OpenBLAS/lapack-netlib/SRC/dhsein.c

1097 lines
31 KiB
C

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif
#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif
#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif
typedef blasint integer;
typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
#ifdef _MSC_VER
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
#else
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#endif
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef blasint logical;
typedef char logical1;
typedef char integer1;
#define TRUE_ (1)
#define FALSE_ (0)
/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif
/* I/O stuff */
typedef int flag;
typedef int ftnlen;
typedef int ftnint;
/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;
/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;
/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;
/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;
/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;
/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;
#define VOID void
union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};
typedef union Multitype Multitype;
struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;
struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;
#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#ifdef _MSC_VER
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
#else
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#endif
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimagf(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
/* procedure parameter types for -A and -C++ */
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif
static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#ifdef _MSC_VER
static _Fcomplex cpow_ui(complex x, integer n) {
complex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
for(u = n; ; ) {
if(u & 01) pow.r *= x.r, pow.i *= x.i;
if(u >>= 1) x.r *= x.r, x.i *= x.i;
else break;
}
}
_Fcomplex p={pow.r, pow.i};
return p;
}
#else
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
#ifdef _MSC_VER
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
_Dcomplex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
for(u = n; ; ) {
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
else break;
}
}
_Dcomplex p = {pow._Val[0], pow._Val[1]};
return p;
}
#else
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
/* Table of constant values */
static logical c_false = FALSE_;
static logical c_true = TRUE_;
/* > \brief \b DHSEIN */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download DHSEIN + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dhsein.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dhsein.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dhsein.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE DHSEIN( SIDE, EIGSRC, INITV, SELECT, N, H, LDH, WR, WI, */
/* VL, LDVL, VR, LDVR, MM, M, WORK, IFAILL, */
/* IFAILR, INFO ) */
/* CHARACTER EIGSRC, INITV, SIDE */
/* INTEGER INFO, LDH, LDVL, LDVR, M, MM, N */
/* LOGICAL SELECT( * ) */
/* INTEGER IFAILL( * ), IFAILR( * ) */
/* DOUBLE PRECISION H( LDH, * ), VL( LDVL, * ), VR( LDVR, * ), */
/* $ WI( * ), WORK( * ), WR( * ) */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > DHSEIN uses inverse iteration to find specified right and/or left */
/* > eigenvectors of a real upper Hessenberg matrix H. */
/* > */
/* > The right eigenvector x and the left eigenvector y of the matrix H */
/* > corresponding to an eigenvalue w are defined by: */
/* > */
/* > H * x = w * x, y**h * H = w * y**h */
/* > */
/* > where y**h denotes the conjugate transpose of the vector y. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] SIDE */
/* > \verbatim */
/* > SIDE is CHARACTER*1 */
/* > = 'R': compute right eigenvectors only; */
/* > = 'L': compute left eigenvectors only; */
/* > = 'B': compute both right and left eigenvectors. */
/* > \endverbatim */
/* > */
/* > \param[in] EIGSRC */
/* > \verbatim */
/* > EIGSRC is CHARACTER*1 */
/* > Specifies the source of eigenvalues supplied in (WR,WI): */
/* > = 'Q': the eigenvalues were found using DHSEQR; thus, if */
/* > H has zero subdiagonal elements, and so is */
