OpenBLAS/lapack-netlib/SRC/dggbal.c

1196 lines
31 KiB
C

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif
#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif
#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif
typedef blasint integer;
typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
#ifdef _MSC_VER
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
#else
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#endif
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef blasint logical;
typedef char logical1;
typedef char integer1;
#define TRUE_ (1)
#define FALSE_ (0)
/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif
/* I/O stuff */
typedef int flag;
typedef int ftnlen;
typedef int ftnint;
/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;
/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;
/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;
/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;
/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;
/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;
#define VOID void
union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};
typedef union Multitype Multitype;
struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;
struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;
#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#ifdef _MSC_VER
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
#else
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#endif
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimagf(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
/* procedure parameter types for -A and -C++ */
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif
static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#ifdef _MSC_VER
static _Fcomplex cpow_ui(complex x, integer n) {
complex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
for(u = n; ; ) {
if(u & 01) pow.r *= x.r, pow.i *= x.i;
if(u >>= 1) x.r *= x.r, x.i *= x.i;
else break;
}
}
_Fcomplex p={pow.r, pow.i};
return p;
}
#else
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
#ifdef _MSC_VER
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
_Dcomplex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
for(u = n; ; ) {
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
else break;
}
}
_Dcomplex p = {pow._Val[0], pow._Val[1]};
return p;
}
#else
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
/* Table of constant values */
static integer c__1 = 1;
static doublereal c_b35 = 10.;
static doublereal c_b71 = .5;
/* > \brief \b DGGBAL */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download DGGBAL + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dggbal.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dggbal.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dggbal.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE DGGBAL( JOB, N, A, LDA, B, LDB, ILO, IHI, LSCALE, */
/* RSCALE, WORK, INFO ) */
/* CHARACTER JOB */
/* INTEGER IHI, ILO, INFO, LDA, LDB, N */
/* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), LSCALE( * ), */
/* $ RSCALE( * ), WORK( * ) */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > DGGBAL balances a pair of general real matrices (A,B). This */
/* > involves, first, permuting A and B by similarity transformations to */
