OpenBLAS/lapack-netlib/SRC/dlaexc.c

1025 lines
28 KiB
C

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif
#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif
#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif
typedef blasint integer;
typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
#ifdef _MSC_VER
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
#else
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#endif
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef blasint logical;
typedef char logical1;
typedef char integer1;
#define TRUE_ (1)
#define FALSE_ (0)
/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif
/* I/O stuff */
typedef int flag;
typedef int ftnlen;
typedef int ftnint;
/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;
/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;
/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;
/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;
/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;
/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;
#define VOID void
union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};
typedef union Multitype Multitype;
struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;
struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;
#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#ifdef _MSC_VER
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
#else
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#endif
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimagf(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
/* procedure parameter types for -A and -C++ */
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif
static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#ifdef _MSC_VER
static _Fcomplex cpow_ui(complex x, integer n) {
complex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
for(u = n; ; ) {
if(u & 01) pow.r *= x.r, pow.i *= x.i;
if(u >>= 1) x.r *= x.r, x.i *= x.i;
else break;
}
}
_Fcomplex p={pow.r, pow.i};
return p;
}
#else
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
#ifdef _MSC_VER
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
_Dcomplex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
for(u = n; ; ) {
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
else break;
}
}
_Dcomplex p = {pow._Val[0], pow._Val[1]};
return p;
}
#else
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
/* Table of constant values */
static integer c__1 = 1;
static integer c__4 = 4;
static logical c_false = FALSE_;
static integer c_n1 = -1;
static integer c__2 = 2;
static integer c__3 = 3;
/* > \brief \b DLAEXC swaps adjacent diagonal blocks of a real upper quasi-triangular matrix in Schur canonica
l form, by an orthogonal similarity transformation. */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download DLAEXC + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaexc.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaexc.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaexc.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE DLAEXC( WANTQ, N, T, LDT, Q, LDQ, J1, N1, N2, WORK, */
/* INFO ) */
/* LOGICAL WANTQ */
/* INTEGER INFO, J1, LDQ, LDT, N, N1, N2 */
/* DOUBLE PRECISION Q( LDQ, * ), T( LDT, * ), WORK( * ) */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > DLAEXC swaps adjacent diagonal blocks T11 and T22 of order 1 or 2 in */
/* > an upper quasi-triangular matrix T by an orthogonal similarity */
/* > transformation. */
/* > */
/* > T must be in Schur canonical form, that is, block upper triangular */
/* > with 1-by-1 and 2-by-2 diagonal blocks; each 2-by-2 diagonal block */
