OpenBLAS/lapack-netlib/SRC/dggesx.c

1441 lines
44 KiB
C

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif
#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif
#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif
typedef blasint integer;
typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
#ifdef _MSC_VER
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
#else
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#endif
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef blasint logical;
typedef char logical1;
typedef char integer1;
#define TRUE_ (1)
#define FALSE_ (0)
/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif
/* I/O stuff */
typedef int flag;
typedef int ftnlen;
typedef int ftnint;
/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;
/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;
/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;
/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;
/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;
/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;
#define VOID void
union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};
typedef union Multitype Multitype;
struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;
struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;
#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#ifdef _MSC_VER
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
#else
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#endif
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimagf(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
/* procedure parameter types for -A and -C++ */
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif
static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#ifdef _MSC_VER
static _Fcomplex cpow_ui(complex x, integer n) {
complex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
for(u = n; ; ) {
if(u & 01) pow.r *= x.r, pow.i *= x.i;
if(u >>= 1) x.r *= x.r, x.i *= x.i;
else break;
}
}
_Fcomplex p={pow.r, pow.i};
return p;
}
#else
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
#ifdef _MSC_VER
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
_Dcomplex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
for(u = n; ; ) {
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
else break;
}
}
_Dcomplex p = {pow._Val[0], pow._Val[1]};
return p;
}
#else
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
/* Table of constant values */
static integer c__1 = 1;
static integer c__0 = 0;
static integer c_n1 = -1;
static doublereal c_b42 = 0.;
static doublereal c_b43 = 1.;
/* > \brief <b> DGGESX computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors
for GE matrices</b> */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download DGGESX + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dggesx.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dggesx.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dggesx.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE DGGESX( JOBVSL, JOBVSR, SORT, SELCTG, SENSE, N, A, LDA, */
/* B, LDB, SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL, */
/* VSR, LDVSR, RCONDE, RCONDV, WORK, LWORK, IWORK, */
/* LIWORK, BWORK, INFO ) */
/* CHARACTER JOBVSL, JOBVSR, SENSE, SORT */
/* INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LIWORK, LWORK, N, */
/* $ SDIM */
/* LOGICAL BWORK( * ) */
/* INTEGER IWORK( * ) */
/* DOUBLE PRECISION A( LDA, * ), ALPHAI( * ), ALPHAR( * ), */
/* $ B( LDB, * ), BETA( * ), RCONDE( 2 ), */
/* $ RCONDV( 2 ), VSL( LDVSL, * ), VSR( LDVSR, * ), */
/* $ WORK( * ) */
/* LOGICAL SELCTG */
/* EXTERNAL SELCTG */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > DGGESX computes for a pair of N-by-N real nonsymmetric matrices */
/* > (A,B), the generalized eigenvalues, the real Schur form (S,T), and, */
/* > optionally, the left and/or right matrices of Schur vectors (VSL and */
