830 lines
22 KiB
C
830 lines
22 KiB
C
#include <math.h>
|
||
#include <stdlib.h>
|
||
#include <string.h>
|
||
#include <stdio.h>
|
||
#include <complex.h>
|
||
#ifdef complex
|
||
#undef complex
|
||
#endif
|
||
#ifdef I
|
||
#undef I
|
||
#endif
|
||
|
||
#if defined(_WIN64)
|
||
typedef long long BLASLONG;
|
||
typedef unsigned long long BLASULONG;
|
||
#else
|
||
typedef long BLASLONG;
|
||
typedef unsigned long BLASULONG;
|
||
#endif
|
||
|
||
#ifdef LAPACK_ILP64
|
||
typedef BLASLONG blasint;
|
||
#if defined(_WIN64)
|
||
#define blasabs(x) llabs(x)
|
||
#else
|
||
#define blasabs(x) labs(x)
|
||
#endif
|
||
#else
|
||
typedef int blasint;
|
||
#define blasabs(x) abs(x)
|
||
#endif
|
||
|
||
typedef blasint integer;
|
||
|
||
typedef unsigned int uinteger;
|
||
typedef char *address;
|
||
typedef short int shortint;
|
||
typedef float real;
|
||
typedef double doublereal;
|
||
typedef struct { real r, i; } complex;
|
||
typedef struct { doublereal r, i; } doublecomplex;
|
||
#ifdef _MSC_VER
|
||
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
|
||
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
|
||
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
|
||
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
|
||
#else
|
||
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
|
||
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
|
||
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
|
||
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
|
||
#endif
|
||
#define pCf(z) (*_pCf(z))
|
||
#define pCd(z) (*_pCd(z))
|
||
typedef blasint logical;
|
||
|
||
typedef char logical1;
|
||
typedef char integer1;
|
||
|
||
#define TRUE_ (1)
|
||
#define FALSE_ (0)
|
||
|
||
/* Extern is for use with -E */
|
||
#ifndef Extern
|
||
#define Extern extern
|
||
#endif
|
||
|
||
/* I/O stuff */
|
||
|
||
typedef int flag;
|
||
typedef int ftnlen;
|
||
typedef int ftnint;
|
||
|
||
/*external read, write*/
|
||
typedef struct
|
||
{ flag cierr;
|
||
ftnint ciunit;
|
||
flag ciend;
|
||
char *cifmt;
|
||
ftnint cirec;
|
||
} cilist;
|
||
|
||
/*internal read, write*/
|
||
typedef struct
|
||
{ flag icierr;
|
||
char *iciunit;
|
||
flag iciend;
|
||
char *icifmt;
|
||
ftnint icirlen;
|
||
ftnint icirnum;
|
||
} icilist;
|
||
|
||
/*open*/
|
||
typedef struct
|
||
{ flag oerr;
|
||
ftnint ounit;
|
||
char *ofnm;
|
||
ftnlen ofnmlen;
|
||
char *osta;
|
||
char *oacc;
|
||
char *ofm;
|
||
ftnint orl;
|
||
char *oblnk;
|
||
} olist;
|
||
|
||
/*close*/
|
||
typedef struct
|
||
{ flag cerr;
|
||
ftnint cunit;
|
||
char *csta;
|
||
} cllist;
|
||
|
||
/*rewind, backspace, endfile*/
|
||
typedef struct
|
||
{ flag aerr;
|
||
ftnint aunit;
|
||
} alist;
|
||
|
||
/* inquire */
|
||
typedef struct
|
||
{ flag inerr;
|
||
ftnint inunit;
|
||
char *infile;
|
||
ftnlen infilen;
|
||
ftnint *inex; /*parameters in standard's order*/
|
||
ftnint *inopen;
|
||
ftnint *innum;
|
||
ftnint *innamed;
|
||
char *inname;
|
||
ftnlen innamlen;
|
||
char *inacc;
|
||
ftnlen inacclen;
|
||
char *inseq;
|
||
ftnlen inseqlen;
|
||
char *indir;
|
||
ftnlen indirlen;
|
||
char *infmt;
|
||
ftnlen infmtlen;
|
||
char *inform;
|
||
ftnint informlen;
|
||
char *inunf;
|
||
ftnlen inunflen;
|
||
ftnint *inrecl;
|
||
ftnint *innrec;
|
||
char *inblank;
|
||
ftnlen inblanklen;
|
||
} inlist;
|
||
|
||
#define VOID void
|
||
|
||
union Multitype { /* for multiple entry points */
|
||
integer1 g;
|
||
shortint h;
|
||
integer i;
|
||
/* longint j; */
|
||
real r;
|
||
doublereal d;
|
||
complex c;
|
||
doublecomplex z;
|
||
};
|
||
|
||
typedef union Multitype Multitype;
|
||
|
||
struct Vardesc { /* for Namelist */
|
||
char *name;
|
||
char *addr;
|
||
ftnlen *dims;
|
||
int type;
|
||
};
|
||
typedef struct Vardesc Vardesc;
|
||
|
||
struct Namelist {
|
||
char *name;
|
||
Vardesc **vars;
|
||
int nvars;
|
||
};
|
||
typedef struct Namelist Namelist;
