OpenBLAS/lapack-netlib/SRC/dgeesx.c

1249 lines
37 KiB
C

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif
#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif
#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif
typedef blasint integer;
typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
#ifdef _MSC_VER
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
#else
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#endif
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef blasint logical;
typedef char logical1;
typedef char integer1;
#define TRUE_ (1)
#define FALSE_ (0)
/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif
/* I/O stuff */
typedef int flag;
typedef int ftnlen;
typedef int ftnint;
/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;
/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;
/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;
/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;
/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;
/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;
#define VOID void
union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};
typedef union Multitype Multitype;
struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;
struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;
#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#ifdef _MSC_VER
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
#else
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#endif
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimagf(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
/* procedure parameter types for -A and -C++ */
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif
static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#ifdef _MSC_VER
static _Fcomplex cpow_ui(complex x, integer n) {
complex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
for(u = n; ; ) {
if(u & 01) pow.r *= x.r, pow.i *= x.i;
if(u >>= 1) x.r *= x.r, x.i *= x.i;
else break;
}
}
_Fcomplex p={pow.r, pow.i};
return p;
}
#else
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
#ifdef _MSC_VER
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
_Dcomplex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
for(u = n; ; ) {
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
else break;
}
}
_Dcomplex p = {pow._Val[0], pow._Val[1]};
return p;
}
#else
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
/* Table of constant values */
static integer c__1 = 1;
static integer c__0 = 0;
static integer c_n1 = -1;
/* > \brief <b> DGEESX computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors
for GE matrices</b> */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download DGEESX + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgeesx.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgeesx.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgeesx.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE DGEESX( JOBVS, SORT, SELECT, SENSE, N, A, LDA, SDIM, */
/* WR, WI, VS, LDVS, RCONDE, RCONDV, WORK, LWORK, */
/* IWORK, LIWORK, BWORK, INFO ) */
/* CHARACTER JOBVS, SENSE, SORT */
/* INTEGER INFO, LDA, LDVS, LIWORK, LWORK, N, SDIM */
/* DOUBLE PRECISION RCONDE, RCONDV */
/* LOGICAL BWORK( * ) */
/* INTEGER IWORK( * ) */
/* DOUBLE PRECISION A( LDA, * ), VS( LDVS, * ), WI( * ), WORK( * ), */
/* $ WR( * ) */
/* LOGICAL SELECT */
/* EXTERNAL SELECT */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > DGEESX computes for an N-by-N real nonsymmetric matrix A, the */
/* > eigenvalues, the real Schur form T, and, optionally, the matrix of */
/* > Schur vectors Z. This gives the Schur factorization A = Z*T*(Z**T). */
/* > */
/* > Optionally, it also orders the eigenvalues on the diagonal of the */