/* > has its diagonal elemnts equal and its off-diagonal elements of */
/* > opposite sign. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] WANTQ */
/* > \verbatim */
/* > WANTQ is LOGICAL */
/* > = .TRUE. : accumulate the transformation in the matrix Q; */
/* > = .FALSE.: do not accumulate the transformation. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrix T. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] T */
/* > \verbatim */
/* > T is DOUBLE PRECISION array, dimension (LDT,N) */
/* > On entry, the upper quasi-triangular matrix T, in Schur */
/* > canonical form. */
/* > On exit, the updated matrix T, again in Schur canonical form. */
/* > \endverbatim */
/* > */
/* > \param[in] LDT */
/* > \verbatim */
/* > LDT is INTEGER */
/* > The leading dimension of the array T. LDT >= f2cmax(1,N). */
/* > \endverbatim */
/* > */
/* > \param[in,out] Q */
/* > \verbatim */
/* > Q is DOUBLE PRECISION array, dimension (LDQ,N) */
/* > On entry, if WANTQ is .TRUE., the orthogonal matrix Q. */
/* > On exit, if WANTQ is .TRUE., the updated matrix Q. */
/* > If WANTQ is .FALSE., Q is not referenced. */
/* > \endverbatim */
/* > */
/* > \param[in] LDQ */
/* > \verbatim */
/* > LDQ is INTEGER */
/* > The leading dimension of the array Q. */
/* > LDQ >= 1; and if WANTQ is .TRUE., LDQ >= N. */
/* > \endverbatim */
/* > */
/* > \param[in] J1 */
/* > \verbatim */
/* > J1 is INTEGER */
/* > The index of the first row of the first block T11. */
/* > \endverbatim */
/* > */
/* > \param[in] N1 */
/* > \verbatim */
/* > N1 is INTEGER */
/* > The order of the first block T11. N1 = 0, 1 or 2. */
/* > \endverbatim */
/* > */
/* > \param[in] N2 */
/* > \verbatim */
/* > N2 is INTEGER */
/* > The order of the second block T22. N2 = 0, 1 or 2. */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is DOUBLE PRECISION array, dimension (N) */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > = 1: the transformed matrix T would be too far from Schur */
/* > form; the blocks are not swapped and T and Q are */
/* > unchanged. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date December 2016 */
/* > \ingroup doubleOTHERauxiliary */
/* ===================================================================== */
/* Subroutine */ void dlaexc_(logical *wantq, integer *n, doublereal *t,
integer *ldt, doublereal *q, integer *ldq, integer *j1, integer *n1,
integer *n2, doublereal *work, integer *info)
{
/* System generated locals */
integer q_dim1, q_offset, t_dim1, t_offset, i__1;
doublereal d__1, d__2, d__3;
/* Local variables */
integer ierr;
doublereal temp;
extern /* Subroutine */ void drot_(integer *, doublereal *, integer *,
doublereal *, integer *, doublereal *, doublereal *);
doublereal d__[16] /* was [4][4] */;
integer k;
doublereal u[3], scale, x[4] /* was [2][2] */, dnorm;
integer j2, j3, j4;
doublereal xnorm, u1[3], u2[3];
extern /* Subroutine */ void dlanv2_(doublereal *, doublereal *,
doublereal *, doublereal *, doublereal *, doublereal *,
doublereal *, doublereal *, doublereal *, doublereal *), dlasy2_(
logical *, logical *, integer *, integer *, integer *, doublereal
*, integer *, doublereal *, integer *, doublereal *, integer *,
doublereal *, doublereal *, integer *, doublereal *, integer *);
integer nd;
doublereal cs, t11, t22;
extern doublereal dlamch_(char *);
doublereal t33;
extern doublereal dlange_(char *, integer *, integer *, doublereal *,
integer *, doublereal *);
extern /* Subroutine */ void dlarfg_(integer *, doublereal *, doublereal *,
integer *, doublereal *);
doublereal sn;
extern /* Subroutine */ void dlacpy_(char *, integer *, integer *,
doublereal *, integer *, doublereal *, integer *),
