OpenBLAS/lapack-netlib/SRC/ctgex2.c

953 lines
27 KiB
C

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif
#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif
#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif
typedef blasint integer;
typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
#ifdef _MSC_VER
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
#else
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#endif
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef blasint logical;
typedef char logical1;
typedef char integer1;
#define TRUE_ (1)
#define FALSE_ (0)
/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif
/* I/O stuff */
typedef int flag;
typedef int ftnlen;
typedef int ftnint;
/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;
/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;
/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;
/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;
/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;
/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;
#define VOID void
union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};
typedef union Multitype Multitype;
struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;
struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;
#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#ifdef _MSC_VER
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
#else
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#endif
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimagf(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
/* procedure parameter types for -A and -C++ */
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif
static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#ifdef _MSC_VER
static _Fcomplex cpow_ui(complex x, integer n) {
complex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
for(u = n; ; ) {
if(u & 01) pow.r *= x.r, pow.i *= x.i;
if(u >>= 1) x.r *= x.r, x.i *= x.i;
else break;
}
}
_Fcomplex p={pow.r, pow.i};
return p;
}
#else
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
#ifdef _MSC_VER
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
_Dcomplex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
for(u = n; ; ) {
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
else break;
}
}
_Dcomplex p = {pow._Val[0], pow._Val[1]};
return p;
}
#else
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
/* Table of constant values */
static integer c__2 = 2;
static integer c__1 = 1;
/* > \brief \b CTGEX2 swaps adjacent diagonal blocks in an upper (quasi) triangular matrix pair by an unitary
equivalence transformation. */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download CTGEX2 + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctgex2.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctgex2.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctgex2.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE CTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, */
/* LDZ, J1, INFO ) */
/* LOGICAL WANTQ, WANTZ */
/* INTEGER INFO, J1, LDA, LDB, LDQ, LDZ, N */
/* COMPLEX A( LDA, * ), B( LDB, * ), Q( LDQ, * ), */
/* $ Z( LDZ, * ) */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CTGEX2 swaps adjacent diagonal 1 by 1 blocks (A11,B11) and (A22,B22) */
/* > in an upper triangular matrix pair (A, B) by an unitary equivalence */
/* > transformation. */
/* > */
/* > (A, B) must be in generalized Schur canonical form, that is, A and */