/* > VSR). This gives the generalized Schur factorization */
/* > */
/* > (A,B) = ( (VSL) S (VSR)**T, (VSL) T (VSR)**T ) */
/* > */
/* > Optionally, it also orders the eigenvalues so that a selected cluster */
/* > of eigenvalues appears in the leading diagonal blocks of the upper */
/* > quasi-triangular matrix S and the upper triangular matrix T; computes */
/* > a reciprocal condition number for the average of the selected */
/* > eigenvalues (RCONDE); and computes a reciprocal condition number for */
/* > the right and left deflating subspaces corresponding to the selected */
/* > eigenvalues (RCONDV). The leading columns of VSL and VSR then form */
/* > an orthonormal basis for the corresponding left and right eigenspaces */
/* > (deflating subspaces). */
/* > */
/* > A generalized eigenvalue for a pair of matrices (A,B) is a scalar w */
/* > or a ratio alpha/beta = w, such that A - w*B is singular. It is */
/* > usually represented as the pair (alpha,beta), as there is a */
/* > reasonable interpretation for beta=0 or for both being zero. */
/* > */
/* > A pair of matrices (S,T) is in generalized real Schur form if T is */
/* > upper triangular with non-negative diagonal and S is block upper */
/* > triangular with 1-by-1 and 2-by-2 blocks. 1-by-1 blocks correspond */
/* > to real generalized eigenvalues, while 2-by-2 blocks of S will be */
/* > "standardized" by making the corresponding elements of T have the */
/* > form: */
/* > [ a 0 ] */
/* > [ 0 b ] */
/* > */
/* > and the pair of corresponding 2-by-2 blocks in S and T will have a */
/* > complex conjugate pair of generalized eigenvalues. */
/* > */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] JOBVSL */
/* > \verbatim */
/* > JOBVSL is CHARACTER*1 */
/* > = 'N': do not compute the left Schur vectors; */
/* > = 'V': compute the left Schur vectors. */
/* > \endverbatim */
/* > */
/* > \param[in] JOBVSR */
/* > \verbatim */
/* > JOBVSR is CHARACTER*1 */
/* > = 'N': do not compute the right Schur vectors; */
/* > = 'V': compute the right Schur vectors. */
/* > \endverbatim */
/* > */
/* > \param[in] SORT */
/* > \verbatim */
/* > SORT is CHARACTER*1 */
/* > Specifies whether or not to order the eigenvalues on the */
/* > diagonal of the generalized Schur form. */
/* > = 'N': Eigenvalues are not ordered; */
/* > = 'S': Eigenvalues are ordered (see SELCTG). */
/* > \endverbatim */
/* > */
/* > \param[in] SELCTG */
/* > \verbatim */
/* > SELCTG is a LOGICAL FUNCTION of three DOUBLE PRECISION arguments */
/* > SELCTG must be declared EXTERNAL in the calling subroutine. */
/* > If SORT = 'N', SELCTG is not referenced. */
/* > If SORT = 'S', SELCTG is used to select eigenvalues to sort */
/* > to the top left of the Schur form. */
/* > An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j) is selected if */
/* > SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e. if either */
/* > one of a complex conjugate pair of eigenvalues is selected, */
/* > then both complex eigenvalues are selected. */
/* > Note that a selected complex eigenvalue may no longer satisfy */
/* > SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) = .TRUE. after ordering, */
/* > since ordering may change the value of complex eigenvalues */
/* > (especially if the eigenvalue is ill-conditioned), in this */
/* > case INFO is set to N+3. */
/* > \endverbatim */
/* > */
/* > \param[in] SENSE */
/* > \verbatim */
/* > SENSE is CHARACTER*1 */
/* > Determines which reciprocal condition numbers are computed. */
/* > = 'N': None are computed; */
/* > = 'E': Computed for average of selected eigenvalues only; */
/* > = 'V': Computed for selected deflating subspaces only; */
/* > = 'B': Computed for both. */
/* > If SENSE = 'E', 'V', or 'B', SORT must equal 'S'. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrices A, B, VSL, and VSR. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is DOUBLE PRECISION array, dimension (LDA, N) */