/* > block-triangular, then the j-th eigenvalue can be */
/* > assumed to be an eigenvalue of the block containing */
/* > the j-th row/column. This property allows DHSEIN to */
/* > perform inverse iteration on just one diagonal block. */
/* > = 'N': no assumptions are made on the correspondence */
/* > between eigenvalues and diagonal blocks. In this */
/* > case, DHSEIN must always perform inverse iteration */
/* > using the whole matrix H. */
/* > \endverbatim */
/* > */
/* > \param[in] INITV */
/* > \verbatim */
/* > INITV is CHARACTER*1 */
/* > = 'N': no initial vectors are supplied; */
/* > = 'U': user-supplied initial vectors are stored in the arrays */
/* > VL and/or VR. */
/* > \endverbatim */
/* > */
/* > \param[in,out] SELECT */
/* > \verbatim */
/* > SELECT is LOGICAL array, dimension (N) */
/* > Specifies the eigenvectors to be computed. To select the */
/* > real eigenvector corresponding to a real eigenvalue WR(j), */
/* > SELECT(j) must be set to .TRUE.. To select the complex */
/* > eigenvector corresponding to a complex eigenvalue */
/* > (WR(j),WI(j)), with complex conjugate (WR(j+1),WI(j+1)), */
/* > either SELECT(j) or SELECT(j+1) or both must be set to */
/* > .TRUE.; then on exit SELECT(j) is .TRUE. and SELECT(j+1) is */
/* > .FALSE.. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrix H. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] H */
/* > \verbatim */
/* > H is DOUBLE PRECISION array, dimension (LDH,N) */
/* > The upper Hessenberg matrix H. */
/* > If a NaN is detected in H, the routine will return with INFO=-6. */
/* > \endverbatim */
/* > */
/* > \param[in] LDH */
/* > \verbatim */
/* > LDH is INTEGER */
/* > The leading dimension of the array H. LDH >= f2cmax(1,N). */
/* > \endverbatim */
/* > */
/* > \param[in,out] WR */
/* > \verbatim */
/* > WR is DOUBLE PRECISION array, dimension (N) */
/* > \endverbatim */
/* > */
/* > \param[in] WI */
/* > \verbatim */
/* > WI is DOUBLE PRECISION array, dimension (N) */
/* > */
/* > On entry, the real and imaginary parts of the eigenvalues of */
/* > H; a complex conjugate pair of eigenvalues must be stored in */
/* > consecutive elements of WR and WI. */
/* > On exit, WR may have been altered since close eigenvalues */
/* > are perturbed slightly in searching for independent */
/* > eigenvectors. */
/* > \endverbatim */
/* > */
/* > \param[in,out] VL */
/* > \verbatim */
/* > VL is DOUBLE PRECISION array, dimension (LDVL,MM) */
/* > On entry, if INITV = 'U' and SIDE = 'L' or 'B', VL must */
/* > contain starting vectors for the inverse iteration for the */
/* > left eigenvectors; the starting vector for each eigenvector */
/* > must be in the same column(s) in which the eigenvector will */
/* > be stored. */
/* > On exit, if SIDE = 'L' or 'B', the left eigenvectors */
/* > specified by SELECT will be stored consecutively in the */
/* > columns of VL, in the same order as their eigenvalues. A */
/* > complex eigenvector corresponding to a complex eigenvalue is */
/* > stored in two consecutive columns, the first holding the real */
/* > part and the second the imaginary part. */
/* > If SIDE = 'R', VL is not referenced. */
/* > \endverbatim */
/* > */
/* > \param[in] LDVL */
/* > \verbatim */
/* > LDVL is INTEGER */
/* > The leading dimension of the array VL. */
/* > LDVL >= f2cmax(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 otherwise. */
/* > \endverbatim */
/* > */
/* > \param[in,out] VR */
/* > \verbatim */
/* > VR is DOUBLE PRECISION array, dimension (LDVR,MM) */
/* > On entry, if INITV = 'U' and SIDE = 'R' or 'B', VR must */
/* > contain starting vectors for the inverse iteration for the */
/* > right eigenvectors; the starting vector for each eigenvector */
/* > must be in the same column(s) in which the eigenvector will */
/* > be stored. */
/* > On exit, if SIDE = 'R' or 'B', the right eigenvectors */
/* > specified by SELECT will be stored consecutively in the */
/* > columns of VR, in the same order as their eigenvalues. A */
/* > complex eigenvector corresponding to a complex eigenvalue is */
/* > stored in two consecutive columns, the first holding the real */
/* > part and the second the imaginary part. */
/* > If SIDE = 'L', VR is not referenced. */
