1131 lines
30 KiB
C
1131 lines
30 KiB
C
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <complex.h>
|
|
#ifdef complex
|
|
#undef complex
|
|
#endif
|
|
#ifdef I
|
|
#undef I
|
|
#endif
|
|
|
|
#if defined(_WIN64)
|
|
typedef long long BLASLONG;
|
|
typedef unsigned long long BLASULONG;
|
|
#else
|
|
typedef long BLASLONG;
|
|
typedef unsigned long BLASULONG;
|
|
#endif
|
|
|
|
#ifdef LAPACK_ILP64
|
|
typedef BLASLONG blasint;
|
|
#if defined(_WIN64)
|
|
#define blasabs(x) llabs(x)
|
|
#else
|
|
#define blasabs(x) labs(x)
|
|
#endif
|
|
#else
|
|
typedef int blasint;
|
|
#define blasabs(x) abs(x)
|
|
#endif
|
|
|
|
typedef blasint integer;
|
|
|
|
typedef unsigned int uinteger;
|
|
typedef char *address;
|
|
typedef short int shortint;
|
|
typedef float real;
|
|
typedef double doublereal;
|
|
typedef struct { real r, i; } complex;
|
|
typedef struct { doublereal r, i; } doublecomplex;
|
|
#ifdef _MSC_VER
|
|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
|
|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
|
|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
|
|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
|
|
#else
|
|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
|
|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
|
|
#endif
|
|
#define pCf(z) (*_pCf(z))
|
|
#define pCd(z) (*_pCd(z))
|
|
typedef blasint logical;
|
|
|
|
typedef char logical1;
|
|
typedef char integer1;
|
|
|
|
#define TRUE_ (1)
|
|
#define FALSE_ (0)
|
|
|
|
/* Extern is for use with -E */
|
|
#ifndef Extern
|
|
#define Extern extern
|
|
#endif
|
|
|
|
/* I/O stuff */
|
|
|
|
typedef int flag;
|
|
typedef int ftnlen;
|
|
typedef int ftnint;
|
|
|
|
/*external read, write*/
|
|
typedef struct
|
|
{ flag cierr;
|
|
ftnint ciunit;
|
|
flag ciend;
|
|
char *cifmt;
|
|
ftnint cirec;
|
|
} cilist;
|
|
|
|
/*internal read, write*/
|
|
typedef struct
|
|
{ flag icierr;
|
|
char *iciunit;
|
|
flag iciend;
|
|
char *icifmt;
|
|
ftnint icirlen;
|
|
ftnint icirnum;
|
|
} icilist;
|
|
|
|
/*open*/
|
|
typedef struct
|
|
{ flag oerr;
|
|
ftnint ounit;
|
|
char *ofnm;
|
|
ftnlen ofnmlen;
|
|
char *osta;
|
|
char *oacc;
|
|
char *ofm;
|
|
ftnint orl;
|
|
char *oblnk;
|
|
} olist;
|
|
|
|
/*close*/
|
|
typedef struct
|
|
{ flag cerr;
|
|
ftnint cunit;
|
|
char *csta;
|
|
} cllist;
|
|
|
|
/*rewind, backspace, endfile*/
|
|
typedef struct
|
|
{ flag aerr;
|
|
ftnint aunit;
|
|
} alist;
|
|
|
|
/* inquire */
|
|
typedef struct
|
|
{ flag inerr;
|
|
ftnint inunit;
|
|
char *infile;
|
|
ftnlen infilen;
|
|
ftnint *inex; /*parameters in standard's order*/
|
|
ftnint *inopen;
|
|
ftnint *innum;
|
|
ftnint *innamed;
|
|
char *inname;
|
|
ftnlen innamlen;
|
|
char *inacc;
|
|
ftnlen inacclen;
|
|
char *inseq;
|
|
ftnlen inseqlen;
|
|
char *indir;
|
|
ftnlen indirlen;
|
|
char *infmt;
|
|
ftnlen infmtlen;
|
|
char *inform;
|
|
ftnint informlen;
|
|
char *inunf;
|
|
ftnlen inunflen;
|
|
ftnint *inrecl;
|
|
ftnint *innrec;
|
|
char *inblank;
|
|
ftnlen inblanklen;
|
|
} inlist;
|
|
|
|
#define VOID void
|
|
|
|
union Multitype { /* for multiple entry points */
|
|
integer1 g;
|
|
shortint h;
|
|
integer i;
|
|
/* longint j; */
|
|
real r;
|
|
doublereal d;
|
|
complex c;
|
|
doublecomplex z;
|
|
};
|
|
|
|
typedef union Multitype Multitype;
|
|
|
|
struct Vardesc { /* for Namelist */
|
|
char *name;
|
|
char *addr;
|
|
ftnlen *dims;
|
|
int type;
|
|
};
|
|
typedef struct Vardesc Vardesc;
|
|
|
|
struct Namelist {
|
|
char *name;
|
|
Vardesc **vars;
|
|
int nvars;
|
|
};
|
|