/* > On entry, the first of the pair of matrices. */
/* > On exit, A has been overwritten by its generalized Schur */
/* > form S. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of A. LDA >= f2cmax(1,N). */
/* > \endverbatim */
/* > */
/* > \param[in,out] B */
/* > \verbatim */
/* > B is DOUBLE PRECISION array, dimension (LDB, N) */
/* > On entry, the second of the pair of matrices. */
/* > On exit, B has been overwritten by its generalized Schur */
/* > form T. */
/* > \endverbatim */
/* > */
/* > \param[in] LDB */
/* > \verbatim */
/* > LDB is INTEGER */
/* > The leading dimension of B. LDB >= f2cmax(1,N). */
/* > \endverbatim */
/* > */
/* > \param[out] SDIM */
/* > \verbatim */
/* > SDIM is INTEGER */
/* > If SORT = 'N', SDIM = 0. */
/* > If SORT = 'S', SDIM = number of eigenvalues (after sorting) */
/* > for which SELCTG is true. (Complex conjugate pairs for which */
/* > SELCTG is true for either eigenvalue count as 2.) */
/* > \endverbatim */
/* > */
/* > \param[out] ALPHAR */
/* > \verbatim */
/* > ALPHAR is DOUBLE PRECISION array, dimension (N) */
/* > \endverbatim */
/* > */
/* > \param[out] ALPHAI */
/* > \verbatim */
/* > ALPHAI is DOUBLE PRECISION array, dimension (N) */
/* > \endverbatim */
/* > */
/* > \param[out] BETA */
/* > \verbatim */
/* > BETA is DOUBLE PRECISION array, dimension (N) */
/* > On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will */
/* > be the generalized eigenvalues. ALPHAR(j) + ALPHAI(j)*i */
/* > and BETA(j),j=1,...,N are the diagonals of the complex Schur */
/* > form (S,T) that would result if the 2-by-2 diagonal blocks of */
/* > the real Schur form of (A,B) were further reduced to */
/* > triangular form using 2-by-2 complex unitary transformations. */
/* > If ALPHAI(j) is zero, then the j-th eigenvalue is real; if */
/* > positive, then the j-th and (j+1)-st eigenvalues are a */
/* > complex conjugate pair, with ALPHAI(j+1) negative. */
/* > */
/* > Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j) */
/* > may easily over- or underflow, and BETA(j) may even be zero. */
/* > Thus, the user should avoid naively computing the ratio. */
/* > However, ALPHAR and ALPHAI will be always less than and */
/* > usually comparable with norm(A) in magnitude, and BETA always */
/* > less than and usually comparable with norm(B). */
/* > \endverbatim */
/* > */
/* > \param[out] VSL */
/* > \verbatim */
/* > VSL is DOUBLE PRECISION array, dimension (LDVSL,N) */
/* > If JOBVSL = 'V', VSL will contain the left Schur vectors. */
/* > Not referenced if JOBVSL = 'N'. */
/* > \endverbatim */
/* > */
/* > \param[in] LDVSL */
/* > \verbatim */
/* > LDVSL is INTEGER */
/* > The leading dimension of the matrix VSL. LDVSL >=1, and */
/* > if JOBVSL = 'V', LDVSL >= N. */
/* > \endverbatim */
/* > */
/* > \param[out] VSR */
/* > \verbatim */
/* > VSR is DOUBLE PRECISION array, dimension (LDVSR,N) */
/* > If JOBVSR = 'V', VSR will contain the right Schur vectors. */
/* > Not referenced if JOBVSR = 'N'. */
/* > \endverbatim */
/* > */
/* > \param[in] LDVSR */
/* > \verbatim */
/* > LDVSR is INTEGER */
/* > The leading dimension of the matrix VSR. LDVSR >= 1, and */
/* > if JOBVSR = 'V', LDVSR >= N. */
/* > \endverbatim */
/* > */
/* > \param[out] RCONDE */
/* > \verbatim */
/* > RCONDE is DOUBLE PRECISION array, dimension ( 2 ) */
/* > If SENSE = 'E' or 'B', RCONDE(1) and RCONDE(2) contain the */
/* > reciprocal condition numbers for the average of the selected */
/* > eigenvalues. */
/* > Not referenced if SENSE = 'N' or 'V'. */
/* > \endverbatim */
/* > */
/* > \param[out] RCONDV */
/* > \verbatim */
/* > RCONDV is DOUBLE PRECISION array, dimension ( 2 ) */
/* > If SENSE = 'V' or 'B', RCONDV(1) and RCONDV(2) contain the */
/* > reciprocal condition numbers for the selected deflating */
/* > subspaces. */
/* > Not referenced if SENSE = 'N' or 'E'. */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
/* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* > \endverbatim */
/* > */
/* > \param[in] LWORK */
/* > \verbatim */
/* > LWORK is INTEGER */
/* > The dimension of the array WORK. */
/* > If N = 0, LWORK >= 1, else if SENSE = 'E', 'V', or 'B', */
/* > LWORK >= f2cmax( 8*N, 6*N+16, 2*SDIM*(N-SDIM) ), else */
/* > LWORK >= f2cmax( 8*N, 6*N+16 ). */
/* > Note that 2*SDIM*(N-SDIM) <= N*N/2. */
/* > Note also that an error is only returned if */
/* > LWORK < f2cmax( 8*N, 6*N+16), but if SENSE = 'E' or 'V' or 'B' */
/* > this may not be large enough. */
/* > */
/* > If LWORK = -1, then a workspace query is assumed; the routine */
/* > only calculates the bound on the optimal size of the WORK */
/* > array and the minimum size of the IWORK array, returns these */
/* > values as the first entries of the WORK and IWORK arrays, and */
/* > no error message related to LWORK or LIWORK is issued by */
/* > XERBLA. */
/* > \endverbatim */
/* > */
/* > \param[out] IWORK */
/* > \verbatim */
/* > IWORK is INTEGER array, dimension (MAX(1,LIWORK)) */
/* > On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK. */
/* > \endverbatim */
/* > */
/* > \param[in] LIWORK */
/* > \verbatim */
/* > LIWORK is INTEGER */
/* > The dimension of the array IWORK. */
/* > If SENSE = 'N' or N = 0, LIWORK >= 1, otherwise */
/* > LIWORK >= N+6. */
/* > */
/* > If LIWORK = -1, then a workspace query is assumed; the */
/* > routine only calculates the bound on the optimal size of the */
/* > WORK array and the minimum size of the IWORK array, returns */
/* > these values as the first entries of the WORK and IWORK */
/* > arrays, and no error message related to LWORK or LIWORK is */
/* > issued by XERBLA. */
/* > \endverbatim */
/* > */
/* > \param[out] BWORK */
/* > \verbatim */
/* > BWORK is LOGICAL array, dimension (N) */
/* > Not referenced if SORT = 'N'. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value. */
/* > = 1,...,N: */
/* > The QZ iteration failed. (A,B) are not in Schur */
/* > form, but ALPHAR(j), ALPHAI(j), and BETA(j) should */
/* > be correct for j=INFO+1,...,N. */
/* > > N: =N+1: other than QZ iteration failed in DHGEQZ */
/* > =N+2: after reordering, roundoff changed values of */
/* > some complex eigenvalues so that leading */
/* > eigenvalues in the Generalized Schur form no */
/* > longer satisfy SELCTG=.TRUE. This could also */
/* > be caused due to scaling. */
/* > =N+3: reordering failed in DTGSEN. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date June 2017 */
/* > \ingroup doubleGEeigen */
/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > An approximate (asymptotic) bound on the average absolute error of */
/* > the selected eigenvalues is */
/* > */
/* > EPS * norm((A, B)) / RCONDE( 1 ). */
/* > */
/* > An approximate (asymptotic) bound on the maximum angular error in */
/* > the computed deflating subspaces is */
/* > */
/* > EPS * norm((A, B)) / RCONDV( 2 ). */
/* > */
/* > See LAPACK User's Guide, section 4.11 for more information. */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */ void dggesx_(char *jobvsl, char *jobvsr, char *sort, L_fp
selctg, char *sense, integer *n, doublereal *a, integer *lda,
doublereal *b, integer *ldb, integer *sdim, doublereal *alphar,
doublereal *alphai, doublereal *beta, doublereal *vsl, integer *ldvsl,
doublereal *vsr, integer *ldvsr, doublereal *rconde, doublereal *
rcondv, doublereal *work, integer *lwork, integer *iwork, integer *
liwork, logical *bwork, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, vsl_dim1, vsl_offset,
vsr_dim1, vsr_offset, i__1, i__2;
doublereal d__1;
/* Local variables */
integer ijob;
doublereal anrm, bnrm;
integer ierr, itau, iwrk, lwrk, i__;
extern logical lsame_(char *, char *);
integer ileft, icols;
logical cursl, ilvsl, ilvsr;
integer irows;
extern /* Subroutine */ void dlabad_(doublereal *, doublereal *), dggbak_(
char *, char *, integer *, integer *, integer *, doublereal *,