/* > \endverbatim */
/* > */
/* > \param[in] LDVR */
/* > \verbatim */
/* > LDVR is INTEGER */
/* > The leading dimension of the array VR. */
/* > LDVR >= f2cmax(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 otherwise. */
/* > \endverbatim */
/* > */
/* > \param[in] MM */
/* > \verbatim */
/* > MM is INTEGER */
/* > The number of columns in the arrays VL and/or VR. MM >= M. */
/* > \endverbatim */
/* > */
/* > \param[out] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of columns in the arrays VL and/or VR required to */
/* > store the eigenvectors; each selected real eigenvector */
/* > occupies one column and each selected complex eigenvector */
/* > occupies two columns. */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is DOUBLE PRECISION array, dimension ((N+2)*N) */
/* > \endverbatim */
/* > */
/* > \param[out] IFAILL */
/* > \verbatim */
/* > IFAILL is INTEGER array, dimension (MM) */
/* > If SIDE = 'L' or 'B', IFAILL(i) = j > 0 if the left */
/* > eigenvector in the i-th column of VL (corresponding to the */
/* > eigenvalue w(j)) failed to converge; IFAILL(i) = 0 if the */
/* > eigenvector converged satisfactorily. If the i-th and (i+1)th */
/* > columns of VL hold a complex eigenvector, then IFAILL(i) and */
/* > IFAILL(i+1) are set to the same value. */
/* > If SIDE = 'R', IFAILL is not referenced. */
/* > \endverbatim */
/* > */
/* > \param[out] IFAILR */
/* > \verbatim */
/* > IFAILR is INTEGER array, dimension (MM) */
/* > If SIDE = 'R' or 'B', IFAILR(i) = j > 0 if the right */
/* > eigenvector in the i-th column of VR (corresponding to the */
/* > eigenvalue w(j)) failed to converge; IFAILR(i) = 0 if the */
/* > eigenvector converged satisfactorily. If the i-th and (i+1)th */
/* > columns of VR hold a complex eigenvector, then IFAILR(i) and */
/* > IFAILR(i+1) are set to the same value. */
/* > If SIDE = 'L', IFAILR is not referenced. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > > 0: if INFO = i, i is the number of eigenvectors which */
/* > failed to converge; see IFAILL and IFAILR for further */
/* > details. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date December 2016 */
/* > \ingroup doubleOTHERcomputational */
/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > Each eigenvector is normalized so that the element of largest */
/* > magnitude has magnitude 1; here the magnitude of a complex number */
/* > (x,y) is taken to be |x|+|y|. */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */ void dhsein_(char *side, char *eigsrc, char *initv, logical *
select, integer *n, doublereal *h__, integer *ldh, doublereal *wr,
doublereal *wi, doublereal *vl, integer *ldvl, doublereal *vr,
integer *ldvr, integer *mm, integer *m, doublereal *work, integer *
ifaill, integer *ifailr, integer *info)
{
/* System generated locals */
integer h_dim1, h_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1,
i__2;
doublereal d__1, d__2;
/* Local variables */
logical pair;
doublereal unfl;
integer i__, k;
extern logical lsame_(char *, char *);
integer iinfo;
logical leftv, bothv;
doublereal hnorm;
integer kl;
extern doublereal dlamch_(char *);
extern /* Subroutine */ void dlaein_(logical *, logical *, integer *,
doublereal *, integer *, doublereal *, doublereal *, doublereal *,
doublereal *, doublereal *, integer *, doublereal *, doublereal *
, doublereal *, doublereal *, integer *);
integer kr;
extern doublereal dlanhs_(char *, integer *, doublereal *, integer *,
doublereal *);
extern logical disnan_(doublereal *);
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
doublereal bignum;
logical noinit;
integer ldwork;
logical rightv, fromqr;
doublereal smlnum;
integer kln, ksi;
doublereal wki;
integer ksr;
doublereal ulp, wkr, eps3;
/* -- LAPACK computational routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */
/* ===================================================================== */
/* Decode and test the input parameters. */
/* Parameter adjustments */
--select;
h_dim1 = *ldh;
h_offset = 1 + h_dim1 * 1;
h__ -= h_offset;
--wr;
--wi;
vl_dim1 = *ldvl;
vl_offset = 1 + vl_dim1 * 1;
vl -= vl_offset;
vr_dim1 = *ldvr;
vr_offset = 1 + vr_dim1 * 1;
vr -= vr_offset;
--work;
--ifaill;
--ifailr;
/* Function Body */