|
||
|
||
#define abs(x) ((x) >= 0 ? (x) : -(x))
|
||
#define dabs(x) (fabs(x))
|
||
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
|
||
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
|
||
#define dmin(a,b) (f2cmin(a,b))
|
||
#define dmax(a,b) (f2cmax(a,b))
|
||
#define bit_test(a,b) ((a) >> (b) & 1)
|
||
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
|
||
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
|
||
|
||
#define abort_() { sig_die("Fortran abort routine called", 1); }
|
||
#define c_abs(z) (cabsf(Cf(z)))
|
||
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
|
||
#ifdef _MSC_VER
|
||
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
|
||
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
|
||
#else
|
||
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
|
||
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
|
||
#endif
|
||
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
|
||
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
|
||
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
|
||
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
|
||
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
|
||
#define d_abs(x) (fabs(*(x)))
|
||
#define d_acos(x) (acos(*(x)))
|
||
#define d_asin(x) (asin(*(x)))
|
||
#define d_atan(x) (atan(*(x)))
|
||
#define d_atn2(x, y) (atan2(*(x),*(y)))
|
||
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
|
||
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
|
||
#define d_cos(x) (cos(*(x)))
|
||
#define d_cosh(x) (cosh(*(x)))
|
||
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
|
||
#define d_exp(x) (exp(*(x)))
|
||
#define d_imag(z) (cimag(Cd(z)))
|
||
#define r_imag(z) (cimagf(Cf(z)))
|
||
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
||
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
||
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
||
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
||
#define d_log(x) (log(*(x)))
|
||
#define d_mod(x, y) (fmod(*(x), *(y)))
|
||
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
|
||
#define d_nint(x) u_nint(*(x))
|
||
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
|
||
#define d_sign(a,b) u_sign(*(a),*(b))
|
||
#define r_sign(a,b) u_sign(*(a),*(b))
|
||
#define d_sin(x) (sin(*(x)))
|
||
#define d_sinh(x) (sinh(*(x)))
|
||
#define d_sqrt(x) (sqrt(*(x)))
|
||
#define d_tan(x) (tan(*(x)))
|
||
#define d_tanh(x) (tanh(*(x)))
|
||
#define i_abs(x) abs(*(x))
|
||
#define i_dnnt(x) ((integer)u_nint(*(x)))
|
||
#define i_len(s, n) (n)
|
||
#define i_nint(x) ((integer)u_nint(*(x)))
|
||
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
|
||
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
|
||
#define pow_si(B,E) spow_ui(*(B),*(E))
|
||
#define pow_ri(B,E) spow_ui(*(B),*(E))
|
||
#define pow_di(B,E) dpow_ui(*(B),*(E))
|
||
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
|
||
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
|
||
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
|
||
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
|
||
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
|
||
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
|
||
#define sig_die(s, kill) { exit(1); }
|
||
#define s_stop(s, n) {exit(0);}
|
||
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
|
||
#define z_abs(z) (cabs(Cd(z)))
|
||
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
|
||
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
|
||
#define myexit_() break;
|
||
#define mycycle() continue;
|
||
#define myceiling(w) {ceil(w)}
|
||
#define myhuge(w) {HUGE_VAL}
|
||
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
|
||
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
|
||
|
||
/* procedure parameter types for -A and -C++ */
|
||
|
||
|
||
#ifdef __cplusplus
|
||
typedef logical (*L_fp)(...);
|
||
#else
