|
|
#endif
|
|
|
|
#ifdef LAPACK_ILP64
|
|
typedef BLASLONG blasint;
|
|
#if defined(_WIN64)
|
|
#define blasabs(x) llabs(x)
|
|
#else
|
|
#define blasabs(x) labs(x)
|
|
#endif
|
|
#else
|
|
typedef int blasint;
|
|
#define blasabs(x) abs(x)
|
|
#endif
|
|
|
|
typedef blasint integer;
|
|
|
|
typedef unsigned int uinteger;
|
|
typedef char *address;
|
|
typedef short int shortint;
|
|
typedef float real;
|
|
typedef double doublereal;
|
|
typedef struct { real r, i; } complex;
|
|
typedef struct { doublereal r, i; } doublecomplex;
|
|
#ifdef _MSC_VER
|
|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
|
|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
|
|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
|
|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
|
|
#else
|
|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
|
|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
|
|
#endif
|
|
#define pCf(z) (*_pCf(z))
|
|
#define pCd(z) (*_pCd(z))
|
|
typedef blasint logical;
|
|
|
|
typedef char logical1;
|
|
typedef char integer1;
|
|
|
|
#define TRUE_ (1)
|
|
#define FALSE_ (0)
|
|
|
|
/* Extern is for use with -E */
|
|
#ifndef Extern
|
|
#define Extern extern
|
|
#endif
|
|
|
|
/* I/O stuff */
|
|
|
|
typedef int flag;
|
|
typedef int ftnlen;
|
|
typedef int ftnint;
|
|
|
|
/*external read, write*/
|
|
typedef struct
|
|
{ flag cierr;
|
|
ftnint ciunit;
|
|
flag ciend;
|
|
char *cifmt;
|
|
ftnint cirec;
|
|
} cilist;
|
|
|
|
/*internal read, write*/
|
|
typedef struct
|
|
{ flag icierr;
|
|
char *iciunit;
|
|
flag iciend;
|
|
char *icifmt;
|
|
ftnint icirlen;
|
|
ftnint icirnum;
|
|
} icilist;
|
|
|
|
/*open*/
|
|
typedef struct
|
|
{ flag oerr;
|
|
ftnint ounit;
|
|
char *ofnm;
|
|
ftnlen ofnmlen;
|
|
char *osta;
|
|
char *oacc;
|
|
char *ofm;
|
|
ftnint orl;
|
|
char *oblnk;
|
|
} olist;
|
|
|
|
/*close*/
|
|
typedef struct
|
|
{ flag cerr;
|
|
ftnint cunit;
|
|
char *csta;
|
|
} cllist;
|
|
|
|
/*rewind, backspace, endfile*/
|
|
typedef struct
|
|
{ flag aerr;
|
|
ftnint aunit;
|
|
} alist;
|
|
|
|
/* inquire */
|
|
typedef struct
|
|
{ flag inerr;
|
|
ftnint inunit;
|
|
char *infile;
|
|
ftnlen infilen;
|
|
ftnint *inex; /*parameters in standard's order*/
|
|
ftnint *inopen;
|
|
ftnint *innum;
|
|
ftnint *innamed;
|
|
char *inname;
|
|
ftnlen innamlen;
|
|
char *inacc;
|
|
ftnlen inacclen;
|
|
char *inseq;
|
|
ftnlen inseqlen;
|
|
char *indir;
|
|
ftnlen indirlen;
|
|
char *infmt;
|
|
ftnlen infmtlen;
|
|
char *inform;
|
|
ftnint informlen;
|
|
char *inunf;
|
|
ftnlen inunflen;
|
|
ftnint *inrecl;
|
|
ftnint *innrec;
|
|
char *inblank;
|
|
ftnlen inblanklen;
|
|
} inlist;
|
|
|
|
#define VOID void
|
|
|
|
union Multitype { /* for multiple entry points */
|
|
integer1 g;
|
|
shortint h;
|
|
integer i;
|
|
/* longint j; */
|
|
real r;
|
|
doublereal d;
|
|
complex c;
|
|
doublecomplex z;
|
|
};
|
|
|
|
typedef union Multitype Multitype;
|
|
|
|
struct Vardesc { /* for Namelist */
|
|
char *name;
|
|
char *addr;
|
|
ftnlen *dims;
|
|
int type;
|
|
};
|
|
typedef struct Vardesc Vardesc;
|
|
|
|
struct Namelist {
|
|
char *name;
|
|
Vardesc **vars;
|
|
int nvars;
|
|
};
|
|
typedef struct Namelist Namelist;
|
|
|
|
#define abs(x) ((x) >= 0 ? (x) : -(x))
|
|
#define dabs(x) (fabs(x))
|
|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
|
|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
|
|
#define dmin(a,b) (f2cmin(a,b))
|
|
#define dmax(a,b) (f2cmax(a,b))
|
|
#define bit_test(a,b) ((a) >> (b) & 1)
|
|
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
|
|
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
|
|
|
|
#define abort_() { sig_die("Fortran abort routine called", 1); }
|
|
#define c_abs(z) (cabsf(Cf(z)))
|
|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
|
|
#ifdef _MSC_VER
|
|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
|
|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
|
|
#else
|
|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
|
|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
|
|
#endif
|
|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
|
|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
|
|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
|
|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
|
|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
|
|
#define d_abs(x) (fabs(*(x)))
|
|
#define d_acos(x) (acos(*(x)))
|
|
#define d_asin(x) (asin(*(x)))
|
|
#define d_atan(x) (atan(*(x)))
|
|
#define d_atn2(x, y) (atan2(*(x),*(y)))
|
|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
|
|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
|
|
#define d_cos(x) (cos(*(x)))
|
|
#define d_cosh(x) (cosh(*(x)))
|
|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
|
|
#define d_exp(x) (exp(*(x)))
|
|
#define d_imag(z) (cimag(Cd(z)))