/* > isolate eigenvalues in the first 1 to ILO$-$1 and last IHI+1 to N */
/* > elements on the diagonal; and second, applying a diagonal similarity */
/* > transformation to rows and columns ILO to IHI to make the rows */
/* > and columns as close in norm as possible. Both steps are optional. */
/* > */
/* > Balancing may reduce the 1-norm of the matrices, and improve the */
/* > accuracy of the computed eigenvalues and/or eigenvectors in the */
/* > generalized eigenvalue problem A*x = lambda*B*x. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] JOB */
/* > \verbatim */
/* > JOB is CHARACTER*1 */
/* > Specifies the operations to be performed on A and B: */
/* > = 'N': none: simply set ILO = 1, IHI = N, LSCALE(I) = 1.0 */
/* > and RSCALE(I) = 1.0 for i = 1,...,N. */
/* > = 'P': permute only; */
/* > = 'S': scale only; */
/* > = 'B': both permute and scale. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrices A and B. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is DOUBLE PRECISION array, dimension (LDA,N) */
/* > On entry, the input matrix A. */
/* > On exit, A is overwritten by the balanced matrix. */
/* > If JOB = 'N', A is not referenced. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
/* > \endverbatim */
/* > */
/* > \param[in,out] B */
/* > \verbatim */
/* > B is DOUBLE PRECISION array, dimension (LDB,N) */
/* > On entry, the input matrix B. */
/* > On exit, B is overwritten by the balanced matrix. */
/* > If JOB = 'N', B is not referenced. */
/* > \endverbatim */
/* > */
/* > \param[in] LDB */
/* > \verbatim */
/* > LDB is INTEGER */
/* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
/* > \endverbatim */
/* > */
/* > \param[out] ILO */
/* > \verbatim */
/* > ILO is INTEGER */
/* > \endverbatim */
/* > */
/* > \param[out] IHI */
/* > \verbatim */
/* > IHI is INTEGER */
/* > ILO and IHI are set to integers such that on exit */
/* > A(i,j) = 0 and B(i,j) = 0 if i > j and */
/* > j = 1,...,ILO-1 or i = IHI+1,...,N. */
/* > If JOB = 'N' or 'S', ILO = 1 and IHI = N. */
/* > \endverbatim */
/* > */
/* > \param[out] LSCALE */
/* > \verbatim */
/* > LSCALE is DOUBLE PRECISION array, dimension (N) */
/* > Details of the permutations and scaling factors applied */
/* > to the left side of A and B. If P(j) is the index of the */
/* > row interchanged with row j, and D(j) */
/* > is the scaling factor applied to row j, then */
/* > LSCALE(j) = P(j) for J = 1,...,ILO-1 */
/* > = D(j) for J = ILO,...,IHI */
/* > = P(j) for J = IHI+1,...,N. */
/* > The order in which the interchanges are made is N to IHI+1, */
/* > then 1 to ILO-1. */
/* > \endverbatim */
/* > */
/* > \param[out] RSCALE */
/* > \verbatim */
/* > RSCALE is DOUBLE PRECISION array, dimension (N) */
/* > Details of the permutations and scaling factors applied */
/* > to the right side of A and B. If P(j) is the index of the */
/* > column interchanged with column j, and D(j) */
/* > is the scaling factor applied to column j, then */
/* > LSCALE(j) = P(j) for J = 1,...,ILO-1 */
/* > = D(j) for J = ILO,...,IHI */
/* > = P(j) for J = IHI+1,...,N. */
/* > The order in which the interchanges are made is N to IHI+1, */
/* > then 1 to ILO-1. */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is DOUBLE PRECISION array, dimension (lwork) */