/* > real Schur form so that selected eigenvalues are at the top left; */
/* > computes a reciprocal condition number for the average of the */
/* > selected eigenvalues (RCONDE); and computes a reciprocal condition */
/* > number for the right invariant subspace corresponding to the */
/* > selected eigenvalues (RCONDV). The leading columns of Z form an */
/* > orthonormal basis for this invariant subspace. */
/* > */
/* > For further explanation of the reciprocal condition numbers RCONDE */
/* > and RCONDV, see Section 4.10 of the LAPACK Users' Guide (where */
/* > these quantities are called s and sep respectively). */
/* > */
/* > A real matrix is in real Schur form if it is upper quasi-triangular */
/* > with 1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in */
/* > the form */
/* > [ a b ] */
/* > [ c a ] */
/* > */
/* > where b*c < 0. The eigenvalues of such a block are a +- sqrt(bc). */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] JOBVS */
/* > \verbatim */
/* > JOBVS is CHARACTER*1 */
/* > = 'N': Schur vectors are not computed; */
/* > = 'V': Schur vectors are computed. */
/* > \endverbatim */
/* > */
/* > \param[in] SORT */
/* > \verbatim */
/* > SORT is CHARACTER*1 */
/* > Specifies whether or not to order the eigenvalues on the */
/* > diagonal of the Schur form. */
/* > = 'N': Eigenvalues are not ordered; */
/* > = 'S': Eigenvalues are ordered (see SELECT). */
/* > \endverbatim */
/* > */
/* > \param[in] SELECT */
/* > \verbatim */
/* > SELECT is a LOGICAL FUNCTION of two DOUBLE PRECISION arguments */
/* > SELECT must be declared EXTERNAL in the calling subroutine. */
/* > If SORT = 'S', SELECT is used to select eigenvalues to sort */
/* > to the top left of the Schur form. */
/* > If SORT = 'N', SELECT is not referenced. */
/* > An eigenvalue WR(j)+sqrt(-1)*WI(j) is selected if */
/* > SELECT(WR(j),WI(j)) is true; i.e., if either one of a */
/* > complex conjugate pair of eigenvalues is selected, then both */
/* > are. Note that a selected complex eigenvalue may no longer */
/* > satisfy SELECT(WR(j),WI(j)) = .TRUE. after ordering, since */
/* > ordering may change the value of complex eigenvalues */
/* > (especially if the eigenvalue is ill-conditioned); in this */
/* > case INFO may be set to N+3 (see INFO below). */
/* > \endverbatim */
/* > */
/* > \param[in] SENSE */
/* > \verbatim */
/* > SENSE is CHARACTER*1 */
/* > Determines which reciprocal condition numbers are computed. */
/* > = 'N': None are computed; */
/* > = 'E': Computed for average of selected eigenvalues only; */
/* > = 'V': Computed for selected right invariant subspace only; */
/* > = 'B': Computed for both. */
/* > If SENSE = 'E', 'V' or 'B', SORT must equal 'S'. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is DOUBLE PRECISION array, dimension (LDA, N) */
/* > On entry, the N-by-N matrix A. */
/* > On exit, A is overwritten by its real Schur form T. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
/* > \endverbatim */
/* > */
/* > \param[out] SDIM */
/* > \verbatim */
/* > SDIM is INTEGER */
/* > If SORT = 'N', SDIM = 0. */
/* > If SORT = 'S', SDIM = number of eigenvalues (after sorting) */
/* > for which SELECT is true. (Complex conjugate */
/* > pairs for which SELECT is true for either */
/* > eigenvalue count as 2.) */
/* > \endverbatim */
/* > */
/* > \param[out] WR */
/* > \verbatim */
/* > WR is DOUBLE PRECISION array, dimension (N) */
/* > \endverbatim */
/* > */
/* > \param[out] WI */
/* > \verbatim */
/* > WI is DOUBLE PRECISION array, dimension (N) */
/* > WR and WI contain the real and imaginary parts, respectively, */
/* > of the computed eigenvalues, in the same order that they */
/* > appear on the diagonal of the output Schur form T. Complex */