|
|
#define r_imag(z) (cimagf(Cf(z)))
|
|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define d_log(x) (log(*(x)))
|
|
#define d_mod(x, y) (fmod(*(x), *(y)))
|
|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
|
|
#define d_nint(x) u_nint(*(x))
|
|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
|
|
#define d_sign(a,b) u_sign(*(a),*(b))
|
|
#define r_sign(a,b) u_sign(*(a),*(b))
|
|
#define d_sin(x) (sin(*(x)))
|
|
#define d_sinh(x) (sinh(*(x)))
|
|
#define d_sqrt(x) (sqrt(*(x)))
|
|
#define d_tan(x) (tan(*(x)))
|
|
#define d_tanh(x) (tanh(*(x)))
|
|
#define i_abs(x) abs(*(x))
|
|
#define i_dnnt(x) ((integer)u_nint(*(x)))
|
|
#define i_len(s, n) (n)
|
|
#define i_nint(x) ((integer)u_nint(*(x)))
|
|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
|
|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
|
|
#define pow_si(B,E) spow_ui(*(B),*(E))
|
|
#define pow_ri(B,E) spow_ui(*(B),*(E))
|
|
#define pow_di(B,E) dpow_ui(*(B),*(E))
|
|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
|
|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
|
|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
|
|
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
|
|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
|
|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
|
|
#define sig_die(s, kill) { exit(1); }
|
|
#define s_stop(s, n) {exit(0);}
|
|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
|
|
#define z_abs(z) (cabs(Cd(z)))
|
|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
|
|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
|
|
#define myexit_() break;
|
|
#define mycycle() continue;
|
|
#define myceiling(w) {ceil(w)}
|
|
#define myhuge(w) {HUGE_VAL}
|
|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
|
|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
|
|
|
|
/* procedure parameter types for -A and -C++ */
|
|
|
|
|
|
#ifdef __cplusplus
|
|
typedef logical (*L_fp)(...);
|
|
#else
|
|
typedef logical (*L_fp)();
|
|
#endif
|
|
|
|
static float spow_ui(float x, integer n) {
|
|
float pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
static double dpow_ui(double x, integer n) {
|
|
double pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#ifdef _MSC_VER
|
|
static _Fcomplex cpow_ui(complex x, integer n) {
|
|
complex pow={1.0,0.0}; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow.r *= x.r, pow.i *= x.i;
|
|
if(u >>= 1) x.r *= x.r, x.i *= x.i;
|
|
else break;
|
|
}
|
|
}
|
|
_Fcomplex p={pow.r, pow.i};
|
|
return p;
|
|
}
|
|
#else
|
|
static _Complex float cpow_ui(_Complex float x, integer n) {
|
|
_Complex float pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#endif
|
|
#ifdef _MSC_VER
|
|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
|
|
_Dcomplex pow={1.0,0.0}; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
|
|
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
|
|
else break;
|
|
}
|
|
}
|
|
_Dcomplex p = {pow._Val[0], pow._Val[1]};
|
|
return p;
|
|
}
|
|
#else
|
|
static _Complex double zpow_ui(_Complex double x, integer n) {
|
|
_Complex double pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#endif
|
|
static integer pow_ii(integer x, integer n) {
|
|
integer pow; unsigned long int u;
|
|
if (n <= 0) {
|
|
if (n == 0 || x == 1) pow = 1;
|
|
else if (x != -1) pow = x == 0 ? 1/x : 0;
|
|
else n = -n;
|
|
}
|
|
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
|
|
u = n;
|
|
for(pow = 1; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
|
|
{
|
|
double m; integer i, mi;
|
|
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
|
if (w[i-1]>m) mi=i ,m=w[i-1];
|
|
return mi-s+1;
|
|
}
|
|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
|
|
{
|
|
float m; integer i, mi;
|
|
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
|
if (w[i-1]>m) mi=i ,m=w[i-1];
|
|
return mi-s+1;
|
|
}
|
|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Fcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
|
|
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex float zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Dcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
|
|
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex double zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Fcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
|
|
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex float zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cf(&x[i]) * Cf(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Dcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
|
|
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex double zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cd(&x[i]) * Cd(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#endif
|
|
/* -- translated by f2c (version 20000121).