typedef struct Namelist Namelist;
|
|
|
|
#define abs(x) ((x) >= 0 ? (x) : -(x))
|
|
#define dabs(x) (fabs(x))
|
|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
|
|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
|
|
#define dmin(a,b) (f2cmin(a,b))
|
|
#define dmax(a,b) (f2cmax(a,b))
|
|
#define bit_test(a,b) ((a) >> (b) & 1)
|
|
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
|
|
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
|
|
|
|
#define abort_() { sig_die("Fortran abort routine called", 1); }
|
|
#define c_abs(z) (cabsf(Cf(z)))
|
|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
|
|
#ifdef _MSC_VER
|
|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
|
|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
|
|
#else
|
|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
|
|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
|
|
#endif
|
|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
|
|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
|
|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
|
|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
|
|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
|
|
#define d_abs(x) (fabs(*(x)))
|
|
#define d_acos(x) (acos(*(x)))
|
|
#define d_asin(x) (asin(*(x)))
|
|
#define d_atan(x) (atan(*(x)))
|
|
#define d_atn2(x, y) (atan2(*(x),*(y)))
|
|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
|
|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
|
|
#define d_cos(x) (cos(*(x)))
|
|
#define d_cosh(x) (cosh(*(x)))
|
|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
|
|
#define d_exp(x) (exp(*(x)))
|
|
#define d_imag(z) (cimag(Cd(z)))
|
|
#define r_imag(z) (cimagf(Cf(z)))
|
|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define d_log(x) (log(*(x)))
|
|
#define d_mod(x, y) (fmod(*(x), *(y)))
|
|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
|
|
#define d_nint(x) u_nint(*(x))
|
|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
|
|
#define d_sign(a,b) u_sign(*(a),*(b))
|
|
#define r_sign(a,b) u_sign(*(a),*(b))
|
|
#define d_sin(x) (sin(*(x)))
|
|
#define d_sinh(x) (sinh(*(x)))
|
|
#define d_sqrt(x) (sqrt(*(x)))
|
|
#define d_tan(x) (tan(*(x)))
|
|
#define d_tanh(x) (tanh(*(x)))
|
|
#define i_abs(x) abs(*(x))
|
|
#define i_dnnt(x) ((integer)u_nint(*(x)))
|
|
#define i_len(s, n) (n)
|
|
#define i_nint(x) ((integer)u_nint(*(x)))
|
|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
|
|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
|
|
#define pow_si(B,E) spow_ui(*(B),*(E))
|
|
#define pow_ri(B,E) spow_ui(*(B),*(E))
|
|
#define pow_di(B,E) dpow_ui(*(B),*(E))
|
|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
|
|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
|
|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
|
|
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
|
|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
|
|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
|
|
#define sig_die(s, kill) { exit(1); }
|
|
#define s_stop(s, n) {exit(0);}
|
|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
|
|
#define z_abs(z) (cabs(Cd(z)))
|
|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
|
|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
|
|
#define myexit_() break;
|
|
#define mycycle() continue;
|
|
#define myceiling(w) {ceil(w)}
|
|
#define myhuge(w) {HUGE_VAL}
|
|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
|
|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
|
|
|
|
/* procedure parameter types for -A and -C++ */