dlartg_(doublereal *, doublereal *, doublereal *, doublereal *,
doublereal *), dlarfx_(char *, integer *, integer *, doublereal *,
doublereal *, doublereal *, integer *, doublereal *);
doublereal thresh, smlnum, wi1, wi2, wr1, wr2, eps, tau, tau1, tau2;
/* -- LAPACK auxiliary routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */
/* ===================================================================== */
/* Parameter adjustments */
t_dim1 = *ldt;
t_offset = 1 + t_dim1 * 1;
t -= t_offset;
q_dim1 = *ldq;
q_offset = 1 + q_dim1 * 1;
q -= q_offset;
--work;
/* Function Body */
*info = 0;
/* Quick return if possible */
if (*n == 0 || *n1 == 0 || *n2 == 0) {
return;
}
if (*j1 + *n1 > *n) {
return;
}
j2 = *j1 + 1;
j3 = *j1 + 2;
j4 = *j1 + 3;
if (*n1 == 1 && *n2 == 1) {
/* Swap two 1-by-1 blocks. */
t11 = t[*j1 + *j1 * t_dim1];
t22 = t[j2 + j2 * t_dim1];
/* Determine the transformation to perform the interchange. */
d__1 = t22 - t11;
dlartg_(&t[*j1 + j2 * t_dim1], &d__1, &cs, &sn, &temp);
/* Apply transformation to the matrix T. */
if (j3 <= *n) {
i__1 = *n - *j1 - 1;
drot_(&i__1, &t[*j1 + j3 * t_dim1], ldt, &t[j2 + j3 * t_dim1],
ldt, &cs, &sn);
}
i__1 = *j1 - 1;
drot_(&i__1, &t[*j1 * t_dim1 + 1], &c__1, &t[j2 * t_dim1 + 1], &c__1,
&cs, &sn);
t[*j1 + *j1 * t_dim1] = t22;
t[j2 + j2 * t_dim1] = t11;
if (*wantq) {
/* Accumulate transformation in the matrix Q. */
drot_(n, &q[*j1 * q_dim1 + 1], &c__1, &q[j2 * q_dim1 + 1], &c__1,
&cs, &sn);
}
} else {
/* Swapping involves at least one 2-by-2 block. */
/* Copy the diagonal block of order N1+N2 to the local array D */
/* and compute its norm. */
nd = *n1 + *n2;
dlacpy_("Full", &nd, &nd, &t[*j1 + *j1 * t_dim1], ldt, d__, &c__4);
dnorm = dlange_("Max", &nd, &nd, d__, &c__4, &work[1]);
/* Compute machine-dependent threshold for test for accepting */
/* swap. */
eps = dlamch_("P");
smlnum = dlamch_("S") / eps;
/* Computing MAX */
d__1 = eps * 10. * dnorm;
thresh = f2cmax(d__1,smlnum);
/* Solve T11*X - X*T22 = scale*T12 for X. */
dlasy2_(&c_false, &c_false, &c_n1, n1, n2, d__, &c__4, &d__[*n1 + 1 +
(*n1 + 1 << 2) - 5], &c__4, &d__[(*n1 + 1 << 2) - 4], &c__4, &
scale, x, &c__2, &xnorm, &ierr);
/* Swap the adjacent diagonal blocks. */
k = *n1 + *n1 + *n2 - 3;
switch (k) {
case 1: goto L10;
case 2: goto L20;
case 3: goto L30;
}
L10:
/* N1 = 1, N2 = 2: generate elementary reflector H so that: */
/* ( scale, X11, X12 ) H = ( 0, 0, * ) */
u[0] = scale;
u[1] = x[0];
u[2] = x[2];
dlarfg_(&c__3, &u[2], u, &c__1, &tau);
u[2] = 1.;
t11 = t[*j1 + *j1 * t_dim1];
/* Perform swap provisionally on diagonal block in D. */
dlarfx_("L", &c__3, &c__3, u, &tau, d__, &c__4, &work[1]);
dlarfx_("R", &c__3, &c__3, u, &tau, d__, &c__4, &work[1]);
/* Test whether to reject swap. */
/* Computing MAX */
d__2 = abs(d__[2]), d__3 = abs(d__[6]), d__2 = f2cmax(d__2,d__3), d__3 =
(d__1 = d__[10] - t11, abs(d__1));
if (f2cmax(d__2,d__3) > thresh) {
goto L50;
}
/* Accept swap: apply transformation to the entire matrix T. */
i__1 = *n - *j1 + 1;
dlarfx_("L", &c__3, &i__1, u, &tau, &t[*j1 + *j1 * t_dim1], ldt, &
work[1]);
dlarfx_("R", &j2, &c__3, u, &tau, &t[*j1 * t_dim1 + 1], ldt, &work[1]);
t[j3 + *j1 * t_dim1] = 0.;
t[j3 + j2 * t_dim1] = 0.;
t[j3 + j3 * t_dim1] = t11;
if (*wantq) {
/* Accumulate transformation in the matrix Q. */
dlarfx_("R", n, &c__3, u, &tau, &q[*j1 * q_dim1 + 1], ldq, &work[
1]);
}
goto L40;
L20:
/* N1 = 2, N2 = 1: generate elementary reflector H so that: */
/* H ( -X11 ) = ( * ) */
/* ( -X21 ) = ( 0 ) */
/* ( scale ) = ( 0 ) */
u[0] = -x[0];
u[1] = -x[1];
u[2] = scale;
dlarfg_(&c__3, u, &u[1], &c__1, &tau);
u[0] = 1.;
t33 = t[j3 + j3 * t_dim1];
/* Perform swap provisionally on diagonal block in D. */