|
|
You must link the resulting object file with the libraries:
|
|
-lf2c -lm (in that order)
|
|
*/
|
|
|
|
|
|
|
|
|
|
/* Table of constant values */
|
|
|
|
static integer c__1 = 1;
|
|
|
|
/* > \brief \b DLAHQR computes the eigenvalues and Schur factorization of an upper Hessenberg matrix, using th
|
|
e double-shift/single-shift QR algorithm. */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* > \htmlonly */
|
|
/* > Download DLAHQR + dependencies */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlahqr.
|
|
f"> */
|
|
/* > [TGZ]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlahqr.
|
|
f"> */
|
|
/* > [ZIP]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlahqr.
|
|
f"> */
|
|
/* > [TXT]</a> */
|
|
/* > \endhtmlonly */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* SUBROUTINE DLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI, */
|
|
/* ILOZ, IHIZ, Z, LDZ, INFO ) */
|
|
|
|
/* INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, N */
|
|
/* LOGICAL WANTT, WANTZ */
|
|
/* DOUBLE PRECISION H( LDH, * ), WI( * ), WR( * ), Z( LDZ, * ) */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > DLAHQR is an auxiliary routine called by DHSEQR to update the */
|
|
/* > eigenvalues and Schur decomposition already computed by DHSEQR, by */
|
|
/* > dealing with the Hessenberg submatrix in rows and columns ILO to */
|
|
/* > IHI. */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] WANTT */
|
|
/* > \verbatim */
|
|
/* > WANTT is LOGICAL */
|
|
/* > = .TRUE. : the full Schur form T is required; */
|
|
/* > = .FALSE.: only eigenvalues are required. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] WANTZ */
|
|
/* > \verbatim */
|
|
/* > WANTZ is LOGICAL */
|
|
/* > = .TRUE. : the matrix of Schur vectors Z is required; */
|
|
/* > = .FALSE.: Schur vectors are not required. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > The order of the matrix H. N >= 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] ILO */
|
|
/* > \verbatim */
|
|
/* > ILO is INTEGER */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] IHI */
|
|
/* > \verbatim */
|
|
/* > IHI is INTEGER */
|
|
/* > It is assumed that H is already upper quasi-triangular in */
|
|
/* > rows and columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless */
|
|
/* > ILO = 1). DLAHQR works primarily with the Hessenberg */
|
|
/* > submatrix in rows and columns ILO to IHI, but applies */
|
|
/* > transformations to all of H if WANTT is .TRUE.. */
|
|
/* > 1 <= ILO <= f2cmax(1,IHI); IHI <= N. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] H */
|
|
/* > \verbatim */
|
|
/* > H is DOUBLE PRECISION array, dimension (LDH,N) */
|
|
/* > On entry, the upper Hessenberg matrix H. */
|
|
/* > On exit, if INFO is zero and if WANTT is .TRUE., H is upper */
|
|
/* > quasi-triangular in rows and columns ILO:IHI, with any */
|
|
/* > 2-by-2 diagonal blocks in standard form. If INFO is zero */
|
|
/* > and WANTT is .FALSE., the contents of H are unspecified on */
|
|
/* > exit. The output state of H if INFO is nonzero is given */
|
|
/* > below under the description of INFO. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDH */
|
|
/* > \verbatim */
|
|
/* > LDH is INTEGER */
|
|
/* > The leading dimension of the array H. LDH >= f2cmax(1,N). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] WR */
|
|
/* > \verbatim */
|
|
/* > WR is DOUBLE PRECISION array, dimension (N) */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] WI */
|
|
/* > \verbatim */
|
|