/* > lwork must be at least f2cmax(1,6*N) when JOB = 'S' or 'B', and */
/* > at least 1 when JOB = 'N' or 'P'. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date December 2016 */
/* > \ingroup doubleGBcomputational */
/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > See R.C. WARD, Balancing the generalized eigenvalue problem, */
/* > SIAM J. Sci. Stat. Comp. 2 (1981), 141-152. */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */ void dggbal_(char *job, integer *n, doublereal *a, integer *
lda, doublereal *b, integer *ldb, integer *ilo, integer *ihi,
doublereal *lscale, doublereal *rscale, doublereal *work, integer *
info)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;
doublereal d__1, d__2, d__3;
/* Local variables */
integer lcab;
doublereal beta, coef;
integer irab, lrab;
doublereal basl, cmax;
extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *,
integer *);
doublereal coef2, coef5;
integer i__, j, k, l, m;
doublereal gamma, t, alpha;
extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *,
integer *);
extern logical lsame_(char *, char *);
doublereal sfmin, sfmax;
extern /* Subroutine */ void dswap_(integer *, doublereal *, integer *,
doublereal *, integer *);
integer iflow;
extern /* Subroutine */ void daxpy_(integer *, doublereal *, doublereal *,
integer *, doublereal *, integer *);
integer kount, jc;
doublereal ta, tb, tc;
extern doublereal dlamch_(char *);
integer ir, it;
doublereal ew;
integer nr;
doublereal pgamma;
extern integer idamax_(integer *, doublereal *, integer *);
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
integer lsfmin, lsfmax, ip1, jp1, lm1;
doublereal cab, rab, ewc, cor, sum;
integer nrp2, icab;
/* -- LAPACK computational routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */
/* ===================================================================== */
/* Test the input parameters */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1 * 1;
b -= b_offset;
--lscale;
--rscale;
--work;
/* Function Body */
*info = 0;
if (! lsame_(job, "N") && ! lsame_(job, "P") && ! lsame_(job, "S")
&& ! lsame_(job, "B")) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*lda < f2cmax(1,*n)) {
*info = -4;
} else if (*ldb < f2cmax(1,*n)) {
*info = -6;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DGGBAL", &i__1, (ftnlen)6);
return;
}
/* Quick return if possible */
if (*n == 0) {
*ilo = 1;
*ihi = *n;
return;
}
if (*n == 1) {
*ilo = 1;
*ihi = *n;
lscale[1] = 1.;
rscale[1] = 1.;
return;
}
if (lsame_(job, "N")) {
*ilo = 1;
*ihi = *n;
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
lscale[i__] = 1.;
rscale[i__] = 1.;
/* L10: */
}
return;
}
k = 1;
l = *n;
if (lsame_(job, "S")) {
goto L190;
}
goto L30;
/* Permute the matrices A and B to isolate the eigenvalues. */
/* Find row with one nonzero in columns 1 through L */
L20:
l = lm1;
if (l != 1) {
goto L30;
}
rscale[1] = 1.;
lscale[1] = 1.;
goto L190;
L30:
lm1 = l - 1;
for (i__ = l; i__ >= 1; --i__) {
i__1 = lm1;
for (j = 1; j <= i__1; ++j) {
jp1 = j + 1;
if (a[i__ + j * a_dim1] != 0. || b[i__ + j * b_dim1] != 0.) {
goto L50;
}
/* L40: */
}
j = l;
goto L70;
L50:
i__1 = l;
for (j = jp1; j <= i__1; ++j) {
if (a[i__ + j * a_dim1] != 0. || b[i__ + j * b_dim1] != 0.) {
goto L80;
}
/* L60: */
}
j = jp1 - 1;
L70:
m = l;
iflow = 1;
goto L160;
L80:
;
}
goto L100;