|
||
typedef logical (*L_fp)();
|
||
#endif
|
||
|
||
static float spow_ui(float x, integer n) {
|
||
float pow=1.0; unsigned long int u;
|
||
if(n != 0) {
|
||
if(n < 0) n = -n, x = 1/x;
|
||
for(u = n; ; ) {
|
||
if(u & 01) pow *= x;
|
||
if(u >>= 1) x *= x;
|
||
else break;
|
||
}
|
||
}
|
||
return pow;
|
||
}
|
||
static double dpow_ui(double x, integer n) {
|
||
double pow=1.0; unsigned long int u;
|
||
if(n != 0) {
|
||
if(n < 0) n = -n, x = 1/x;
|
||
for(u = n; ; ) {
|
||
if(u & 01) pow *= x;
|
||
if(u >>= 1) x *= x;
|
||
else break;
|
||
}
|
||
}
|
||
return pow;
|
||
}
|
||
#ifdef _MSC_VER
|
||
static _Fcomplex cpow_ui(complex x, integer n) {
|
||
complex pow={1.0,0.0}; unsigned long int u;
|
||
if(n != 0) {
|
||
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
|
||
for(u = n; ; ) {
|
||
if(u & 01) pow.r *= x.r, pow.i *= x.i;
|
||
if(u >>= 1) x.r *= x.r, x.i *= x.i;
|
||
else break;
|
||
}
|
||
}
|
||
_Fcomplex p={pow.r, pow.i};
|
||
return p;
|
||
}
|
||
#else
|
||
static _Complex float cpow_ui(_Complex float x, integer n) {
|
||
_Complex float pow=1.0; unsigned long int u;
|
||
if(n != 0) {
|
||
if(n < 0) n = -n, x = 1/x;
|
||
for(u = n; ; ) {
|
||
if(u & 01) pow *= x;
|
||
if(u >>= 1) x *= x;
|
||
else break;
|
||
}
|
||
}
|
||
return pow;
|
||
}
|
||
#endif
|
||
#ifdef _MSC_VER
|
||
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
|
||
_Dcomplex pow={1.0,0.0}; unsigned long int u;
|
||
if(n != 0) {
|
||
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
|
||
for(u = n; ; ) {
|
||
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
|
||
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
|
||
else break;
|
||
}
|
||
}
|
||
_Dcomplex p = {pow._Val[0], pow._Val[1]};
|
||
return p;
|
||
}
|
||
#else
|
||
static _Complex double zpow_ui(_Complex double x, integer n) {
|
||
_Complex double pow=1.0; unsigned long int u;
|
||
if(n != 0) {
|
||
if(n < 0) n = -n, x = 1/x;
|
||
for(u = n; ; ) {
|
||
if(u & 01) pow *= x;
|
||
if(u >>= 1) x *= x;
|
||
else break;
|
||
}
|
||
}
|
||
return pow;
|
||
}
|
||
#endif
|
||
static integer pow_ii(integer x, integer n) {
|
||
integer pow; unsigned long int u;
|
||
if (n <= 0) {
|
||
if (n == 0 || x == 1) pow = 1;
|
||
else if (x != -1) pow = x == 0 ? 1/x : 0;
|
||
else n = -n;
|
||
}
|
||
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
|
||
u = n;
|
||
for(pow = 1; ; ) {
|
||
if(u & 01) pow *= x;
|
||
if(u >>= 1) x *= x;
|
||
else break;
|
||
}
|
||
}
|
||
return pow;
|
||
}
|
||
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
|
||
{
|
||
double m; integer i, mi;
|
||
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
||
if (w[i-1]>m) mi=i ,m=w[i-1];
|
||
return mi-s+1;
|
||
}
|
||
static integer smaxloc_(float *w, integer s, integer e, integer *n)
|
||
{
|
||
float m; integer i, mi;
|
||
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
||
if (w[i-1]>m) mi=i ,m=w[i-1];
|
||
return mi-s+1;
|
||
}
|
||
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
||
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
||
#ifdef _MSC_VER
|
||
_Fcomplex zdotc = {0.0, 0.0};
|
||
if (incx == 1 && incy == 1) {
|
||
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
||
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
|
||
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
|
||
}
|
||
} else {
|
||
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
||
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
|
||
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
|
||
}
|
||
}
|
||
pCf(z) = zdotc;
|
||
}
|
||
#else
|
||
_Complex float zdotc = 0.0;
|
||
if (incx == 1 && incy == 1) {
|
||
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
||
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
|
||
}
|
||
} else {
|
||
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
||
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
|
||
}
|
||
}