/* > WI is DOUBLE PRECISION array, dimension (N) */
|
|
/* > The real and imaginary parts, respectively, of the computed */
|
|
/* > eigenvalues ILO to IHI are stored in the corresponding */
|
|
/* > elements of WR and WI. If two eigenvalues are computed as a */
|
|
/* > complex conjugate pair, they are stored in consecutive */
|
|
/* > elements of WR and WI, say the i-th and (i+1)th, with */
|
|
/* > WI(i) > 0 and WI(i+1) < 0. If WANTT is .TRUE., the */
|
|
/* > eigenvalues are stored in the same order as on the diagonal */
|
|
/* > of the Schur form returned in H, with WR(i) = H(i,i), and, if */
|
|
/* > H(i:i+1,i:i+1) is a 2-by-2 diagonal block, */
|
|
/* > WI(i) = sqrt(H(i+1,i)*H(i,i+1)) and WI(i+1) = -WI(i). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] ILOZ */
|
|
/* > \verbatim */
|
|
/* > ILOZ is INTEGER */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] IHIZ */
|
|
/* > \verbatim */
|
|
/* > IHIZ is INTEGER */
|
|
/* > Specify the rows of Z to which transformations must be */
|
|
/* > applied if WANTZ is .TRUE.. */
|
|
/* > 1 <= ILOZ <= ILO; IHI <= IHIZ <= N. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] Z */
|
|
/* > \verbatim */
|
|
/* > Z is DOUBLE PRECISION array, dimension (LDZ,N) */
|
|
/* > If WANTZ is .TRUE., on entry Z must contain the current */
|
|
/* > matrix Z of transformations accumulated by DHSEQR, and on */
|
|
/* > exit Z has been updated; transformations are applied only to */
|
|
/* > the submatrix Z(ILOZ:IHIZ,ILO:IHI). */
|
|
/* > If WANTZ is .FALSE., Z is not referenced. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDZ */
|
|
/* > \verbatim */
|
|
/* > LDZ is INTEGER */
|
|
/* > The leading dimension of the array Z. LDZ >= f2cmax(1,N). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] INFO */
|
|
/* > \verbatim */
|
|
/* > INFO is INTEGER */
|
|
/* > = 0: successful exit */
|
|
/* > > 0: If INFO = i, DLAHQR failed to compute all the */
|
|
/* > eigenvalues ILO to IHI in a total of 30 iterations */
|
|
/* > per eigenvalue; elements i+1:ihi of WR and WI */
|
|
/* > contain those eigenvalues which have been */
|
|
/* > successfully computed. */
|
|
/* > */
|
|
/* > If INFO > 0 and WANTT is .FALSE., then on exit, */
|
|
/* > the remaining unconverged eigenvalues are the */
|
|
/* > eigenvalues of the upper Hessenberg matrix rows */
|
|
/* > and columns ILO through INFO of the final, output */
|
|
/* > value of H. */
|
|
/* > */
|
|
/* > If INFO > 0 and WANTT is .TRUE., then on exit */
|
|
/* > (*) (initial value of H)*U = U*(final value of H) */
|
|
/* > where U is an orthogonal matrix. The final */
|
|
/* > value of H is upper Hessenberg and triangular in */
|
|
/* > rows and columns INFO+1 through IHI. */
|
|
/* > */
|
|
/* > If INFO > 0 and WANTZ is .TRUE., then on exit */
|
|
/* > (final value of Z) = (initial value of Z)*U */
|
|
/* > where U is the orthogonal matrix in (*) */
|
|
/* > (regardless of the value of WANTT.) */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \date December 2016 */
|
|
|
|
/* > \ingroup doubleOTHERauxiliary */
|
|
|
|
/* > \par Further Details: */
|
|
/* ===================== */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > 02-96 Based on modifications by */
|
|
/* > David Day, Sandia National Laboratory, USA */
|
|
/* > */
|
|
/* > 12-04 Further modifications by */
|
|
/* > Ralph Byers, University of Kansas, USA */
|
|
/* > This is a modified version of DLAHQR from LAPACK version 3.0. */
|
|
/* > It is (1) more robust against overflow and underflow and */