/* > conjugate pairs of eigenvalues appear consecutively with the */
/* > eigenvalue having the positive imaginary part first. */
/* > \endverbatim */
/* > */
/* > \param[out] VS */
/* > \verbatim */
/* > VS is DOUBLE PRECISION array, dimension (LDVS,N) */
/* > If JOBVS = 'V', VS contains the orthogonal matrix Z of Schur */
/* > vectors. */
/* > If JOBVS = 'N', VS is not referenced. */
/* > \endverbatim */
/* > */
/* > \param[in] LDVS */
/* > \verbatim */
/* > LDVS is INTEGER */
/* > The leading dimension of the array VS. LDVS >= 1, and if */
/* > JOBVS = 'V', LDVS >= N. */
/* > \endverbatim */
/* > */
/* > \param[out] RCONDE */
/* > \verbatim */
/* > RCONDE is DOUBLE PRECISION */
/* > If SENSE = 'E' or 'B', RCONDE contains the reciprocal */
/* > condition number for the average of the selected eigenvalues. */
/* > Not referenced if SENSE = 'N' or 'V'. */
/* > \endverbatim */
/* > */
/* > \param[out] RCONDV */
/* > \verbatim */
/* > RCONDV is DOUBLE PRECISION */
/* > If SENSE = 'V' or 'B', RCONDV contains the reciprocal */
/* > condition number for the selected right invariant subspace. */
/* > Not referenced if SENSE = 'N' or 'E'. */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
/* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* > \endverbatim */
/* > */
/* > \param[in] LWORK */
/* > \verbatim */
/* > LWORK is INTEGER */
/* > The dimension of the array WORK. LWORK >= f2cmax(1,3*N). */
/* > Also, if SENSE = 'E' or 'V' or 'B', */
/* > LWORK >= N+2*SDIM*(N-SDIM), where SDIM is the number of */
/* > selected eigenvalues computed by this routine. Note that */
/* > N+2*SDIM*(N-SDIM) <= N+N*N/2. Note also that an error is only */
/* > returned if LWORK < f2cmax(1,3*N), but if SENSE = 'E' or 'V' or */
/* > 'B' this may not be large enough. */
/* > For good performance, LWORK must generally be larger. */
/* > */
/* > If LWORK = -1, then a workspace query is assumed; the routine */
/* > only calculates upper bounds on the optimal sizes of the */
/* > arrays WORK and IWORK, returns these values as the first */
/* > entries of the WORK and IWORK arrays, and no error messages */
/* > related to LWORK or LIWORK are issued by XERBLA. */
/* > \endverbatim */
/* > */
/* > \param[out] IWORK */
/* > \verbatim */
/* > IWORK is INTEGER array, dimension (MAX(1,LIWORK)) */
/* > On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */
/* > \endverbatim */
/* > */
/* > \param[in] LIWORK */
/* > \verbatim */
/* > LIWORK is INTEGER */
/* > The dimension of the array IWORK. */
/* > LIWORK >= 1; if SENSE = 'V' or 'B', LIWORK >= SDIM*(N-SDIM). */
/* > Note that SDIM*(N-SDIM) <= N*N/4. Note also that an error is */
/* > only returned if LIWORK < 1, but if SENSE = 'V' or 'B' this */
/* > may not be large enough. */
/* > */
/* > If LIWORK = -1, then a workspace query is assumed; the */
/* > routine only calculates upper bounds on the optimal sizes of */
/* > the arrays WORK and IWORK, returns these values as the first */
/* > entries of the WORK and IWORK arrays, and no error messages */
/* > related to LWORK or LIWORK are issued by XERBLA. */
/* > \endverbatim */
/* > */
/* > \param[out] BWORK */
/* > \verbatim */
/* > BWORK is LOGICAL array, dimension (N) */
/* > Not referenced if SORT = 'N'. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value. */
/* > > 0: if INFO = i, and i is */
/* > <= N: the QR algorithm failed to compute all the */
/* > eigenvalues; elements 1:ILO-1 and i+1:N of WR and WI */
/* > contain those eigenvalues which have converged; if */
/* > JOBVS = 'V', VS contains the transformation which */
/* > reduces A to its partially converged Schur form. */
/* > = N+1: the eigenvalues could not be reordered because some */