|
||
pCf(z) = zdotc;
|
||
}
|
||
#endif
|
||
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
||
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
||
#ifdef _MSC_VER
|
||
_Dcomplex zdotc = {0.0, 0.0};
|
||
if (incx == 1 && incy == 1) {
|
||
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
||
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
|
||
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
|
||
}
|
||
} else {
|
||
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
||
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
|
||
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
|
||
}
|
||
}
|
||
pCd(z) = zdotc;
|
||
}
|
||
#else
|
||
_Complex double zdotc = 0.0;
|
||
if (incx == 1 && incy == 1) {
|
||
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
||
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
|
||
}
|
||
} else {
|
||
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
||
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
|
||
}
|
||
}
|
||
pCd(z) = zdotc;
|
||
}
|
||
#endif
|
||
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
||
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
||
#ifdef _MSC_VER
|
||
_Fcomplex zdotc = {0.0, 0.0};
|
||
if (incx == 1 && incy == 1) {
|
||
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
||
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
|
||
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
|
||
}
|
||
} else {
|
||
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
||
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
|
||
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
|
||
}
|
||
}
|
||
pCf(z) = zdotc;
|
||
}
|
||
#else
|
||
_Complex float zdotc = 0.0;
|
||
if (incx == 1 && incy == 1) {
|
||
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
||
zdotc += Cf(&x[i]) * Cf(&y[i]);
|
||
}
|
||
} else {
|
||
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
||
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
|
||
}
|
||
}
|
||
pCf(z) = zdotc;
|
||
}
|
||
#endif
|
||
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
||
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
||
#ifdef _MSC_VER
|
||
_Dcomplex zdotc = {0.0, 0.0};
|
||
if (incx == 1 && incy == 1) {
|
||
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
||
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
|
||
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
|
||
}
|
||
} else {
|
||
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
||
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
|
||
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
|
||
}
|
||
}
|
||
pCd(z) = zdotc;
|
||
}
|
||
#else
|
||
_Complex double zdotc = 0.0;
|
||
if (incx == 1 && incy == 1) {
|
||
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
||
zdotc += Cd(&x[i]) * Cd(&y[i]);
|
||
}
|
||
} else {
|
||
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
||
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
|
||
}
|
||
}
|
||
pCd(z) = zdotc;
|
||
}
|
||
#endif
|
||
/* -- translated by f2c (version 20000121).
|
||
You must link the resulting object file with the libraries:
|
||
-lf2c -lm (in that order)
|
||
*/
|
||
|
||
|
||
|
||
|
||
/* > \brief \b DLAGTM performs a matrix-matrix product of the form C = αAB+βC, where A is a tridiagonal matr
|
||
ix, B and C are rectangular matrices, and α and β are scalars, which may be 0, 1, or -1. */
|
||
|
||
/* =========== DOCUMENTATION =========== */
|
||
|
||
/* Online html documentation available at */
|
||
/* http://www.netlib.org/lapack/explore-html/ */
|
||
|
||
/* > \htmlonly */
|
||
/* > Download DLAGTM + dependencies */
|
||
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlagtm.
|
||
f"> */
|
||
/* > [TGZ]</a> */
|
||
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlagtm.
|
||
f"> */
|
||
/* > [ZIP]</a> */
|
||
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlagtm.