doublereal *, integer *, doublereal *, integer *, integer *), dggbal_(char *, integer *, doublereal *, integer
*, doublereal *, integer *, integer *, integer *, doublereal *,
doublereal *, doublereal *, integer *);
logical lst2sl;
extern doublereal dlamch_(char *);
integer ip;
extern doublereal dlange_(char *, integer *, integer *, doublereal *,
integer *, doublereal *);
doublereal pl;
extern /* Subroutine */ void dgghrd_(char *, char *, integer *, integer *,
integer *, doublereal *, integer *, doublereal *, integer *,
doublereal *, integer *, doublereal *, integer *, integer *);
doublereal pr;
extern /* Subroutine */ void dlascl_(char *, integer *, integer *,
doublereal *, doublereal *, integer *, integer *, doublereal *,
integer *, integer *);
logical ilascl, ilbscl;
extern /* Subroutine */ void dgeqrf_(integer *, integer *, doublereal *,
integer *, doublereal *, doublereal *, integer *, integer *),
dlacpy_(char *, integer *, integer *, doublereal *, integer *,
doublereal *, integer *);
doublereal safmin;
extern /* Subroutine */ void dlaset_(char *, integer *, integer *,
doublereal *, doublereal *, doublereal *, integer *);
doublereal safmax;
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
doublereal bignum;
extern /* Subroutine */ void dhgeqz_(char *, char *, char *, integer *,
integer *, integer *, doublereal *, integer *, doublereal *,
integer *, doublereal *, doublereal *, doublereal *, doublereal *,
integer *, doublereal *, integer *, doublereal *, integer *,
integer *);
integer ijobvl, iright;
extern /* Subroutine */ void dtgsen_(integer *, logical *, logical *,
logical *, integer *, doublereal *, integer *, doublereal *,
integer *, doublereal *, doublereal *, doublereal *, doublereal *,
integer *, doublereal *, integer *, integer *, doublereal *,
doublereal *, doublereal *, doublereal *, integer *, integer *,
integer *, integer *);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *, ftnlen, ftnlen);
integer ijobvr;
logical wantsb;
integer liwmin;
logical wantse, lastsl;
doublereal anrmto, bnrmto;
extern /* Subroutine */ void dorgqr_(integer *, integer *, integer *,
doublereal *, integer *, doublereal *, doublereal *, integer *,
integer *);
integer minwrk, maxwrk;
logical wantsn;
doublereal smlnum;
extern /* Subroutine */ void dormqr_(char *, char *, integer *, integer *,
integer *, doublereal *, integer *, doublereal *, doublereal *,
integer *, doublereal *, integer *, integer *);
logical wantst, lquery, wantsv;
doublereal dif[2];
integer ihi, ilo;
doublereal eps;
/* -- LAPACK driver routine (version 3.7.1) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* June 2017 */
/* ===================================================================== */
/* Decode the input arguments */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1 * 1;
b -= b_offset;
--alphar;
--alphai;
--beta;
vsl_dim1 = *ldvsl;
vsl_offset = 1 + vsl_dim1 * 1;
vsl -= vsl_offset;
vsr_dim1 = *ldvsr;
vsr_offset = 1 + vsr_dim1 * 1;
vsr -= vsr_offset;
--rconde;
--rcondv;
--work;
--iwork;
--bwork;
/* Function Body */
if (lsame_(jobvsl, "N")) {
ijobvl = 1;
ilvsl = FALSE_;
} else if (lsame_(jobvsl, "V")) {
ijobvl = 2;
ilvsl = TRUE_;
} else {
ijobvl = -1;
ilvsl = FALSE_;
}
if (lsame_(jobvsr, "N")) {
ijobvr = 1;
ilvsr = FALSE_;
} else if (lsame_(jobvsr, "V")) {
ijobvr = 2;
ilvsr = TRUE_;
} else {
ijobvr = -1;
ilvsr = FALSE_;
}
wantst = lsame_(sort, "S");
wantsn = lsame_(sense, "N");
wantse = lsame_(sense, "E");
wantsv = lsame_(sense, "V");
wantsb = lsame_(sense, "B");
lquery = *lwork == -1 || *liwork == -1;
if (wantsn) {
ijob = 0;
} else if (wantse) {
ijob = 1;
} else if (wantsv) {
ijob = 2;
} else if (wantsb) {
ijob = 4;
}
/* Test the input arguments */
*info = 0;
if (ijobvl <= 0) {
*info = -1;
} else if (ijobvr <= 0) {
*info = -2;
} else if (! wantst && ! lsame_(sort, "N")) {
*info = -3;
} else if (! (wantsn || wantse || wantsv || wantsb) || ! wantst && !