|
|
|
|
|
|
#ifdef __cplusplus
|
|
typedef logical (*L_fp)(...);
|
|
#else
|
|
typedef logical (*L_fp)();
|
|
#endif
|
|
|
|
static float spow_ui(float x, integer n) {
|
|
float pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
static double dpow_ui(double x, integer n) {
|
|
double pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#ifdef _MSC_VER
|
|
static _Fcomplex cpow_ui(complex x, integer n) {
|
|
complex pow={1.0,0.0}; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow.r *= x.r, pow.i *= x.i;
|
|
if(u >>= 1) x.r *= x.r, x.i *= x.i;
|
|
else break;
|
|
}
|
|
}
|
|
_Fcomplex p={pow.r, pow.i};
|
|
return p;
|
|
}
|
|
#else
|
|
static _Complex float cpow_ui(_Complex float x, integer n) {
|
|
_Complex float pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#endif
|
|
#ifdef _MSC_VER
|
|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
|
|
_Dcomplex pow={1.0,0.0}; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
|
|
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
|
|
else break;
|
|
}
|
|
}
|
|
_Dcomplex p = {pow._Val[0], pow._Val[1]};
|
|
return p;
|
|
}
|
|
#else
|
|
static _Complex double zpow_ui(_Complex double x, integer n) {
|
|
_Complex double pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#endif
|
|
static integer pow_ii(integer x, integer n) {
|
|
integer pow; unsigned long int u;
|
|
if (n <= 0) {
|
|
if (n == 0 || x == 1) pow = 1;
|
|
else if (x != -1) pow = x == 0 ? 1/x : 0;
|
|
else n = -n;
|
|
}
|
|
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
|
|
u = n;
|
|
for(pow = 1; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
|
|
{
|
|
double m; integer i, mi;
|
|
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
|
if (w[i-1]>m) mi=i ,m=w[i-1];
|
|
return mi-s+1;
|
|
}
|
|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
|
|
{
|
|
float m; integer i, mi;
|
|
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
|
if (w[i-1]>m) mi=i ,m=w[i-1];
|
|
return mi-s+1;
|
|
}
|
|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Fcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
|
|
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex float zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Dcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
|
|
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex double zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Fcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
|
|
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex float zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cf(&x[i]) * Cf(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Dcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
|
|
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex double zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cd(&x[i]) * Cd(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#endif
|
|
/* -- translated by f2c (version 20000121).
|
|
You must link the resulting object file with the libraries:
|
|
-lf2c -lm (in that order)
|
|
*/
|
|
|
|
|
|
|
|
|
|
/* > \brief \b CTFTTR copies a triangular matrix from the rectangular full packed format (TF) to the standard
|
|
full format (TR). */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* > \htmlonly */
|
|
/* > Download CTFTTR + dependencies */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctfttr.
|
|
f"> */
|
|
/* > [TGZ]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctfttr.
|
|
f"> */
|
|
/* > [ZIP]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctfttr.