|
||
f"> */
|
||
/* > [TXT]</a> */
|
||
/* > \endhtmlonly */
|
||
|
||
/* Definition: */
|
||
/* =========== */
|
||
|
||
/* SUBROUTINE DLAGTM( TRANS, N, NRHS, ALPHA, DL, D, DU, X, LDX, BETA, */
|
||
/* B, LDB ) */
|
||
|
||
/* CHARACTER TRANS */
|
||
/* INTEGER LDB, LDX, N, NRHS */
|
||
/* DOUBLE PRECISION ALPHA, BETA */
|
||
/* DOUBLE PRECISION B( LDB, * ), D( * ), DL( * ), DU( * ), */
|
||
/* $ X( LDX, * ) */
|
||
|
||
|
||
/* > \par Purpose: */
|
||
/* ============= */
|
||
/* > */
|
||
/* > \verbatim */
|
||
/* > */
|
||
/* > DLAGTM performs a matrix-vector product of the form */
|
||
/* > */
|
||
/* > B := alpha * A * X + beta * B */
|
||
/* > */
|
||
/* > where A is a tridiagonal matrix of order N, B and X are N by NRHS */
|
||
/* > matrices, and alpha and beta are real scalars, each of which may be */
|
||
/* > 0., 1., or -1. */
|
||
/* > \endverbatim */
|
||
|
||
/* Arguments: */
|
||
/* ========== */
|
||
|
||
/* > \param[in] TRANS */
|
||
/* > \verbatim */
|
||
/* > TRANS is CHARACTER*1 */
|
||
/* > Specifies the operation applied to A. */
|
||
/* > = 'N': No transpose, B := alpha * A * X + beta * B */
|
||
/* > = 'T': Transpose, B := alpha * A'* X + beta * B */
|
||
/* > = 'C': Conjugate transpose = Transpose */
|
||
/* > \endverbatim */
|
||
/* > */
|
||
/* > \param[in] N */
|
||
/* > \verbatim */
|
||
/* > N is INTEGER */
|
||
/* > The order of the matrix A. N >= 0. */
|
||
/* > \endverbatim */
|
||
/* > */
|
||
/* > \param[in] NRHS */
|
||
/* > \verbatim */
|
||
/* > NRHS is INTEGER */
|
||
/* > The number of right hand sides, i.e., the number of columns */
|
||
/* > of the matrices X and B. */
|
||
/* > \endverbatim */
|
||
/* > */
|
||
/* > \param[in] ALPHA */
|
||
/* > \verbatim */
|
||
/* > ALPHA is DOUBLE PRECISION */
|
||
/* > The scalar alpha. ALPHA must be 0., 1., or -1.; otherwise, */
|
||
/* > it is assumed to be 0. */
|
||
/* > \endverbatim */
|
||
/* > */
|
||
/* > \param[in] DL */
|
||
/* > \verbatim */
|
||
/* > DL is DOUBLE PRECISION array, dimension (N-1) */
|
||
/* > The (n-1) sub-diagonal elements of T. */
|
||
/* > \endverbatim */
|
||
/* > */
|
||
/* > \param[in] D */
|
||
/* > \verbatim */
|
||
/* > D is DOUBLE PRECISION array, dimension (N) */
|
||
/* > The diagonal elements of T. */
|
||
/* > \endverbatim */
|
||
/* > */
|
||
/* > \param[in] DU */
|
||
/* > \verbatim */
|
||
/* > DU is DOUBLE PRECISION array, dimension (N-1) */
|
||
/* > The (n-1) super-diagonal elements of T. */
|
||
/* > \endverbatim */
|
||
/* > */
|
||
/* > \param[in] X */
|
||
/* > \verbatim */
|
||
/* > X is DOUBLE PRECISION array, dimension (LDX,NRHS) */
|
||
/* > The N by NRHS matrix X. */
|
||
/* > \endverbatim */
|
||
/* > */
|
||
/* > \param[in] LDX */
|
||
/* > \verbatim */
|
||
/* > LDX is INTEGER */
|
||
/* > The leading dimension of the array X. LDX >= f2cmax(N,1). */
|
||
/* > \endverbatim */