wantsn) {
*info = -5;
} else if (*n < 0) {
*info = -6;
} else if (*lda < f2cmax(1,*n)) {
*info = -8;
} else if (*ldb < f2cmax(1,*n)) {
*info = -10;
} else if (*ldvsl < 1 || ilvsl && *ldvsl < *n) {
*info = -16;
} else if (*ldvsr < 1 || ilvsr && *ldvsr < *n) {
*info = -18;
}
/* Compute workspace */
/* (Note: Comments in the code beginning "Workspace:" describe the */
/* minimal amount of workspace needed at that point in the code, */
/* as well as the preferred amount for good performance. */
/* NB refers to the optimal block size for the immediately */
/* following subroutine, as returned by ILAENV.) */
if (*info == 0) {
if (*n > 0) {
/* Computing MAX */
i__1 = *n << 3, i__2 = *n * 6 + 16;
minwrk = f2cmax(i__1,i__2);
maxwrk = minwrk - *n + *n * ilaenv_(&c__1, "DGEQRF", " ", n, &
c__1, n, &c__0, (ftnlen)6, (ftnlen)1);
/* Computing MAX */
i__1 = maxwrk, i__2 = minwrk - *n + *n * ilaenv_(&c__1, "DORMQR",
" ", n, &c__1, n, &c_n1, (ftnlen)6, (ftnlen)1);
maxwrk = f2cmax(i__1,i__2);
if (ilvsl) {
/* Computing MAX */
i__1 = maxwrk, i__2 = minwrk - *n + *n * ilaenv_(&c__1, "DOR"
"GQR", " ", n, &c__1, n, &c_n1, (ftnlen)6, (ftnlen)1);
maxwrk = f2cmax(i__1,i__2);
}
lwrk = maxwrk;
if (ijob >= 1) {
/* Computing MAX */
i__1 = lwrk, i__2 = *n * *n / 2;
lwrk = f2cmax(i__1,i__2);
}
} else {
minwrk = 1;
maxwrk = 1;
lwrk = 1;
}
work[1] = (doublereal) lwrk;
if (wantsn || *n == 0) {
liwmin = 1;
} else {
liwmin = *n + 6;
}
iwork[1] = liwmin;
if (*lwork < minwrk && ! lquery) {
*info = -22;
} else if (*liwork < liwmin && ! lquery) {
*info = -24;
}
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DGGESX", &i__1, (ftnlen)6);
return;
} else if (lquery) {
return;
}
/* Quick return if possible */
if (*n == 0) {
*sdim = 0;
return;
}
/* Get machine constants */
eps = dlamch_("P");
safmin = dlamch_("S");
safmax = 1. / safmin;
dlabad_(&safmin, &safmax);
smlnum = sqrt(safmin) / eps;
bignum = 1. / smlnum;
/* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
anrm = dlange_("M", n, n, &a[a_offset], lda, &work[1]);
ilascl = FALSE_;
if (anrm > 0. && anrm < smlnum) {
anrmto = smlnum;
ilascl = TRUE_;
} else if (anrm > bignum) {
anrmto = bignum;
ilascl = TRUE_;
}
if (ilascl) {
dlascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, &
ierr);
}
/* Scale B if f2cmax element outside range [SMLNUM,BIGNUM] */
bnrm = dlange_("M", n, n, &b[b_offset], ldb, &work[1]);
ilbscl = FALSE_;
if (bnrm > 0. && bnrm < smlnum) {
bnrmto = smlnum;
ilbscl = TRUE_;
} else if (bnrm > bignum) {
bnrmto = bignum;
ilbscl = TRUE_;
}
if (ilbscl) {
dlascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &
ierr);
}
/* Permute the matrix to make it more nearly triangular */
/* (Workspace: need 6*N + 2*N for permutation parameters) */
ileft = 1;
iright = *n + 1;
iwrk = iright + *n;
dggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[
ileft], &work[iright], &work[iwrk], &ierr);