|
|
f"> */
|
|
/* > [TXT]</a> */
|
|
/* > \endhtmlonly */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* SUBROUTINE CTFTTR( TRANSR, UPLO, N, ARF, A, LDA, INFO ) */
|
|
|
|
/* CHARACTER TRANSR, UPLO */
|
|
/* INTEGER INFO, N, LDA */
|
|
/* COMPLEX A( 0: LDA-1, 0: * ), ARF( 0: * ) */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > CTFTTR copies a triangular matrix A from rectangular full packed */
|
|
/* > format (TF) to standard full format (TR). */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] TRANSR */
|
|
/* > \verbatim */
|
|
/* > TRANSR is CHARACTER*1 */
|
|
/* > = 'N': ARF is in Normal format; */
|
|
/* > = 'C': ARF is in Conjugate-transpose format; */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] UPLO */
|
|
/* > \verbatim */
|
|
/* > UPLO is CHARACTER*1 */
|
|
/* > = 'U': A is upper triangular; */
|
|
/* > = 'L': A is lower triangular. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > The order of the matrix A. N >= 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] ARF */
|
|
/* > \verbatim */
|
|
/* > ARF is COMPLEX array, dimension ( N*(N+1)/2 ), */
|
|
/* > On entry, the upper or lower triangular matrix A stored in */
|
|
/* > RFP format. For a further discussion see Notes below. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] A */
|
|
/* > \verbatim */
|
|
/* > A is COMPLEX array, dimension ( LDA, N ) */
|
|
/* > On exit, the triangular matrix A. If UPLO = 'U', the */
|
|
/* > leading N-by-N upper triangular part of the array A contains */
|
|
/* > the upper triangular matrix, and the strictly lower */
|
|
/* > triangular part of A is not referenced. If UPLO = 'L', the */
|
|
/* > leading N-by-N lower triangular part of the array A contains */
|
|
/* > the lower triangular matrix, and the strictly upper */
|
|
/* > triangular part of A is not referenced. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDA */
|
|
/* > \verbatim */
|
|
/* > LDA is INTEGER */
|
|
/* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] INFO */
|
|
/* > \verbatim */
|
|
/* > INFO is INTEGER */
|
|
/* > = 0: successful exit */
|
|
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \date December 2016 */
|
|
|
|
/* > \ingroup complexOTHERcomputational */
|
|
|
|
/* > \par Further Details: */
|
|
/* ===================== */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > We first consider Standard Packed Format when N is even. */
|
|
/* > We give an example where N = 6. */
|
|
/* > */
|
|
/* > AP is Upper AP is Lower */
|
|
/* > */
|
|
/* > 00 01 02 03 04 05 00 */
|
|
/* > 11 12 13 14 15 10 11 */
|
|
/* > 22 23 24 25 20 21 22 */
|
|
/* > 33 34 35 30 31 32 33 */
|
|
/* > 44 45 40 41 42 43 44 */
|
|
/* > 55 50 51 52 53 54 55 */
|
|
/* > */
|
|
/* > */
|
|
/* > Let TRANSR = 'N'. RFP holds AP as follows: */
|
|
/* > For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last */
|
|
/* > three columns of AP upper. The lower triangle A(4:6,0:2) consists of */
|
|
/* > conjugate-transpose of the first three columns of AP upper. */
|
|
/* > For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first */
|
|
/* > three columns of AP lower. The upper triangle A(0:2,0:2) consists of */