dlarfx_("L", &c__3, &c__3, u, &tau, d__, &c__4, &work[1]);
dlarfx_("R", &c__3, &c__3, u, &tau, d__, &c__4, &work[1]);
/* Test whether to reject swap. */
/* Computing MAX */
d__2 = abs(d__[1]), d__3 = abs(d__[2]), d__2 = f2cmax(d__2,d__3), d__3 =
(d__1 = d__[0] - t33, abs(d__1));
if (f2cmax(d__2,d__3) > thresh) {
goto L50;
}
/* Accept swap: apply transformation to the entire matrix T. */
dlarfx_("R", &j3, &c__3, u, &tau, &t[*j1 * t_dim1 + 1], ldt, &work[1]);
i__1 = *n - *j1;
dlarfx_("L", &c__3, &i__1, u, &tau, &t[*j1 + j2 * t_dim1], ldt, &work[
1]);
t[*j1 + *j1 * t_dim1] = t33;
t[j2 + *j1 * t_dim1] = 0.;
t[j3 + *j1 * t_dim1] = 0.;
if (*wantq) {
/* Accumulate transformation in the matrix Q. */
dlarfx_("R", n, &c__3, u, &tau, &q[*j1 * q_dim1 + 1], ldq, &work[
1]);
}
goto L40;
L30:
/* N1 = 2, N2 = 2: generate elementary reflectors H(1) and H(2) so */
/* that: */
/* H(2) H(1) ( -X11 -X12 ) = ( * * ) */
/* ( -X21 -X22 ) ( 0 * ) */
/* ( scale 0 ) ( 0 0 ) */
/* ( 0 scale ) ( 0 0 ) */
u1[0] = -x[0];
u1[1] = -x[1];
u1[2] = scale;
dlarfg_(&c__3, u1, &u1[1], &c__1, &tau1);
u1[0] = 1.;
temp = -tau1 * (x[2] + u1[1] * x[3]);
u2[0] = -temp * u1[1] - x[3];
u2[1] = -temp * u1[2];
u2[2] = scale;
dlarfg_(&c__3, u2, &u2[1], &c__1, &tau2);
u2[0] = 1.;
/* Perform swap provisionally on diagonal block in D. */
dlarfx_("L", &c__3, &c__4, u1, &tau1, d__, &c__4, &work[1])
;
dlarfx_("R", &c__4, &c__3, u1, &tau1, d__, &c__4, &work[1])
;
dlarfx_("L", &c__3, &c__4, u2, &tau2, &d__[1], &c__4, &work[1]);
dlarfx_("R", &c__4, &c__3, u2, &tau2, &d__[4], &c__4, &work[1]);
/* Test whether to reject swap. */
/* Computing MAX */
d__1 = abs(d__[2]), d__2 = abs(d__[6]), d__1 = f2cmax(d__1,d__2), d__2 =
abs(d__[3]), d__1 = f2cmax(d__1,d__2), d__2 = abs(d__[7]);
if (f2cmax(d__1,d__2) > thresh) {
goto L50;
}
/* Accept swap: apply transformation to the entire matrix T. */
i__1 = *n - *j1 + 1;
dlarfx_("L", &c__3, &i__1, u1, &tau1, &t[*j1 + *j1 * t_dim1], ldt, &
work[1]);
dlarfx_("R", &j4, &c__3, u1, &tau1, &t[*j1 * t_dim1 + 1], ldt, &work[
1]);
i__1 = *n - *j1 + 1;
dlarfx_("L", &c__3, &i__1, u2, &tau2, &t[j2 + *j1 * t_dim1], ldt, &
work[1]);
dlarfx_("R", &j4, &c__3, u2, &tau2, &t[j2 * t_dim1 + 1], ldt, &work[1]
);
t[j3 + *j1 * t_dim1] = 0.;
t[j3 + j2 * t_dim1] = 0.;
t[j4 + *j1 * t_dim1] = 0.;
t[j4 + j2 * t_dim1] = 0.;
if (*wantq) {
/* Accumulate transformation in the matrix Q. */
dlarfx_("R", n, &c__3, u1, &tau1, &q[*j1 * q_dim1 + 1], ldq, &
work[1]);
dlarfx_("R", n, &c__3, u2, &tau2, &q[j2 * q_dim1 + 1], ldq, &work[
1]);
}
L40:
if (*n2 == 2) {
/* Standardize new 2-by-2 block T11 */
dlanv2_(&t[*j1 + *j1 * t_dim1], &t[*j1 + j2 * t_dim1], &t[j2 + *
j1 * t_dim1], &t[j2 + j2 * t_dim1], &wr1, &wi1, &wr2, &
wi2, &cs, &sn);
i__1 = *n - *j1 - 1;
drot_(&i__1, &t[*j1 + (*j1 + 2) * t_dim1], ldt, &t[j2 + (*j1 + 2)
* t_dim1], ldt, &cs, &sn);
i__1 = *j1 - 1;
drot_(&i__1, &t[*j1 * t_dim1 + 1], &c__1, &t[j2 * t_dim1 + 1], &
c__1, &cs, &sn);
if (*wantq) {
drot_(n, &q[*j1 * q_dim1 + 1], &c__1, &q[j2 * q_dim1 + 1], &
c__1, &cs, &sn);
}
}
if (*n1 == 2) {
/* Standardize new 2-by-2 block T22 */
j3 = *j1 + *n2;
j4 = j3 + 1;
dlanv2_(&t[j3 + j3 * t_dim1], &t[j3 + j4 * t_dim1], &t[j4 + j3 *
t_dim1], &t[j4 + j4 * t_dim1], &wr1, &wi1, &wr2, &wi2, &
cs, &sn);
if (j3 + 2 <= *n) {
i__1 = *n - j3 - 1;
drot_(&i__1, &t[j3 + (j3 + 2) * t_dim1], ldt, &t[j4 + (j3 + 2)
* t_dim1], ldt, &cs, &sn);
}
i__1 = j3 - 1;
drot_(&i__1, &t[j3 * t_dim1 + 1], &c__1, &t[j4 * t_dim1 + 1], &
c__1, &cs, &sn);
if (*wantq) {
drot_(n, &q[j3 * q_dim1 + 1], &c__1, &q[j4 * q_dim1 + 1], &
c__1, &cs, &sn);
}
}
}
return;
/* Exit with INFO = 1 if swap was rejected. */
L50:
*info = 1;
return;
/* End of DLAEXC */
} /* dlaexc_ */