/* Reduce B to triangular form (QR decomposition of B) */
/* (Workspace: need N, prefer N*NB) */
irows = ihi + 1 - ilo;
icols = *n + 1 - ilo;
itau = iwrk;
iwrk = itau + irows;
i__1 = *lwork + 1 - iwrk;
dgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[
iwrk], &i__1, &ierr);
/* Apply the orthogonal transformation to matrix A */
/* (Workspace: need N, prefer N*NB) */
i__1 = *lwork + 1 - iwrk;
dormqr_("L", "T", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, &
work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwrk], &i__1, &
ierr);
/* Initialize VSL */
/* (Workspace: need N, prefer N*NB) */
if (ilvsl) {
dlaset_("Full", n, n, &c_b42, &c_b43, &vsl[vsl_offset], ldvsl);
if (irows > 1) {
i__1 = irows - 1;
i__2 = irows - 1;
dlacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vsl[
ilo + 1 + ilo * vsl_dim1], ldvsl);
}
i__1 = *lwork + 1 - iwrk;
dorgqr_(&irows, &irows, &irows, &vsl[ilo + ilo * vsl_dim1], ldvsl, &
work[itau], &work[iwrk], &i__1, &ierr);
}
/* Initialize VSR */
if (ilvsr) {
dlaset_("Full", n, n, &c_b42, &c_b43, &vsr[vsr_offset], ldvsr);
}
/* Reduce to generalized Hessenberg form */
/* (Workspace: none needed) */
dgghrd_(jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset],
ldb, &vsl[vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, &ierr);
*sdim = 0;
/* Perform QZ algorithm, computing Schur vectors if desired */
/* (Workspace: need N) */
iwrk = itau;
i__1 = *lwork + 1 - iwrk;
dhgeqz_("S", jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[
b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[vsl_offset]
, ldvsl, &vsr[vsr_offset], ldvsr, &work[iwrk], &i__1, &ierr);
if (ierr != 0) {
if (ierr > 0 && ierr <= *n) {
*info = ierr;
} else if (ierr > *n && ierr <= *n << 1) {
*info = ierr - *n;
} else {
*info = *n + 1;
}
goto L60;
}
/* Sort eigenvalues ALPHA/BETA and compute the reciprocal of */
/* condition number(s) */
/* (Workspace: If IJOB >= 1, need MAX( 8*(N+1), 2*SDIM*(N-SDIM) ) */
/* otherwise, need 8*(N+1) ) */
if (wantst) {
/* Undo scaling on eigenvalues before SELCTGing */
if (ilascl) {
dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1],
n, &ierr);
dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1],
n, &ierr);
}
if (ilbscl) {
dlascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n,
&ierr);
}
/* Select eigenvalues */
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
bwork[i__] = (*selctg)(&alphar[i__], &alphai[i__], &beta[i__]);
/* L10: */
}
/* Reorder eigenvalues, transform Generalized Schur vectors, and */
/* compute reciprocal condition numbers */
i__1 = *lwork - iwrk + 1;
dtgsen_(&ijob, &ilvsl, &ilvsr, &bwork[1], n, &a[a_offset], lda, &b[
b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[
vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, sdim, &pl, &pr,
dif, &work[iwrk], &i__1, &iwork[1], liwork, &ierr);
if (ijob >= 1) {