|
|
/* > (2) adopts the more conservative Ahues & Tisseur stopping */
|
|
/* > criterion (LAWN 122, 1997). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* ===================================================================== */
|
|
/* Subroutine */ void dlahqr_(logical *wantt, logical *wantz, integer *n,
|
|
integer *ilo, integer *ihi, doublereal *h__, integer *ldh, doublereal
|
|
*wr, doublereal *wi, integer *iloz, integer *ihiz, doublereal *z__,
|
|
integer *ldz, integer *info)
|
|
{
|
|
/* System generated locals */
|
|
integer h_dim1, h_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4;
|
|
doublereal d__1, d__2, d__3, d__4;
|
|
|
|
/* Local variables */
|
|
extern /* Subroutine */ void drot_(integer *, doublereal *, integer *,
|
|
doublereal *, integer *, doublereal *, doublereal *);
|
|
integer i__, j, k, l, m;
|
|
doublereal s, v[3];
|
|
extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *,
|
|
doublereal *, integer *);
|
|
integer itmax, i1, i2;
|
|
doublereal t1, t2, t3, v2, v3;
|
|
extern /* Subroutine */ void dlanv2_(doublereal *, doublereal *,
|
|
doublereal *, doublereal *, doublereal *, doublereal *,
|
|
doublereal *, doublereal *, doublereal *, doublereal *);
|
|
doublereal aa, ab, ba, bb;
|
|
extern /* Subroutine */ void dlabad_(doublereal *, doublereal *);
|
|
doublereal h11, h12, h21, h22, cs;
|
|
integer nh;
|
|
extern doublereal dlamch_(char *);
|
|
extern /* Subroutine */ void dlarfg_(integer *, doublereal *, doublereal *,
|
|
integer *, doublereal *);
|
|
doublereal sn;
|
|
integer nr;
|
|
doublereal tr;
|
|
integer nz;
|
|
doublereal safmin, safmax, rtdisc, smlnum, det, h21s;
|
|
integer its;
|
|
doublereal ulp, sum, tst, rt1i, rt2i, rt1r, rt2r;
|
|
|
|
|
|
/* -- LAPACK auxiliary routine (version 3.7.0) -- */
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
/* December 2016 */
|
|
|
|
|
|
/* ========================================================= */
|
|
|
|
|
|
/* Parameter adjustments */
|
|
h_dim1 = *ldh;
|
|
h_offset = 1 + h_dim1 * 1;
|
|
h__ -= h_offset;
|
|
--wr;
|
|
--wi;
|
|
z_dim1 = *ldz;
|
|
z_offset = 1 + z_dim1 * 1;
|
|
z__ -= z_offset;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
|
|
/* Quick return if possible */
|
|
|
|
if (*n == 0) {
|
|
return;
|
|
}
|
|
if (*ilo == *ihi) {
|
|
wr[*ilo] = h__[*ilo + *ilo * h_dim1];
|
|
wi[*ilo] = 0.;
|
|
return;
|
|
}
|
|
|
|
/* ==== clear out the trash ==== */
|
|
i__1 = *ihi - 3;
|
|
for (j = *ilo; j <= i__1; ++j) {
|
|
h__[j + 2 + j * h_dim1] = 0.;
|
|
h__[j + 3 + j * h_dim1] = 0.;
|
|
/* L10: */
|
|
}
|
|
if (*ilo <= *ihi - 2) {
|
|
h__[*ihi + (*ihi - 2) * h_dim1] = 0.;
|
|
}
|
|
|
|
nh = *ihi - *ilo + 1;
|
|
nz = *ihiz - *iloz + 1;
|
|
|
|
/* Set machine-dependent constants for the stopping criterion. */
|
|
|
|
safmin = dlamch_("SAFE MINIMUM");
|
|
safmax = 1. / safmin;
|
|
dlabad_(&safmin, &safmax);
|
|
ulp = dlamch_("PRECISION");
|
|
smlnum = safmin * ((doublereal) nh / ulp);
|
|
|
|
/* I1 and I2 are the indices of the first row and last column of H */
|
|
/* to which transformations must be applied. If eigenvalues only are */
|
|
/* being computed, I1 and I2 are set inside the main loop. */
|
|
|
|
if (*wantt) {
|
|
i1 = 1;
|
|
i2 = *n;
|
|
}
|
|
|
|
/* ITMAX is the total number of QR iterations allowed. */
|
|
|
|
itmax = f2cmax(10,nh) * 30;
|
|
|
|
/* The main loop begins here. I is the loop index and decreases from */
|
|
/* IHI to ILO in steps of 1 or 2. Each iteration of the loop works */
|
|
/* with the active submatrix in rows and columns L to I. */