/* Find column with one nonzero in rows K through N */
L90:
++k;
L100:
i__1 = l;
for (j = k; j <= i__1; ++j) {
i__2 = lm1;
for (i__ = k; i__ <= i__2; ++i__) {
ip1 = i__ + 1;
if (a[i__ + j * a_dim1] != 0. || b[i__ + j * b_dim1] != 0.) {
goto L120;
}
/* L110: */
}
i__ = l;
goto L140;
L120:
i__2 = l;
for (i__ = ip1; i__ <= i__2; ++i__) {
if (a[i__ + j * a_dim1] != 0. || b[i__ + j * b_dim1] != 0.) {
goto L150;
}
/* L130: */
}
i__ = ip1 - 1;
L140:
m = k;
iflow = 2;
goto L160;
L150:
;
}
goto L190;
/* Permute rows M and I */
L160:
lscale[m] = (doublereal) i__;
if (i__ == m) {
goto L170;
}
i__1 = *n - k + 1;
dswap_(&i__1, &a[i__ + k * a_dim1], lda, &a[m + k * a_dim1], lda);
i__1 = *n - k + 1;
dswap_(&i__1, &b[i__ + k * b_dim1], ldb, &b[m + k * b_dim1], ldb);
/* Permute columns M and J */
L170:
rscale[m] = (doublereal) j;
if (j == m) {
goto L180;
}
dswap_(&l, &a[j * a_dim1 + 1], &c__1, &a[m * a_dim1 + 1], &c__1);
dswap_(&l, &b[j * b_dim1 + 1], &c__1, &b[m * b_dim1 + 1], &c__1);
L180:
switch (iflow) {
case 1: goto L20;
case 2: goto L90;
}
L190:
*ilo = k;
*ihi = l;
if (lsame_(job, "P")) {
i__1 = *ihi;
for (i__ = *ilo; i__ <= i__1; ++i__) {
lscale[i__] = 1.;
rscale[i__] = 1.;
/* L195: */
}
return;
}
if (*ilo == *ihi) {
return;
}
/* Balance the submatrix in rows ILO to IHI. */
nr = *ihi - *ilo + 1;
i__1 = *ihi;
for (i__ = *ilo; i__ <= i__1; ++i__) {
rscale[i__] = 0.;
lscale[i__] = 0.;
work[i__] = 0.;
work[i__ + *n] = 0.;
work[i__ + (*n << 1)] = 0.;
work[i__ + *n * 3] = 0.;
work[i__ + (*n << 2)] = 0.;
work[i__ + *n * 5] = 0.;
/* L200: */
}
/* Compute right side vector in resulting linear equations */
basl = d_lg10(&c_b35);
i__1 = *ihi;
for (i__ = *ilo; i__ <= i__1; ++i__) {
i__2 = *ihi;
for (j = *ilo; j <= i__2; ++j) {
tb = b[i__ + j * b_dim1];
ta = a[i__ + j * a_dim1];
if (ta == 0.) {
goto L210;
}
d__1 = abs(ta);
ta = d_lg10(&d__1) / basl;
L210:
if (tb == 0.) {
goto L220;
}
d__1 = abs(tb);
tb = d_lg10(&d__1) / basl;
L220:
work[i__ + (*n << 2)] = work[i__ + (*n << 2)] - ta - tb;
work[j + *n * 5] = work[j + *n * 5] - ta - tb;
/* L230: */
}
/* L240: */
}
coef = 1. / (doublereal) (nr << 1);
coef2 = coef * coef;
coef5 = coef2 * .5;
nrp2 = nr + 2;
beta = 0.;
it = 1;
/* Start generalized conjugate gradient iteration */
L250:
gamma = ddot_(&nr, &work[*ilo + (*n << 2)], &c__1, &work[*ilo + (*n << 2)]
, &c__1) + ddot_(&nr, &work[*ilo + *n * 5], &c__1, &work[*ilo + *
n * 5], &c__1);
ew = 0.;
ewc = 0.;
i__1 = *ihi;
for (i__ = *ilo; i__ <= i__1; ++i__) {
ew += work[i__ + (*n << 2)];
ewc += work[i__ + *n * 5];
/* L260: */
}
/* Computing 2nd power */
d__1 = ew;
/* Computing 2nd power */
d__2 = ewc;
/* Computing 2nd power */
d__3 = ew - ewc;
gamma = coef * gamma - coef2 * (d__1 * d__1 + d__2 * d__2) - coef5 * (
d__3 * d__3);
if (gamma == 0.) {
goto L350;
}
if (it != 1) {
beta = gamma / pgamma;
}
t = coef5 * (ewc - ew * 3.);
tc = coef5 * (ew - ewc * 3.);
dscal_(&nr, &beta, &work[*ilo], &c__1);
dscal_(&nr, &beta, &work[*ilo + *n], &c__1);
daxpy_(&nr, &coef, &work[*ilo + (*n << 2)], &c__1, &work[*ilo + *n], &
c__1);
daxpy_(&nr, &coef, &work[*ilo + *n * 5], &c__1, &work[*ilo], &c__1);
i__1 = *ihi;
for (i__ = *ilo; i__ <= i__1; ++i__) {
work[i__] += tc;
work[i__ + *n] += t;
/* L270: */
}
/* Apply matrix to vector */
i__1 = *ihi;
for (i__ = *ilo; i__ <= i__1; ++i__) {
kount = 0;
sum = 0.;