/* > eigenvalues were too close to separate (the problem */
/* > is very ill-conditioned); */
/* > = N+2: after reordering, roundoff changed values of some */
/* > complex eigenvalues so that leading eigenvalues in */
/* > the Schur form no longer satisfy SELECT=.TRUE. This */
/* > could also be caused by underflow due to scaling. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date June 2016 */
/* > \ingroup doubleGEeigen */
/* ===================================================================== */
/* Subroutine */ void dgeesx_(char *jobvs, char *sort, L_fp select, char *
sense, integer *n, doublereal *a, integer *lda, integer *sdim,
doublereal *wr, doublereal *wi, doublereal *vs, integer *ldvs,
doublereal *rconde, doublereal *rcondv, doublereal *work, integer *
lwork, integer *iwork, integer *liwork, logical *bwork, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, vs_dim1, vs_offset, i__1, i__2, i__3;
/* Local variables */
integer ibal;
doublereal anrm;
integer ierr, itau, iwrk, lwrk, inxt, i__, icond, ieval;
extern logical lsame_(char *, char *);
extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *,
doublereal *, integer *), dswap_(integer *, doublereal *, integer
*, doublereal *, integer *);
logical cursl;
integer liwrk, i1, i2;
extern /* Subroutine */ void dlabad_(doublereal *, doublereal *), dgebak_(
char *, char *, integer *, integer *, integer *, doublereal *,
integer *, doublereal *, integer *, integer *),
dgebal_(char *, integer *, doublereal *, integer *, integer *,
integer *, doublereal *, integer *);
logical lst2sl, scalea;
integer ip;
doublereal cscale;
extern doublereal dlamch_(char *), dlange_(char *, integer *,
integer *, doublereal *, integer *, doublereal *);
extern /* Subroutine */ void dgehrd_(integer *, integer *, integer *,
doublereal *, integer *, doublereal *, doublereal *, integer *,
integer *), dlascl_(char *, integer *, integer *, doublereal *,
doublereal *, integer *, integer *, doublereal *, integer *,
integer *), dlacpy_(char *, integer *, integer *,
doublereal *, integer *, doublereal *, integer *);
extern int xerbla_(char *, integer *, ftnlen);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *, ftnlen, ftnlen);
doublereal bignum;
extern /* Subroutine */ void dorghr_(integer *, integer *, integer *,
doublereal *, integer *, doublereal *, doublereal *, integer *,
integer *), dhseqr_(char *, char *, integer *, integer *, integer
*, doublereal *, integer *, doublereal *, doublereal *,
doublereal *, integer *, doublereal *, integer *, integer *);
logical wantsb;
extern /* Subroutine */ void dtrsen_(char *, char *, logical *, integer *,
doublereal *, integer *, doublereal *, integer *, doublereal *,
doublereal *, integer *, doublereal *, doublereal *, doublereal *,
integer *, integer *, integer *, integer *);
logical wantse, lastsl;
integer minwrk, maxwrk;
logical wantsn;
doublereal smlnum;
integer hswork;
logical wantst, lquery, wantsv, wantvs;
integer ihi, ilo;
doublereal dum[1], eps;
/* -- LAPACK driver routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* June 2016 */
/* ===================================================================== */
/* Test the input arguments */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--wr;
--wi;
vs_dim1 = *ldvs;
vs_offset = 1 + vs_dim1 * 1;
vs -= vs_offset;
--work;
--iwork;
--bwork;
/* Function Body */
*info = 0;
wantvs = lsame_(jobvs, "V");
wantst = lsame_(sort, "S");
wantsn = lsame_(sense, "N");
wantse = lsame_(sense, "E");
wantsv = lsame_(sense, "V");
wantsb = lsame_(sense, "B");
lquery = *lwork == -1 || *liwork == -1;
if (! wantvs && ! lsame_(jobvs, "N")) {
*info = -1;
} else if (! wantst && ! lsame_(sort, "N")) {
*info = -2;
} else if (! (wantsn || wantse || wantsv || wantsb) || ! wantst && !