|
|
/* Eigenvalues I+1 to IHI have already converged. Either L = ILO or */
|
|
/* H(L,L-1) is negligible so that the matrix splits. */
|
|
|
|
i__ = *ihi;
|
|
L20:
|
|
l = *ilo;
|
|
if (i__ < *ilo) {
|
|
goto L160;
|
|
}
|
|
|
|
/* Perform QR iterations on rows and columns ILO to I until a */
|
|
/* submatrix of order 1 or 2 splits off at the bottom because a */
|
|
/* subdiagonal element has become negligible. */
|
|
|
|
i__1 = itmax;
|
|
for (its = 0; its <= i__1; ++its) {
|
|
|
|
/* Look for a single small subdiagonal element. */
|
|
|
|
i__2 = l + 1;
|
|
for (k = i__; k >= i__2; --k) {
|
|
if ((d__1 = h__[k + (k - 1) * h_dim1], abs(d__1)) <= smlnum) {
|
|
goto L40;
|
|
}
|
|
tst = (d__1 = h__[k - 1 + (k - 1) * h_dim1], abs(d__1)) + (d__2 =
|
|
h__[k + k * h_dim1], abs(d__2));
|
|
if (tst == 0.) {
|
|
if (k - 2 >= *ilo) {
|
|
tst += (d__1 = h__[k - 1 + (k - 2) * h_dim1], abs(d__1));
|
|
}
|
|
if (k + 1 <= *ihi) {
|
|
tst += (d__1 = h__[k + 1 + k * h_dim1], abs(d__1));
|
|
}
|
|
}
|
|
/* ==== The following is a conservative small subdiagonal */
|
|
/* . deflation criterion due to Ahues & Tisseur (LAWN 122, */
|
|
/* . 1997). It has better mathematical foundation and */
|
|
/* . improves accuracy in some cases. ==== */
|
|
if ((d__1 = h__[k + (k - 1) * h_dim1], abs(d__1)) <= ulp * tst) {
|
|
/* Computing MAX */
|
|
d__3 = (d__1 = h__[k + (k - 1) * h_dim1], abs(d__1)), d__4 = (
|
|
d__2 = h__[k - 1 + k * h_dim1], abs(d__2));
|
|
ab = f2cmax(d__3,d__4);
|
|
/* Computing MIN */
|
|
d__3 = (d__1 = h__[k + (k - 1) * h_dim1], abs(d__1)), d__4 = (
|
|
d__2 = h__[k - 1 + k * h_dim1], abs(d__2));
|
|
ba = f2cmin(d__3,d__4);
|
|
/* Computing MAX */
|
|
d__3 = (d__1 = h__[k + k * h_dim1], abs(d__1)), d__4 = (d__2 =
|
|
h__[k - 1 + (k - 1) * h_dim1] - h__[k + k * h_dim1],
|
|
abs(d__2));
|
|
aa = f2cmax(d__3,d__4);
|
|
/* Computing MIN */
|
|
d__3 = (d__1 = h__[k + k * h_dim1], abs(d__1)), d__4 = (d__2 =
|
|
h__[k - 1 + (k - 1) * h_dim1] - h__[k + k * h_dim1],
|
|
abs(d__2));
|
|
bb = f2cmin(d__3,d__4);
|
|
s = aa + ab;
|
|
/* Computing MAX */
|
|
d__1 = smlnum, d__2 = ulp * (bb * (aa / s));
|
|
if (ba * (ab / s) <= f2cmax(d__1,d__2)) {
|
|
goto L40;
|
|
}
|
|
}
|
|
/* L30: */
|
|
}
|
|
L40:
|
|
l = k;
|
|
if (l > *ilo) {
|
|
|
|
/* H(L,L-1) is negligible */
|
|
|
|
h__[l + (l - 1) * h_dim1] = 0.;
|
|
}
|
|
|
|
/* Exit from loop if a submatrix of order 1 or 2 has split off. */
|
|
|
|
if (l >= i__ - 1) {
|
|
goto L150;
|
|
}
|
|
|
|
/* Now the active submatrix is in rows and columns L to I. If */
|
|
/* eigenvalues only are being computed, only the active submatrix */
|
|
/* need be transformed. */
|
|
|
|
if (! (*wantt)) {
|
|
i1 = l;
|
|
i2 = i__;
|
|
}
|
|
|
|
if (its == 10) {
|
|
|
|
/* Exceptional shift. */
|
|
|
|
s = (d__1 = h__[l + 1 + l * h_dim1], abs(d__1)) + (d__2 = h__[l +
|
|
2 + (l + 1) * h_dim1], abs(d__2));
|
|
h11 = s * .75 + h__[l + l * h_dim1];
|
|
h12 = s * -.4375;
|
|
h21 = s;
|
|
h22 = h11;
|
|
} else if (its == 20) {
|
|
|
|
/* Exceptional shift. */
|
|
|
|
s = (d__1 = h__[i__ + (i__ - 1) * h_dim1], abs(d__1)) + (d__2 =
|
|
h__[i__ - 1 + (i__ - 2) * h_dim1], abs(d__2));
|
|
h11 = s * .75 + h__[i__ + i__ * h_dim1];
|
|
h12 = s * -.4375;
|
|
h21 = s;
|
|
h22 = h11;
|
|
} else {
|
|
|
|
/* Prepare to use Francis' double shift */
|
|
/* (i.e. 2nd degree generalized Rayleigh quotient) */
|
|
|
|
h11 = h__[i__ - 1 + (i__ - 1) * h_dim1];
|
|
h21 = h__[i__ + (i__ - 1) * h_dim1];
|
|
h12 = h__[i__ - 1 + i__ * h_dim1];
|
|
h22 = h__[i__ + i__ * h_dim1];