/* > B are both upper triangular. */
/* > */
/* > Optionally, the matrices Q and Z of generalized Schur vectors are */
/* > updated. */
/* > */
/* > Q(in) * A(in) * Z(in)**H = Q(out) * A(out) * Z(out)**H */
/* > Q(in) * B(in) * Z(in)**H = Q(out) * B(out) * Z(out)**H */
/* > */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] WANTQ */
/* > \verbatim */
/* > WANTQ is LOGICAL */
/* > .TRUE. : update the left transformation matrix Q; */
/* > .FALSE.: do not update Q. */
/* > \endverbatim */
/* > */
/* > \param[in] WANTZ */
/* > \verbatim */
/* > WANTZ is LOGICAL */
/* > .TRUE. : update the right transformation matrix Z; */
/* > .FALSE.: do not update Z. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrices A and B. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is COMPLEX array, dimension (LDA,N) */
/* > On entry, the matrix A in the pair (A, B). */
/* > On exit, the updated matrix A. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
/* > \endverbatim */
/* > */
/* > \param[in,out] B */
/* > \verbatim */
/* > B is COMPLEX array, dimension (LDB,N) */
/* > On entry, the matrix B in the pair (A, B). */
/* > On exit, the updated matrix B. */
/* > \endverbatim */
/* > */
/* > \param[in] LDB */
/* > \verbatim */
/* > LDB is INTEGER */
/* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
/* > \endverbatim */
/* > */
/* > \param[in,out] Q */
/* > \verbatim */
/* > Q is COMPLEX array, dimension (LDQ,N) */
/* > If WANTQ = .TRUE, on entry, the unitary matrix Q. On exit, */
/* > the updated matrix Q. */
/* > Not referenced if WANTQ = .FALSE.. */
/* > \endverbatim */
/* > */
/* > \param[in] LDQ */
/* > \verbatim */
/* > LDQ is INTEGER */
/* > The leading dimension of the array Q. LDQ >= 1; */
/* > If WANTQ = .TRUE., LDQ >= N. */
/* > \endverbatim */
/* > */
/* > \param[in,out] Z */
/* > \verbatim */
/* > Z is COMPLEX array, dimension (LDZ,N) */
/* > If WANTZ = .TRUE, on entry, the unitary matrix Z. On exit, */
/* > the updated matrix Z. */
/* > Not referenced if WANTZ = .FALSE.. */
/* > \endverbatim */
/* > */
/* > \param[in] LDZ */
/* > \verbatim */
/* > LDZ is INTEGER */
/* > The leading dimension of the array Z. LDZ >= 1; */
/* > If WANTZ = .TRUE., LDZ >= N. */
/* > \endverbatim */
/* > */
/* > \param[in] J1 */
/* > \verbatim */
/* > J1 is INTEGER */
/* > The index to the first block (A11, B11). */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > =0: Successful exit. */
/* > =1: The transformed matrix pair (A, B) would be too far */
/* > from generalized Schur form; the problem is ill- */
/* > conditioned. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date June 2017 */
/* > \ingroup complexGEauxiliary */
/* > \par Further Details: */
/* ===================== */
/* > */
/* > In the current code both weak and strong stability tests are */
/* > performed. The user can omit the strong stability test by changing */
/* > the internal logical parameter WANDS to .FALSE.. See ref. [2] for */
/* > details. */
/* > \par Contributors: */
/* ================== */
/* > */
/* > Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
/* > Umea University, S-901 87 Umea, Sweden. */
/* > \par References: */
/* ================ */
/* > */
/* > [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the */
/* > Generalized Real Schur Form of a Regular Matrix Pair (A, B), in */
/* > M.S. Moonen et al (eds), Linear Algebra for Large Scale and */
/* > Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. */