bothv = lsame_(side, "B");
rightv = lsame_(side, "R") || bothv;
leftv = lsame_(side, "L") || bothv;
fromqr = lsame_(eigsrc, "Q");
noinit = lsame_(initv, "N");
/* Set M to the number of columns required to store the selected */
/* eigenvectors, and standardize the array SELECT. */
*m = 0;
pair = FALSE_;
i__1 = *n;
for (k = 1; k <= i__1; ++k) {
if (pair) {
pair = FALSE_;
select[k] = FALSE_;
} else {
if (wi[k] == 0.) {
if (select[k]) {
++(*m);
}
} else {
pair = TRUE_;
if (select[k] || select[k + 1]) {
select[k] = TRUE_;
*m += 2;
}
}
}
/* L10: */
}
*info = 0;
if (! rightv && ! leftv) {
*info = -1;
} else if (! fromqr && ! lsame_(eigsrc, "N")) {
*info = -2;
} else if (! noinit && ! lsame_(initv, "U")) {
*info = -3;
} else if (*n < 0) {
*info = -5;
} else if (*ldh < f2cmax(1,*n)) {
*info = -7;
} else if (*ldvl < 1 || leftv && *ldvl < *n) {
*info = -11;
} else if (*ldvr < 1 || rightv && *ldvr < *n) {
*info = -13;
} else if (*mm < *m) {
*info = -14;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DHSEIN", &i__1, (ftnlen)6);
return;
}
/* Quick return if possible. */
if (*n == 0) {
return;
}
/* Set machine-dependent constants. */
unfl = dlamch_("Safe minimum");
ulp = dlamch_("Precision");
smlnum = unfl * (*n / ulp);
bignum = (1. - ulp) / smlnum;
ldwork = *n + 1;
kl = 1;
kln = 0;
if (fromqr) {
kr = 0;
} else {
kr = *n;
}
ksr = 1;
i__1 = *n;
for (k = 1; k <= i__1; ++k) {
if (select[k]) {
/* Compute eigenvector(s) corresponding to W(K). */
if (fromqr) {
/* If affiliation of eigenvalues is known, check whether */
/* the matrix splits. */
/* Determine KL and KR such that 1 <= KL <= K <= KR <= N */
/* and H(KL,KL-1) and H(KR+1,KR) are zero (or KL = 1 or */
/* KR = N). */
/* Then inverse iteration can be performed with the */
/* submatrix H(KL:N,KL:N) for a left eigenvector, and with */
/* the submatrix H(1:KR,1:KR) for a right eigenvector. */
i__2 = kl + 1;
for (i__ = k; i__ >= i__2; --i__) {
if (h__[i__ + (i__ - 1) * h_dim1] == 0.) {
goto L30;
}
/* L20: */
}
L30:
kl = i__;
if (k > kr) {
i__2 = *n - 1;
for (i__ = k; i__ <= i__2; ++i__) {
if (h__[i__ + 1 + i__ * h_dim1] == 0.) {
goto L50;
}
/* L40: */
}
L50:
kr = i__;
}
}
if (kl != kln) {
kln = kl;
/* Compute infinity-norm of submatrix H(KL:KR,KL:KR) if it */
/* has not ben computed before. */
i__2 = kr - kl + 1;
hnorm = dlanhs_("I", &i__2, &h__[kl + kl * h_dim1], ldh, &
work[1]);
if (disnan_(&hnorm)) {
*info = -6;
return;
} else if (hnorm > 0.) {
eps3 = hnorm * ulp;
} else {
eps3 = smlnum;
}
}
/* Perturb eigenvalue if it is close to any previous */
/* selected eigenvalues affiliated to the submatrix */
/* H(KL:KR,KL:KR). Close roots are modified by EPS3. */
wkr = wr[k];
wki = wi[k];
L60:
i__2 = kl;
for (i__ = k - 1; i__ >= i__2; --i__) {
if (select[i__] && (d__1 = wr[i__] - wkr, abs(d__1)) + (d__2 =
wi[i__] - wki, abs(d__2)) < eps3) {
wkr += eps3;
goto L60;
}
/* L70: */
}
wr[k] = wkr;
pair = wki != 0.;
if (pair) {
ksi = ksr + 1;
} else {
ksi = ksr;
}
if (leftv) {
/* Compute left eigenvector. */
i__2 = *n - kl + 1;
dlaein_(&c_false, &noinit, &i__2, &h__[kl + kl * h_dim1], ldh,
&wkr, &wki, &vl[kl + ksr * vl_dim1], &vl[kl + ksi *
vl_dim1], &work[1], &ldwork, &work[*n * *n + *n + 1],
&eps3, &smlnum, &bignum, &iinfo);
if (iinfo > 0) {
if (pair) {
*info += 2;
} else {
++(*info);
}
ifaill[ksr] = k;
ifaill[ksi] = k;
} else {
ifaill[ksr] = 0;
ifaill[ksi] = 0;
}
i__2 = kl - 1;
for (i__ = 1; i__ <= i__2; ++i__) {
vl[i__ + ksr * vl_dim1] = 0.;
/* L80: */
}
if (pair) {
i__2 = kl - 1;
for (i__ = 1; i__ <= i__2; ++i__) {
vl[i__ + ksi * vl_dim1] = 0.;
/* L90: */
}
}
}
if (rightv) {
/* Compute right eigenvector. */
dlaein_(&c_true, &noinit, &kr, &h__[h_offset], ldh, &wkr, &
wki, &vr[ksr * vr_dim1 + 1], &vr[ksi * vr_dim1 + 1], &
work[1], &ldwork, &work[*n * *n + *n + 1], &eps3, &
smlnum, &bignum, &iinfo);
if (iinfo > 0) {
if (pair) {
*info += 2;
} else {
++(*info);
}
ifailr[ksr] = k;
ifailr[ksi] = k;
} else {
ifailr[ksr] = 0;
ifailr[ksi] = 0;
}
i__2 = *n;
for (i__ = kr + 1; i__ <= i__2; ++i__) {
vr[i__ + ksr * vr_dim1] = 0.;
/* L100: */
}
if (pair) {
i__2 = *n;
for (i__ = kr + 1; i__ <= i__2; ++i__) {
vr[i__ + ksi * vr_dim1] = 0.;
/* L110: */
}
}
}
if (pair) {
ksr += 2;
} else {
++ksr;
}
}
/* L120: */
}
return;
/* End of DHSEIN */
} /* dhsein_ */