|
|
}
|
|
s = abs(h11) + abs(h12) + abs(h21) + abs(h22);
|
|
if (s == 0.) {
|
|
rt1r = 0.;
|
|
rt1i = 0.;
|
|
rt2r = 0.;
|
|
rt2i = 0.;
|
|
} else {
|
|
h11 /= s;
|
|
h21 /= s;
|
|
h12 /= s;
|
|
h22 /= s;
|
|
tr = (h11 + h22) / 2.;
|
|
det = (h11 - tr) * (h22 - tr) - h12 * h21;
|
|
rtdisc = sqrt((abs(det)));
|
|
if (det >= 0.) {
|
|
|
|
/* ==== complex conjugate shifts ==== */
|
|
|
|
rt1r = tr * s;
|
|
rt2r = rt1r;
|
|
rt1i = rtdisc * s;
|
|
rt2i = -rt1i;
|
|
} else {
|
|
|
|
/* ==== real shifts (use only one of them) ==== */
|
|
|
|
rt1r = tr + rtdisc;
|
|
rt2r = tr - rtdisc;
|
|
if ((d__1 = rt1r - h22, abs(d__1)) <= (d__2 = rt2r - h22, abs(
|
|
d__2))) {
|
|
rt1r *= s;
|
|
rt2r = rt1r;
|
|
} else {
|
|
rt2r *= s;
|
|
rt1r = rt2r;
|
|
}
|
|
rt1i = 0.;
|
|
rt2i = 0.;
|
|
}
|
|
}
|
|
|
|
/* Look for two consecutive small subdiagonal elements. */
|
|
|
|
i__2 = l;
|
|
for (m = i__ - 2; m >= i__2; --m) {
|
|
/* Determine the effect of starting the double-shift QR */
|
|
/* iteration at row M, and see if this would make H(M,M-1) */
|
|
/* negligible. (The following uses scaling to avoid */
|
|
/* overflows and most underflows.) */
|
|
|
|
h21s = h__[m + 1 + m * h_dim1];
|
|
s = (d__1 = h__[m + m * h_dim1] - rt2r, abs(d__1)) + abs(rt2i) +
|
|
abs(h21s);
|
|
h21s = h__[m + 1 + m * h_dim1] / s;
|
|
v[0] = h21s * h__[m + (m + 1) * h_dim1] + (h__[m + m * h_dim1] -
|
|
rt1r) * ((h__[m + m * h_dim1] - rt2r) / s) - rt1i * (rt2i
|
|
/ s);
|
|
v[1] = h21s * (h__[m + m * h_dim1] + h__[m + 1 + (m + 1) * h_dim1]
|
|
- rt1r - rt2r);
|
|
v[2] = h21s * h__[m + 2 + (m + 1) * h_dim1];
|
|
s = abs(v[0]) + abs(v[1]) + abs(v[2]);
|
|
v[0] /= s;
|
|
v[1] /= s;
|
|
v[2] /= s;
|
|
if (m == l) {
|
|
goto L60;
|
|
}
|
|
if ((d__1 = h__[m + (m - 1) * h_dim1], abs(d__1)) * (abs(v[1]) +
|
|
abs(v[2])) <= ulp * abs(v[0]) * ((d__2 = h__[m - 1 + (m -
|
|
1) * h_dim1], abs(d__2)) + (d__3 = h__[m + m * h_dim1],
|
|
abs(d__3)) + (d__4 = h__[m + 1 + (m + 1) * h_dim1], abs(
|
|
d__4)))) {
|
|
goto L60;
|
|
}
|
|
/* L50: */
|
|
}
|
|
L60:
|
|
|
|
/* Double-shift QR step */
|
|
|
|
i__2 = i__ - 1;
|
|
for (k = m; k <= i__2; ++k) {
|
|
|
|
/* The first iteration of this loop determines a reflection G */
|
|
/* from the vector V and applies it from left and right to H, */
|
|
/* thus creating a nonzero bulge below the subdiagonal. */
|
|
|
|
/* Each subsequent iteration determines a reflection G to */
|
|
/* restore the Hessenberg form in the (K-1)th column, and thus */
|
|
/* chases the bulge one step toward the bottom of the active */
|
|
/* submatrix. NR is the order of G. */
|
|
|
|
/* Computing MIN */
|
|
i__3 = 3, i__4 = i__ - k + 1;
|
|
nr = f2cmin(i__3,i__4);
|
|
if (k > m) {
|
|
dcopy_(&nr, &h__[k + (k - 1) * h_dim1], &c__1, v, &c__1);
|
|
}
|
|
dlarfg_(&nr, v, &v[1], &c__1, &t1);
|
|
if (k > m) {
|
|
h__[k + (k - 1) * h_dim1] = v[0];
|
|
h__[k + 1 + (k - 1) * h_dim1] = 0.;
|
|
if (k < i__ - 1) {
|
|
h__[k + 2 + (k - 1) * h_dim1] = 0.;
|
|
}
|
|
} else if (m > l) {
|
|
/* ==== Use the following instead of */
|
|
/* . H( K, K-1 ) = -H( K, K-1 ) to */
|
|
/* . avoid a bug when v(2) and v(3) */
|
|
/* . underflow. ==== */
|
|
h__[k + (k - 1) * h_dim1] *= 1. - t1;
|
|
}
|
|
v2 = v[1];
|
|
t2 = t1 * v2;
|
|
if (nr == 3) {
|
|
v3 = v[2];
|
|
t3 = t1 * v3;
|
|
|
|
/* Apply G from the left to transform the rows of the matrix */
|
|
/* in columns K to I2. */
|
|
|
|
i__3 = i2;
|
|
for (j = k; j <= i__3; ++j) {
|
|
sum = h__[k + j * h_dim1] + v2 * h__[k + 1 + j * h_dim1]
|
|