|
|
/* > conjugate-transpose of the last three columns of AP lower. */
|
|
/* > To denote conjugate we place -- above the element. This covers the */
|
|
/* > case N even and TRANSR = 'N'. */
|
|
/* > */
|
|
/* > RFP A RFP A */
|
|
/* > */
|
|
/* > -- -- -- */
|
|
/* > 03 04 05 33 43 53 */
|
|
/* > -- -- */
|
|
/* > 13 14 15 00 44 54 */
|
|
/* > -- */
|
|
/* > 23 24 25 10 11 55 */
|
|
/* > */
|
|
/* > 33 34 35 20 21 22 */
|
|
/* > -- */
|
|
/* > 00 44 45 30 31 32 */
|
|
/* > -- -- */
|
|
/* > 01 11 55 40 41 42 */
|
|
/* > -- -- -- */
|
|
/* > 02 12 22 50 51 52 */
|
|
/* > */
|
|
/* > Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- */
|
|
/* > transpose of RFP A above. One therefore gets: */
|
|
/* > */
|
|
/* > */
|
|
/* > RFP A RFP A */
|
|
/* > */
|
|
/* > -- -- -- -- -- -- -- -- -- -- */
|
|
/* > 03 13 23 33 00 01 02 33 00 10 20 30 40 50 */
|
|
/* > -- -- -- -- -- -- -- -- -- -- */
|
|
/* > 04 14 24 34 44 11 12 43 44 11 21 31 41 51 */
|
|
/* > -- -- -- -- -- -- -- -- -- -- */
|
|
/* > 05 15 25 35 45 55 22 53 54 55 22 32 42 52 */
|
|
/* > */
|
|
/* > */
|
|
/* > We next consider Standard Packed Format when N is odd. */
|
|
/* > We give an example where N = 5. */
|
|
/* > */
|
|
/* > AP is Upper AP is Lower */
|
|
/* > */
|
|
/* > 00 01 02 03 04 00 */
|
|
/* > 11 12 13 14 10 11 */
|
|
/* > 22 23 24 20 21 22 */
|
|
/* > 33 34 30 31 32 33 */
|
|
/* > 44 40 41 42 43 44 */
|
|
/* > */
|
|
/* > */
|
|
/* > Let TRANSR = 'N'. RFP holds AP as follows: */
|
|
/* > For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last */
|
|
/* > three columns of AP upper. The lower triangle A(3:4,0:1) consists of */
|
|
/* > conjugate-transpose of the first two columns of AP upper. */
|
|
/* > For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first */
|
|
/* > three columns of AP lower. The upper triangle A(0:1,1:2) consists of */
|
|
/* > conjugate-transpose of the last two columns of AP lower. */
|
|
/* > To denote conjugate we place -- above the element. This covers the */
|
|
/* > case N odd and TRANSR = 'N'. */
|
|
/* > */
|
|
/* > RFP A RFP A */
|
|
/* > */
|
|
/* > -- -- */
|
|
/* > 02 03 04 00 33 43 */
|
|
/* > -- */
|
|
/* > 12 13 14 10 11 44 */
|
|
/* > */
|
|
/* > 22 23 24 20 21 22 */
|
|
/* > -- */
|
|
/* > 00 33 34 30 31 32 */
|
|
/* > -- -- */
|
|
/* > 01 11 44 40 41 42 */
|
|
/* > */
|
|
/* > Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- */
|
|
/* > transpose of RFP A above. One therefore gets: */
|
|
/* > */
|
|
/* > */
|
|
/* > RFP A RFP A */
|
|
/* > */
|
|
/* > -- -- -- -- -- -- -- -- -- */
|
|
/* > 02 12 22 00 01 00 10 20 30 40 50 */
|
|
/* > -- -- -- -- -- -- -- -- -- */
|
|
/* > 03 13 23 33 11 33 11 21 31 41 51 */
|
|
/* > -- -- -- -- -- -- -- -- -- */
|
|
/* > 04 14 24 34 44 43 44 22 32 42 52 */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* ===================================================================== */
|
|
/* Subroutine */ void ctfttr_(char *transr, char *uplo, integer *n, complex *
|
|
arf, complex *a, integer *lda, integer *info)
|
|
{
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
|
|
complex q__1;
|
|