|
||
/* > */
|
||
/* > \param[in] BETA */
|
||
/* > \verbatim */
|
||
/* > BETA is DOUBLE PRECISION */
|
||
/* > The scalar beta. BETA must be 0., 1., or -1.; otherwise, */
|
||
/* > it is assumed to be 1. */
|
||
/* > \endverbatim */
|
||
/* > */
|
||
/* > \param[in,out] B */
|
||
/* > \verbatim */
|
||
/* > B is DOUBLE PRECISION array, dimension (LDB,NRHS) */
|
||
/* > On entry, the N by NRHS matrix B. */
|
||
/* > On exit, B is overwritten by the matrix expression */
|
||
/* > B := alpha * A * X + beta * B. */
|
||
/* > \endverbatim */
|
||
/* > */
|
||
/* > \param[in] LDB */
|
||
/* > \verbatim */
|
||
/* > LDB is INTEGER */
|
||
/* > The leading dimension of the array B. LDB >= f2cmax(N,1). */
|
||
/* > \endverbatim */
|
||
|
||
/* Authors: */
|
||
/* ======== */
|
||
|
||
/* > \author Univ. of Tennessee */
|
||
/* > \author Univ. of California Berkeley */
|
||
/* > \author Univ. of Colorado Denver */
|
||
/* > \author NAG Ltd. */
|
||
|
||
/* > \date December 2016 */
|
||
|
||
/* > \ingroup doubleOTHERauxiliary */
|
||
|
||
/* ===================================================================== */
|
||
/* Subroutine */ void dlagtm_(char *trans, integer *n, integer *nrhs,
|
||
doublereal *alpha, doublereal *dl, doublereal *d__, doublereal *du,
|
||
doublereal *x, integer *ldx, doublereal *beta, doublereal *b, integer
|
||
*ldb)
|
||
{
|
||
/* System generated locals */
|
||
integer b_dim1, b_offset, x_dim1, x_offset, i__1, i__2;
|
||
|
||
/* Local variables */
|
||
integer i__, j;
|
||
extern logical lsame_(char *, char *);
|
||
|
||
|
||
/* -- LAPACK auxiliary routine (version 3.7.0) -- */
|
||
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
||
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
||
/* December 2016 */
|
||
|
||
|
||
/* ===================================================================== */
|
||
|
||
|
||
/* Parameter adjustments */
|
||
--dl;
|
||
--d__;
|
||
--du;
|
||
x_dim1 = *ldx;
|
||
x_offset = 1 + x_dim1 * 1;
|
||
x -= x_offset;
|
||
b_dim1 = *ldb;
|
||
b_offset = 1 + b_dim1 * 1;
|
||
b -= b_offset;
|
||
|
||
/* Function Body */
|
||
if (*n == 0) {
|
||
return;
|
||
}
|
||
|
||
/* Multiply B by BETA if BETA.NE.1. */
|
||
|
||
if (*beta == 0.) {
|
||
i__1 = *nrhs;
|
||
for (j = 1; j <= i__1; ++j) {
|
||
i__2 = *n;
|
||
for (i__ = 1; i__ <= i__2; ++i__) {
|
||
b[i__ + j * b_dim1] = 0.;
|
||
/* L10: */
|
||
}
|
||
/* L20: */
|
||
}
|
||
} else if (*beta == -1.) {
|
||
i__1 = *nrhs;
|
||
for (j = 1; j <= i__1; ++j) {
|
||
i__2 = *n;
|
||
for (i__ = 1; i__ <= i__2; ++i__) {
|
||
b[i__ + j * b_dim1] = -b[i__ + j * b_dim1];
|
||
/* L30: */
|
||
}
|
||
/* L40: */
|
||
}
|
||
}
|
||
|
||
if (*alpha == 1.) {
|
||
if (lsame_(trans, "N")) {
|
||
|
||
/* Compute B := B + A*X */
|
||
|
||
i__1 = *nrhs;
|
||
for (j = 1; j <= i__1; ++j) {
|
||
if (*n == 1) {
|
||
b[j * b_dim1 + 1] += d__[1] * x[j * x_dim1 + 1];