+ v3 * h__[k + 2 + j * h_dim1];
|
|
h__[k + j * h_dim1] -= sum * t1;
|
|
h__[k + 1 + j * h_dim1] -= sum * t2;
|
|
h__[k + 2 + j * h_dim1] -= sum * t3;
|
|
/* L70: */
|
|
}
|
|
|
|
/* Apply G from the right to transform the columns of the */
|
|
/* matrix in rows I1 to f2cmin(K+3,I). */
|
|
|
|
/* Computing MIN */
|
|
i__4 = k + 3;
|
|
i__3 = f2cmin(i__4,i__);
|
|
for (j = i1; j <= i__3; ++j) {
|
|
sum = h__[j + k * h_dim1] + v2 * h__[j + (k + 1) * h_dim1]
|
|
+ v3 * h__[j + (k + 2) * h_dim1];
|
|
h__[j + k * h_dim1] -= sum * t1;
|
|
h__[j + (k + 1) * h_dim1] -= sum * t2;
|
|
h__[j + (k + 2) * h_dim1] -= sum * t3;
|
|
/* L80: */
|
|
}
|
|
|
|
if (*wantz) {
|
|
|
|
/* Accumulate transformations in the matrix Z */
|
|
|
|
i__3 = *ihiz;
|
|
for (j = *iloz; j <= i__3; ++j) {
|
|
sum = z__[j + k * z_dim1] + v2 * z__[j + (k + 1) *
|
|
z_dim1] + v3 * z__[j + (k + 2) * z_dim1];
|
|
z__[j + k * z_dim1] -= sum * t1;
|
|
z__[j + (k + 1) * z_dim1] -= sum * t2;
|
|
z__[j + (k + 2) * z_dim1] -= sum * t3;
|
|
/* L90: */
|
|
}
|
|
}
|
|
} else if (nr == 2) {
|
|
|
|
/* Apply G from the left to transform the rows of the matrix */
|
|
/* in columns K to I2. */
|
|
|
|
i__3 = i2;
|
|
for (j = k; j <= i__3; ++j) {
|
|
sum = h__[k + j * h_dim1] + v2 * h__[k + 1 + j * h_dim1];
|
|
h__[k + j * h_dim1] -= sum * t1;
|
|
h__[k + 1 + j * h_dim1] -= sum * t2;
|
|
/* L100: */
|
|
}
|
|
|
|
/* Apply G from the right to transform the columns of the */
|
|
/* matrix in rows I1 to f2cmin(K+3,I). */
|
|
|
|
i__3 = i__;
|
|
for (j = i1; j <= i__3; ++j) {
|
|
sum = h__[j + k * h_dim1] + v2 * h__[j + (k + 1) * h_dim1]
|
|
;
|
|
h__[j + k * h_dim1] -= sum * t1;
|
|
h__[j + (k + 1) * h_dim1] -= sum * t2;
|
|
/* L110: */
|
|
}
|
|
|
|
if (*wantz) {
|
|
|
|
/* Accumulate transformations in the matrix Z */
|
|
|
|
i__3 = *ihiz;
|
|
for (j = *iloz; j <= i__3; ++j) {
|
|
sum = z__[j + k * z_dim1] + v2 * z__[j + (k + 1) *
|
|
z_dim1];
|
|
z__[j + k * z_dim1] -= sum * t1;
|
|
z__[j + (k + 1) * z_dim1] -= sum * t2;
|
|
/* L120: */
|
|
}
|
|
}
|
|
}
|
|
/* L130: */
|
|
}
|
|
|
|
/* L140: */
|
|
}
|
|
|
|
/* Failure to converge in remaining number of iterations */
|
|
|
|
*info = i__;
|
|
return;
|
|
|
|
L150:
|
|
|
|
if (l == i__) {
|
|
|
|
/* H(I,I-1) is negligible: one eigenvalue has converged. */
|
|
|
|
wr[i__] = h__[i__ + i__ * h_dim1];
|
|
wi[i__] = 0.;
|
|
} else if (l == i__ - 1) {
|
|
|
|
/* H(I-1,I-2) is negligible: a pair of eigenvalues have converged. */
|
|
|
|
/* Transform the 2-by-2 submatrix to standard Schur form, */
|
|
/* and compute and store the eigenvalues. */
|
|
|
|
dlanv2_(&h__[i__ - 1 + (i__ - 1) * h_dim1], &h__[i__ - 1 + i__ *
|
|
h_dim1], &h__[i__ + (i__ - 1) * h_dim1], &h__[i__ + i__ *
|
|
h_dim1], &wr[i__ - 1], &wi[i__ - 1], &wr[i__], &wi[i__], &cs,
|
|
&sn);
|
|
|
|
if (*wantt) {
|
|
|
|
/* Apply the transformation to the rest of H. */
|
|
|
|
if (i2 > i__) {
|
|
i__1 = i2 - i__;
|
|
drot_(&i__1, &h__[i__ - 1 + (i__ + 1) * h_dim1], ldh, &h__[
|
|
i__ + (i__ + 1) * h_dim1], ldh, &cs, &sn);
|
|
}
|
|
i__1 = i__ - i1 - 1;
|
|
drot_(&i__1, &h__[i1 + (i__ - 1) * h_dim1], &c__1, &h__[i1 + i__ *
|
|
h_dim1], &c__1, &cs, &sn);
|
|
}
|
|
if (*wantz) {
|
|
|
|
/* Apply the transformation to Z. */
|
|
|
|
drot_(&nz, &z__[*iloz + (i__ - 1) * z_dim1], &c__1, &z__[*iloz +
|
|
i__ * z_dim1], &c__1, &cs, &sn);
|
|
}
|
|
}
|
|
|
|
/* return to start of the main loop with new value of I. */
|
|
|
|
i__ = l - 1;
|
|
goto L20;
|
|
|
|
L160:
|
|
return;
|
|
|
|
/* End of DLAHQR */
|
|
|
|
} /* dlahqr_ */
|
|
|