/* > \n */
/* > [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified */
/* > Eigenvalues of a Regular Matrix Pair (A, B) and Condition */
/* > Estimation: Theory, Algorithms and Software, Report UMINF-94.04, */
/* > Department of Computing Science, Umea University, S-901 87 Umea, */
/* > Sweden, 1994. Also as LAPACK Working Note 87. To appear in */
/* > Numerical Algorithms, 1996. */
/* > */
/* ===================================================================== */
/* Subroutine */ void ctgex2_(logical *wantq, logical *wantz, integer *n,
complex *a, integer *lda, complex *b, integer *ldb, complex *q,
integer *ldq, complex *z__, integer *ldz, integer *j1, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, z_dim1,
z_offset, i__1, i__2, i__3;
real r__1;
complex q__1, q__2, q__3;
/* Local variables */
logical weak;
complex cdum;
extern /* Subroutine */ void crot_(integer *, complex *, integer *,
complex *, integer *, real *, complex *);
complex work[8], f, g;
integer i__, m;
complex s[4] /* was [2][2] */, t[4] /* was [2][2] */;
real scale, cq, sa, sb, cz;
complex sq;
real ss;
extern real slamch_(char *);
real ws;
extern /* Subroutine */ void clacpy_(char *, integer *, integer *, complex
*, integer *, complex *, integer *), clartg_(complex *,
complex *, real *, complex *, complex *);
complex sz;
extern /* Subroutine */ void classq_(integer *, complex *, integer *, real
*, real *);
real thresh, smlnum;
logical strong;
real eps, sum;
/* -- LAPACK auxiliary routine (version 3.7.1) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* June 2017 */
/* ===================================================================== */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1 * 1;
b -= b_offset;
q_dim1 = *ldq;
q_offset = 1 + q_dim1 * 1;
q -= q_offset;
z_dim1 = *ldz;
z_offset = 1 + z_dim1 * 1;
z__ -= z_offset;
/* Function Body */
*info = 0;
/* Quick return if possible */
if (*n <= 1) {
return;
}
m = 2;
weak = FALSE_;
strong = FALSE_;
/* Make a local copy of selected block in (A, B) */
clacpy_("Full", &m, &m, &a[*j1 + *j1 * a_dim1], lda, s, &c__2);
clacpy_("Full", &m, &m, &b[*j1 + *j1 * b_dim1], ldb, t, &c__2);
/* Compute the threshold for testing the acceptance of swapping. */
eps = slamch_("P");
smlnum = slamch_("S") / eps;
scale = 0.f;
sum = 1.f;
clacpy_("Full", &m, &m, s, &c__2, work, &m);
clacpy_("Full", &m, &m, t, &c__2, &work[m * m], &m);
i__1 = (m << 1) * m;
classq_(&i__1, work, &c__1, &scale, &sum);
sa = scale * sqrt(sum);
/* THRES has been changed from */
/* THRESH = MAX( TEN*EPS*SA, SMLNUM ) */
/* to */
/* THRESH = MAX( TWENTY*EPS*SA, SMLNUM ) */
/* on 04/01/10. */
/* "Bug" reported by Ondra Kamenik, confirmed by Julie Langou, fixed by */
/* Jim Demmel and Guillaume Revy. See forum post 1783. */
/* Computing MAX */
r__1 = eps * 20.f * sa;
thresh = f2cmax(r__1,smlnum);
/* Compute unitary QL and RQ that swap 1-by-1 and 1-by-1 blocks */
/* using Givens rotations and perform the swap tentatively. */
q__2.r = s[3].r * t[0].r - s[3].i * t[0].i, q__2.i = s[3].r * t[0].i + s[
3].i * t[0].r;
q__3.r = t[3].r * s[0].r - t[3].i * s[0].i, q__3.i = t[3].r * s[0].i + t[
3].i * s[0].r;
q__1.r = q__2.r - q__3.r, q__1.i = q__2.i - q__3.i;
f.r = q__1.r, f.i = q__1.i;
q__2.r = s[3].r * t[2].r - s[3].i * t[2].i, q__2.i = s[3].r * t[2].i + s[
3].i * t[2].r;
q__3.r = t[3].r * s[2].r - t[3].i * s[2].i, q__3.i = t[3].r * s[2].i + t[
3].i * s[2].r;
q__1.r = q__2.r - q__3.r, q__1.i = q__2.i - q__3.i;