/* Computing MAX */
i__1 = maxwrk, i__2 = (*sdim << 1) * (*n - *sdim);
maxwrk = f2cmax(i__1,i__2);
}
if (ierr == -22) {
/* not enough real workspace */
*info = -22;
} else {
if (ijob == 1 || ijob == 4) {
rconde[1] = pl;
rconde[2] = pr;
}
if (ijob == 2 || ijob == 4) {
rcondv[1] = dif[0];
rcondv[2] = dif[1];
}
if (ierr == 1) {
*info = *n + 3;
}
}
}
/* Apply permutation to VSL and VSR */
/* (Workspace: none needed) */
if (ilvsl) {
dggbak_("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsl[
vsl_offset], ldvsl, &ierr);
}
if (ilvsr) {
dggbak_("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsr[
vsr_offset], ldvsr, &ierr);
}
/* Check if unscaling would cause over/underflow, if so, rescale */
/* (ALPHAR(I),ALPHAI(I),BETA(I)) so BETA(I) is on the order of */
/* B(I,I) and ALPHAR(I) and ALPHAI(I) are on the order of A(I,I) */
if (ilascl) {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
if (alphai[i__] != 0.) {
if (alphar[i__] / safmax > anrmto / anrm || safmin / alphar[
i__] > anrm / anrmto) {
work[1] = (d__1 = a[i__ + i__ * a_dim1] / alphar[i__],
abs(d__1));
beta[i__] *= work[1];
alphar[i__] *= work[1];
alphai[i__] *= work[1];
} else if (alphai[i__] / safmax > anrmto / anrm || safmin /
alphai[i__] > anrm / anrmto) {
work[1] = (d__1 = a[i__ + (i__ + 1) * a_dim1] / alphai[
i__], abs(d__1));
beta[i__] *= work[1];
alphar[i__] *= work[1];
alphai[i__] *= work[1];
}
}
/* L20: */
}
}
if (ilbscl) {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
if (alphai[i__] != 0.) {
if (beta[i__] / safmax > bnrmto / bnrm || safmin / beta[i__]
> bnrm / bnrmto) {
work[1] = (d__1 = b[i__ + i__ * b_dim1] / beta[i__], abs(
d__1));
beta[i__] *= work[1];
alphar[i__] *= work[1];
alphai[i__] *= work[1];
}
}
/* L30: */
}
}
/* Undo scaling */
if (ilascl) {
dlascl_("H", &c__0, &c__0, &anrmto, &anrm, n, n, &a[a_offset], lda, &
ierr);
dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1], n, &
ierr);
dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1], n, &
ierr);
}
if (ilbscl) {
dlascl_("U", &c__0, &c__0, &bnrmto, &bnrm, n, n, &b[b_offset], ldb, &
ierr);
dlascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &
ierr);
}
if (wantst) {
/* Check if reordering is correct */
lastsl = TRUE_;
lst2sl = TRUE_;
*sdim = 0;
ip = 0;
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
cursl = (*selctg)(&alphar[i__], &alphai[i__], &beta[i__]);
if (alphai[i__] == 0.) {
if (cursl) {
++(*sdim);
}
ip = 0;
if (cursl && ! lastsl) {
*info = *n + 2;
}
} else {
if (ip == 1) {
/* Last eigenvalue of conjugate pair */
cursl = cursl || lastsl;
lastsl = cursl;
if (cursl) {
*sdim += 2;
}
ip = -1;
if (cursl && ! lst2sl) {
*info = *n + 2;
}
} else {
/* First eigenvalue of conjugate pair */
ip = 1;
}
}
lst2sl = lastsl;
lastsl = cursl;
/* L50: */
}
}
L60:
work[1] = (doublereal) maxwrk;
iwork[1] = liwmin;
return;
/* End of DGGESX */
} /* dggesx_ */