i__2 = *ihi;
for (j = *ilo; j <= i__2; ++j) {
if (a[i__ + j * a_dim1] == 0.) {
goto L280;
}
++kount;
sum += work[j];
L280:
if (b[i__ + j * b_dim1] == 0.) {
goto L290;
}
++kount;
sum += work[j];
L290:
;
}
work[i__ + (*n << 1)] = (doublereal) kount * work[i__ + *n] + sum;
/* L300: */
}
i__1 = *ihi;
for (j = *ilo; j <= i__1; ++j) {
kount = 0;
sum = 0.;
i__2 = *ihi;
for (i__ = *ilo; i__ <= i__2; ++i__) {
if (a[i__ + j * a_dim1] == 0.) {
goto L310;
}
++kount;
sum += work[i__ + *n];
L310:
if (b[i__ + j * b_dim1] == 0.) {
goto L320;
}
++kount;
sum += work[i__ + *n];
L320:
;
}
work[j + *n * 3] = (doublereal) kount * work[j] + sum;
/* L330: */
}
sum = ddot_(&nr, &work[*ilo + *n], &c__1, &work[*ilo + (*n << 1)], &c__1)
+ ddot_(&nr, &work[*ilo], &c__1, &work[*ilo + *n * 3], &c__1);
alpha = gamma / sum;
/* Determine correction to current iteration */
cmax = 0.;
i__1 = *ihi;
for (i__ = *ilo; i__ <= i__1; ++i__) {
cor = alpha * work[i__ + *n];
if (abs(cor) > cmax) {
cmax = abs(cor);
}
lscale[i__] += cor;
cor = alpha * work[i__];
if (abs(cor) > cmax) {
cmax = abs(cor);
}
rscale[i__] += cor;
/* L340: */
}
if (cmax < .5) {
goto L350;
}
d__1 = -alpha;
daxpy_(&nr, &d__1, &work[*ilo + (*n << 1)], &c__1, &work[*ilo + (*n << 2)]
, &c__1);
d__1 = -alpha;
daxpy_(&nr, &d__1, &work[*ilo + *n * 3], &c__1, &work[*ilo + *n * 5], &
c__1);
pgamma = gamma;
++it;
if (it <= nrp2) {
goto L250;
}
/* End generalized conjugate gradient iteration */
L350:
sfmin = dlamch_("S");
sfmax = 1. / sfmin;
lsfmin = (integer) (d_lg10(&sfmin) / basl + 1.);
lsfmax = (integer) (d_lg10(&sfmax) / basl);
i__1 = *ihi;
for (i__ = *ilo; i__ <= i__1; ++i__) {
i__2 = *n - *ilo + 1;
irab = idamax_(&i__2, &a[i__ + *ilo * a_dim1], lda);
rab = (d__1 = a[i__ + (irab + *ilo - 1) * a_dim1], abs(d__1));
i__2 = *n - *ilo + 1;
irab = idamax_(&i__2, &b[i__ + *ilo * b_dim1], ldb);
/* Computing MAX */
d__2 = rab, d__3 = (d__1 = b[i__ + (irab + *ilo - 1) * b_dim1], abs(
d__1));
rab = f2cmax(d__2,d__3);
d__1 = rab + sfmin;
lrab = (integer) (d_lg10(&d__1) / basl + 1.);
ir = (integer) (lscale[i__] + d_sign(&c_b71, &lscale[i__]));
/* Computing MIN */
i__2 = f2cmax(ir,lsfmin), i__2 = f2cmin(i__2,lsfmax), i__3 = lsfmax - lrab;
ir = f2cmin(i__2,i__3);
lscale[i__] = pow_di(&c_b35, &ir);
icab = idamax_(ihi, &a[i__ * a_dim1 + 1], &c__1);
cab = (d__1 = a[icab + i__ * a_dim1], abs(d__1));
icab = idamax_(ihi, &b[i__ * b_dim1 + 1], &c__1);
/* Computing MAX */
d__2 = cab, d__3 = (d__1 = b[icab + i__ * b_dim1], abs(d__1));
cab = f2cmax(d__2,d__3);
d__1 = cab + sfmin;
lcab = (integer) (d_lg10(&d__1) / basl + 1.);
jc = (integer) (rscale[i__] + d_sign(&c_b71, &rscale[i__]));
/* Computing MIN */
i__2 = f2cmax(jc,lsfmin), i__2 = f2cmin(i__2,lsfmax), i__3 = lsfmax - lcab;
jc = f2cmin(i__2,i__3);
rscale[i__] = pow_di(&c_b35, &jc);
/* L360: */
}
/* Row scaling of matrices A and B */
i__1 = *ihi;
for (i__ = *ilo; i__ <= i__1; ++i__) {
i__2 = *n - *ilo + 1;
dscal_(&i__2, &lscale[i__], &a[i__ + *ilo * a_dim1], lda);
i__2 = *n - *ilo + 1;
dscal_(&i__2, &lscale[i__], &b[i__ + *ilo * b_dim1], ldb);
/* L370: */
}
/* Column scaling of matrices A and B */
i__1 = *ihi;
for (j = *ilo; j <= i__1; ++j) {
dscal_(ihi, &rscale[j], &a[j * a_dim1 + 1], &c__1);
dscal_(ihi, &rscale[j], &b[j * b_dim1 + 1], &c__1);
/* L380: */
}
return;
/* End of DGGBAL */
} /* dggbal_ */