|
||
} else {
|
||
b[j * b_dim1 + 1] = b[j * b_dim1 + 1] + d__[1] * x[j *
|
||
x_dim1 + 1] + du[1] * x[j * x_dim1 + 2];
|
||
b[*n + j * b_dim1] = b[*n + j * b_dim1] + dl[*n - 1] * x[*
|
||
n - 1 + j * x_dim1] + d__[*n] * x[*n + j * x_dim1]
|
||
;
|
||
i__2 = *n - 1;
|
||
for (i__ = 2; i__ <= i__2; ++i__) {
|
||
b[i__ + j * b_dim1] = b[i__ + j * b_dim1] + dl[i__ -
|
||
1] * x[i__ - 1 + j * x_dim1] + d__[i__] * x[
|
||
i__ + j * x_dim1] + du[i__] * x[i__ + 1 + j *
|
||
x_dim1];
|
||
/* L50: */
|
||
}
|
||
}
|
||
/* L60: */
|
||
}
|
||
} else {
|
||
|
||
/* Compute B := B + A**T*X */
|
||
|
||
i__1 = *nrhs;
|
||
for (j = 1; j <= i__1; ++j) {
|
||
if (*n == 1) {
|
||
b[j * b_dim1 + 1] += d__[1] * x[j * x_dim1 + 1];
|
||
} else {
|
||
b[j * b_dim1 + 1] = b[j * b_dim1 + 1] + d__[1] * x[j *
|
||
x_dim1 + 1] + dl[1] * x[j * x_dim1 + 2];
|
||
b[*n + j * b_dim1] = b[*n + j * b_dim1] + du[*n - 1] * x[*
|
||
n - 1 + j * x_dim1] + d__[*n] * x[*n + j * x_dim1]
|
||
;
|
||
i__2 = *n - 1;
|
||
for (i__ = 2; i__ <= i__2; ++i__) {
|
||
b[i__ + j * b_dim1] = b[i__ + j * b_dim1] + du[i__ -
|
||
1] * x[i__ - 1 + j * x_dim1] + d__[i__] * x[
|
||
i__ + j * x_dim1] + dl[i__] * x[i__ + 1 + j *
|
||
x_dim1];
|
||
/* L70: */
|
||
}
|
||
}
|
||
/* L80: */
|
||
}
|
||
}
|
||
} else if (*alpha == -1.) {
|
||
if (lsame_(trans, "N")) {
|
||
|
||
/* Compute B := B - A*X */
|
||
|
||
i__1 = *nrhs;
|
||
for (j = 1; j <= i__1; ++j) {
|
||
if (*n == 1) {
|
||
b[j * b_dim1 + 1] -= d__[1] * x[j * x_dim1 + 1];
|
||
} else {
|
||
b[j * b_dim1 + 1] = b[j * b_dim1 + 1] - d__[1] * x[j *
|
||
x_dim1 + 1] - du[1] * x[j * x_dim1 + 2];
|
||
b[*n + j * b_dim1] = b[*n + j * b_dim1] - dl[*n - 1] * x[*
|
||
n - 1 + j * x_dim1] - d__[*n] * x[*n + j * x_dim1]
|
||
;
|
||
i__2 = *n - 1;
|
||
for (i__ = 2; i__ <= i__2; ++i__) {
|
||
b[i__ + j * b_dim1] = b[i__ + j * b_dim1] - dl[i__ -
|
||
1] * x[i__ - 1 + j * x_dim1] - d__[i__] * x[
|
||
i__ + j * x_dim1] - du[i__] * x[i__ + 1 + j *
|
||
x_dim1];
|
||
/* L90: */
|
||
}
|
||
}
|
||
/* L100: */
|
||
}
|
||
} else {
|
||
|
||
/* Compute B := B - A**T*X */
|
||
|
||
i__1 = *nrhs;
|
||
for (j = 1; j <= i__1; ++j) {
|
||
if (*n == 1) {
|
||
b[j * b_dim1 + 1] -= d__[1] * x[j * x_dim1 + 1];
|
||
} else {
|
||
b[j * b_dim1 + 1] = b[j * b_dim1 + 1] - d__[1] * x[j *
|
||
x_dim1 + 1] - dl[1] * x[j * x_dim1 + 2];
|
||
b[*n + j * b_dim1] = b[*n + j * b_dim1] - du[*n - 1] * x[*
|
||
n - 1 + j * x_dim1] - d__[*n] * x[*n + j * x_dim1]
|
||
;
|
||
i__2 = *n - 1;
|
||
for (i__ = 2; i__ <= i__2; ++i__) {
|
||
b[i__ + j * b_dim1] = b[i__ + j * b_dim1] - du[i__ -
|
||
1] * x[i__ - 1 + j * x_dim1] - d__[i__] * x[
|
||
i__ + j * x_dim1] - dl[i__] * x[i__ + 1 + j *
|
||
x_dim1];
|
||
/* L110: */
|
||
}
|
||
}
|
||
/* L120: */
|
||
}
|
||
}
|
||
}
|
||
return;
|
||
|
||
/* End of DLAGTM */
|
||
|
||
} /* dlagtm_ */
|
||
|