wantsn) {
*info = -4;
} else if (*n < 0) {
*info = -5;
} else if (*lda < f2cmax(1,*n)) {
*info = -7;
} else if (*ldvs < 1 || wantvs && *ldvs < *n) {
*info = -12;
}
/* Compute workspace */
/* (Note: Comments in the code beginning "RWorkspace:" describe the */
/* minimal amount of real workspace needed at that point in the */
/* code, as well as the preferred amount for good performance. */
/* IWorkspace refers to integer workspace. */
/* NB refers to the optimal block size for the immediately */
/* following subroutine, as returned by ILAENV. */
/* HSWORK refers to the workspace preferred by DHSEQR, as */
/* calculated below. HSWORK is computed assuming ILO=1 and IHI=N, */
/* the worst case. */
/* If SENSE = 'E', 'V' or 'B', then the amount of workspace needed */
/* depends on SDIM, which is computed by the routine DTRSEN later */
/* in the code.) */
if (*info == 0) {
liwrk = 1;
if (*n == 0) {
minwrk = 1;
lwrk = 1;
} else {
maxwrk = (*n << 1) + *n * ilaenv_(&c__1, "DGEHRD", " ", n, &c__1,
n, &c__0, (ftnlen)6, (ftnlen)1);
minwrk = *n * 3;
dhseqr_("S", jobvs, n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[1]
, &vs[vs_offset], ldvs, &work[1], &c_n1, &ieval);
hswork = (integer) work[1];
if (! wantvs) {
/* Computing MAX */
i__1 = maxwrk, i__2 = *n + hswork;
maxwrk = f2cmax(i__1,i__2);
} else {
/* Computing MAX */
i__1 = maxwrk, i__2 = (*n << 1) + (*n - 1) * ilaenv_(&c__1,
"DORGHR", " ", n, &c__1, n, &c_n1, (ftnlen)6, (ftnlen)
1);
maxwrk = f2cmax(i__1,i__2);
/* Computing MAX */
i__1 = maxwrk, i__2 = *n + hswork;
maxwrk = f2cmax(i__1,i__2);
}
lwrk = maxwrk;
if (! wantsn) {
/* Computing MAX */
i__1 = lwrk, i__2 = *n + *n * *n / 2;
lwrk = f2cmax(i__1,i__2);
}
if (wantsv || wantsb) {
liwrk = *n * *n / 4;
}
}
iwork[1] = liwrk;
work[1] = (doublereal) lwrk;
if (*lwork < minwrk && ! lquery) {
*info = -16;
} else if (*liwork < 1 && ! lquery) {
*info = -18;
}
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DGEESX", &i__1, (ftnlen)6);
return;
} else if (lquery) {
return;
}
/* Quick return if possible */
if (*n == 0) {
*sdim = 0;
return;
}
/* Get machine constants */
eps = dlamch_("P");
smlnum = dlamch_("S");
bignum = 1. / smlnum;
dlabad_(&smlnum, &bignum);
smlnum = sqrt(smlnum) / eps;
bignum = 1. / smlnum;
/* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
anrm = dlange_("M", n, n, &a[a_offset], lda, dum);
scalea = FALSE_;
if (anrm > 0. && anrm < smlnum) {
scalea = TRUE_;
cscale = smlnum;
} else if (anrm > bignum) {
scalea = TRUE_;
cscale = bignum;
}
if (scalea) {
dlascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, &
ierr);
}
/* Permute the matrix to make it more nearly triangular */
/* (RWorkspace: need N) */
ibal = 1;
dgebal_("P", n, &a[a_offset], lda, &ilo, &ihi, &work[ibal], &ierr);
/* Reduce to upper Hessenberg form */
/* (RWorkspace: need 3*N, prefer 2*N+N*NB) */
itau = *n + ibal;
iwrk = *n + itau;
i__1 = *lwork - iwrk + 1;
dgehrd_(n, &ilo, &ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1,
&ierr);
if (wantvs) {
/* Copy Householder vectors to VS */
dlacpy_("L", n, n, &a[a_offset], lda, &vs[vs_offset], ldvs)
;
/* Generate orthogonal matrix in VS */
/* (RWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB) */
i__1 = *lwork - iwrk + 1;
dorghr_(n, &ilo, &ihi, &vs[vs_offset], ldvs, &work[itau], &work[iwrk],
&i__1, &ierr);
}
*sdim = 0;
/* Perform QR iteration, accumulating Schur vectors in VS if desired */
/* (RWorkspace: need N+1, prefer N+HSWORK (see comments) ) */
iwrk = itau;
i__1 = *lwork - iwrk + 1;
dhseqr_("S", jobvs, n, &ilo, &ihi, &a[a_offset], lda, &wr[1], &wi[1], &vs[
vs_offset], ldvs, &work[iwrk], &i__1, &ieval);
if (ieval > 0) {
*info = ieval;
}
/* Sort eigenvalues if desired */
if (wantst && *info == 0) {
if (scalea) {
dlascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &wr[1], n, &
ierr);
dlascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &wi[1], n, &
ierr);
}
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
bwork[i__] = (*select)(&wr[i__], &wi[i__]);
/* L10: */
}
/* Reorder eigenvalues, transform Schur vectors, and compute */
/* reciprocal condition numbers */
/* (RWorkspace: if SENSE is not 'N', need N+2*SDIM*(N-SDIM) */
/* otherwise, need N ) */
/* (IWorkspace: if SENSE is 'V' or 'B', need SDIM*(N-SDIM) */
/* otherwise, need 0 ) */
i__1 = *lwork - iwrk + 1;
dtrsen_(sense, jobvs, &bwork[1], n, &a[a_offset], lda, &vs[vs_offset],
ldvs, &wr[1], &wi[1], sdim, rconde, rcondv, &work[iwrk], &
i__1, &iwork[1], liwork, &icond);
if (! wantsn) {
/* Computing MAX */
i__1 = maxwrk, i__2 = *n + (*sdim << 1) * (*n - *sdim);
maxwrk = f2cmax(i__1,i__2);
}
if (icond == -15) {
/* Not enough real workspace */
*info = -16;
} else if (icond == -17) {
/* Not enough integer workspace */
*info = -18;
} else if (icond > 0) {
/* DTRSEN failed to reorder or to restore standard Schur form */
*info = icond + *n;
}
}
if (wantvs) {
/* Undo balancing */
/* (RWorkspace: need N) */
dgebak_("P", "R", n, &ilo, &ihi, &work[ibal], n, &vs[vs_offset], ldvs,
&ierr);
}
if (scalea) {
/* Undo scaling for the Schur form of A */
dlascl_("H", &c__0, &c__0, &cscale, &anrm, n, n, &a[a_offset], lda, &
ierr);
i__1 = *lda + 1;
dcopy_(n, &a[a_offset], &i__1, &wr[1], &c__1);
if ((wantsv || wantsb) && *info == 0) {
dum[0] = *rcondv;
dlascl_("G", &c__0, &c__0, &cscale, &anrm, &c__1, &c__1, dum, &
c__1, &ierr);
*rcondv = dum[0];
}
if (cscale == smlnum) {
/* If scaling back towards underflow, adjust WI if an */
/* offdiagonal element of a 2-by-2 block in the Schur form */
/* underflows. */
if (ieval > 0) {
i1 = ieval + 1;
i2 = ihi - 1;
i__1 = ilo - 1;
dlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[
1], n, &ierr);
} else if (wantst) {
i1 = 1;
i2 = *n - 1;
} else {
i1 = ilo;
i2 = ihi - 1;
}
inxt = i1 - 1;
i__1 = i2;
for (i__ = i1; i__ <= i__1; ++i__) {
if (i__ < inxt) {
goto L20;
}
if (wi[i__] == 0.) {
inxt = i__ + 1;
} else {
if (a[i__ + 1 + i__ * a_dim1] == 0.) {
wi[i__] = 0.;
wi[i__ + 1] = 0.;
} else if (a[i__ + 1 + i__ * a_dim1] != 0. && a[i__ + (
i__ + 1) * a_dim1] == 0.) {
wi[i__] = 0.;
wi[i__ + 1] = 0.;
if (i__ > 1) {
i__2 = i__ - 1;
dswap_(&i__2, &a[i__ * a_dim1 + 1], &c__1, &a[(
i__ + 1) * a_dim1 + 1], &c__1);
}
if (*n > i__ + 1) {
i__2 = *n - i__ - 1;
dswap_(&i__2, &a[i__ + (i__ + 2) * a_dim1], lda, &
a[i__ + 1 + (i__ + 2) * a_dim1], lda);
}
if (wantvs) {
dswap_(n, &vs[i__ * vs_dim1 + 1], &c__1, &vs[(i__
+ 1) * vs_dim1 + 1], &c__1);
}
a[i__ + (i__ + 1) * a_dim1] = a[i__ + 1 + i__ *
a_dim1];
a[i__ + 1 + i__ * a_dim1] = 0.;
}
inxt = i__ + 2;
}
L20:
;
}
}
i__1 = *n - ieval;
/* Computing MAX */
i__3 = *n - ieval;
i__2 = f2cmax(i__3,1);
dlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[ieval +
1], &i__2, &ierr);
}
if (wantst && *info == 0) {
/* Check if reordering successful */
lastsl = TRUE_;
lst2sl = TRUE_;
*sdim = 0;
ip = 0;
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
cursl = (*select)(&wr[i__], &wi[i__]);
if (wi[i__] == 0.) {
if (cursl) {
++(*sdim);
}
ip = 0;
if (cursl && ! lastsl) {
*info = *n + 2;
}
} else {
if (ip == 1) {
/* Last eigenvalue of conjugate pair */
cursl = cursl || lastsl;
lastsl = cursl;
if (cursl) {
*sdim += 2;
}
ip = -1;
if (cursl && ! lst2sl) {
*info = *n + 2;
}
} else {
/* First eigenvalue of conjugate pair */
ip = 1;
}
}
lst2sl = lastsl;
lastsl = cursl;
/* L30: */
}
}
work[1] = (doublereal) maxwrk;
if (wantsv || wantsb) {
/* Computing MAX */
i__1 = 1, i__2 = *sdim * (*n - *sdim);
iwork[1] = f2cmax(i__1,i__2);
} else {
iwork[1] = 1;
}
return;
/* End of DGEESX */
} /* dgeesx_ */