g.r = q__1.r, g.i = q__1.i;
sa = c_abs(&s[3]);
sb = c_abs(&t[3]);
clartg_(&g, &f, &cz, &sz, &cdum);
q__1.r = -sz.r, q__1.i = -sz.i;
sz.r = q__1.r, sz.i = q__1.i;
r_cnjg(&q__1, &sz);
crot_(&c__2, s, &c__1, &s[2], &c__1, &cz, &q__1);
r_cnjg(&q__1, &sz);
crot_(&c__2, t, &c__1, &t[2], &c__1, &cz, &q__1);
if (sa >= sb) {
clartg_(s, &s[1], &cq, &sq, &cdum);
} else {
clartg_(t, &t[1], &cq, &sq, &cdum);
}
crot_(&c__2, s, &c__2, &s[1], &c__2, &cq, &sq);
crot_(&c__2, t, &c__2, &t[1], &c__2, &cq, &sq);
/* Weak stability test: |S21| + |T21| <= O(EPS F-norm((S, T))) */
ws = c_abs(&s[1]) + c_abs(&t[1]);
weak = ws <= thresh;
if (! weak) {
goto L20;
}
if (TRUE_) {
/* Strong stability test: */
/* F-norm((A-QL**H*S*QR, B-QL**H*T*QR)) <= O(EPS*F-norm((A, B))) */
clacpy_("Full", &m, &m, s, &c__2, work, &m);
clacpy_("Full", &m, &m, t, &c__2, &work[m * m], &m);
r_cnjg(&q__2, &sz);
q__1.r = -q__2.r, q__1.i = -q__2.i;
crot_(&c__2, work, &c__1, &work[2], &c__1, &cz, &q__1);
r_cnjg(&q__2, &sz);
q__1.r = -q__2.r, q__1.i = -q__2.i;
crot_(&c__2, &work[4], &c__1, &work[6], &c__1, &cz, &q__1);
q__1.r = -sq.r, q__1.i = -sq.i;
crot_(&c__2, work, &c__2, &work[1], &c__2, &cq, &q__1);
q__1.r = -sq.r, q__1.i = -sq.i;
crot_(&c__2, &work[4], &c__2, &work[5], &c__2, &cq, &q__1);
for (i__ = 1; i__ <= 2; ++i__) {
i__1 = i__ - 1;
i__2 = i__ - 1;
i__3 = *j1 + i__ - 1 + *j1 * a_dim1;
q__1.r = work[i__2].r - a[i__3].r, q__1.i = work[i__2].i - a[i__3]
.i;
work[i__1].r = q__1.r, work[i__1].i = q__1.i;
i__1 = i__ + 1;
i__2 = i__ + 1;
i__3 = *j1 + i__ - 1 + (*j1 + 1) * a_dim1;
q__1.r = work[i__2].r - a[i__3].r, q__1.i = work[i__2].i - a[i__3]
.i;
work[i__1].r = q__1.r, work[i__1].i = q__1.i;
i__1 = i__ + 3;
i__2 = i__ + 3;
i__3 = *j1 + i__ - 1 + *j1 * b_dim1;
q__1.r = work[i__2].r - b[i__3].r, q__1.i = work[i__2].i - b[i__3]
.i;
work[i__1].r = q__1.r, work[i__1].i = q__1.i;
i__1 = i__ + 5;
i__2 = i__ + 5;
i__3 = *j1 + i__ - 1 + (*j1 + 1) * b_dim1;
q__1.r = work[i__2].r - b[i__3].r, q__1.i = work[i__2].i - b[i__3]
.i;
work[i__1].r = q__1.r, work[i__1].i = q__1.i;
/* L10: */
}
scale = 0.f;
sum = 1.f;
i__1 = (m << 1) * m;
classq_(&i__1, work, &c__1, &scale, &sum);
ss = scale * sqrt(sum);
strong = ss <= thresh;
if (! strong) {
goto L20;
}
}
/* If the swap is accepted ("weakly" and "strongly"), apply the */
/* equivalence transformations to the original matrix pair (A,B) */
i__1 = *j1 + 1;
r_cnjg(&q__1, &sz);
crot_(&i__1, &a[*j1 * a_dim1 + 1], &c__1, &a[(*j1 + 1) * a_dim1 + 1], &
c__1, &cz, &q__1);
i__1 = *j1 + 1;
r_cnjg(&q__1, &sz);
crot_(&i__1, &b[*j1 * b_dim1 + 1], &c__1, &b[(*j1 + 1) * b_dim1 + 1], &
c__1, &cz, &q__1);
i__1 = *n - *j1 + 1;
crot_(&i__1, &a[*j1 + *j1 * a_dim1], lda, &a[*j1 + 1 + *j1 * a_dim1], lda,
&cq, &sq);
i__1 = *n - *j1 + 1;
crot_(&i__1, &b[*j1 + *j1 * b_dim1], ldb, &b[*j1 + 1 + *j1 * b_dim1], ldb,
&cq, &sq);
/* Set N1 by N2 (2,1) blocks to 0 */
i__1 = *j1 + 1 + *j1 * a_dim1;
a[i__1].r = 0.f, a[i__1].i = 0.f;
i__1 = *j1 + 1 + *j1 * b_dim1;
b[i__1].r = 0.f, b[i__1].i = 0.f;
/* Accumulate transformations into Q and Z if requested. */
if (*wantz) {
r_cnjg(&q__1, &sz);
crot_(n, &z__[*j1 * z_dim1 + 1], &c__1, &z__[(*j1 + 1) * z_dim1 + 1],
&c__1, &cz, &q__1);
}
if (*wantq) {
r_cnjg(&q__1, &sq);
crot_(n, &q[*j1 * q_dim1 + 1], &c__1, &q[(*j1 + 1) * q_dim1 + 1], &
c__1, &cq, &q__1);
}
/* Exit with INFO = 0 if swap was successfully performed. */
return;
/* Exit with INFO = 1 if swap was rejected. */
L20:
*info = 1;
return;
/* End of CTGEX2 */
} /* ctgex2_ */