|
|
/* Local variables */
|
|
integer np1x2, i__, j, k, l;
|
|
logical normaltransr;
|
|
extern logical lsame_(char *, char *);
|
|
logical lower;
|
|
integer n1, n2, ij, nt;
|
|
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
|
|
logical nisodd;
|
|
integer nx2;
|
|
|
|
|
|
/* -- LAPACK computational routine (version 3.7.0) -- */
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
/* December 2016 */
|
|
|
|
|
|
/* ===================================================================== */
|
|
|
|
|
|
/* Test the input parameters. */
|
|
|
|
/* Parameter adjustments */
|
|
a_dim1 = *lda - 1 - 0 + 1;
|
|
a_offset = 0 + a_dim1 * 0;
|
|
a -= a_offset;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
normaltransr = lsame_(transr, "N");
|
|
lower = lsame_(uplo, "L");
|
|
if (! normaltransr && ! lsame_(transr, "C")) {
|
|
*info = -1;
|
|
} else if (! lower && ! lsame_(uplo, "U")) {
|
|
*info = -2;
|
|
} else if (*n < 0) {
|
|
*info = -3;
|
|
} else if (*lda < f2cmax(1,*n)) {
|
|
*info = -6;
|
|
}
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_("CTFTTR", &i__1, (ftnlen)6);
|
|
return;
|
|
}
|
|
|
|
/* Quick return if possible */
|
|
|
|
if (*n <= 1) {
|
|
if (*n == 1) {
|
|
if (normaltransr) {
|
|
a[0].r = arf[0].r, a[0].i = arf[0].i;
|
|
} else {
|
|
r_cnjg(&q__1, arf);
|
|
a[0].r = q__1.r, a[0].i = q__1.i;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Size of array ARF(1:2,0:nt-1) */
|
|
|
|
nt = *n * (*n + 1) / 2;
|
|
|
|
/* set N1 and N2 depending on LOWER: for N even N1=N2=K */
|
|
|
|
if (lower) {
|
|
n2 = *n / 2;
|
|
n1 = *n - n2;
|
|
} else {
|
|
n1 = *n / 2;
|
|
n2 = *n - n1;
|
|
}
|
|
|
|
/* If N is odd, set NISODD = .TRUE., LDA=N+1 and A is (N+1)--by--K2. */
|
|
/* If N is even, set K = N/2 and NISODD = .FALSE., LDA=N and A is */
|
|
/* N--by--(N+1)/2. */
|
|
|
|
if (*n % 2 == 0) {
|
|
k = *n / 2;
|
|
nisodd = FALSE_;
|
|
if (! lower) {
|
|
np1x2 = *n + *n + 2;
|
|
}
|
|
} else {
|
|
nisodd = TRUE_;
|
|
if (! lower) {
|
|
nx2 = *n + *n;
|
|
}
|
|
}
|
|
|
|
if (nisodd) {
|
|
|
|
/* N is odd */
|
|
|
|
if (normaltransr) {
|
|
|
|
/* N is odd and TRANSR = 'N' */
|
|
|
|
if (lower) {
|
|
|
|
/* SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) ) */
|
|
/* T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0) */
|
|
/* T1 -> a(0), T2 -> a(n), S -> a(n1); lda=n */
|
|
|
|
ij = 0;
|
|
i__1 = n2;
|
|
for (j = 0; j <= i__1; ++j) {
|
|
i__2 = n2 + j;
|
|
for (i__ = n1; i__ <= i__2; ++i__) {
|
|
i__3 = n2 + j + i__ * a_dim1;
|
|
r_cnjg(&q__1, &arf[ij]);
|
|
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
|
|
++ij;
|
|
}
|
|
i__2 = *n - 1;
|
|
for (i__ = j; i__ <= i__2; ++i__) {
|
|
i__3 = i__ + j * a_dim1;
|
|
i__4 = ij;
|
|
a[i__3].r = arf[i__4].r, a[i__3].i = arf[i__4].i;
|
|
++ij;
|
|
}
|
|
}
|
|
|
|
} else {
|
|
|
|
/* SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1) */
|
|
/* T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0) */
|
|
/* T1 -> a(n2), T2 -> a(n1), S -> a(0); lda=n */
|
|
|
|
ij = nt - *n;
|
|
i__1 = n1;
|
|
for (j = *n - 1; j >= i__1; --j) {
|
|
i__2 = j;
|
|
for (i__ = 0; i__ <= i__2; ++i__) {
|
|
i__3 = i__ + j * a_dim1;
|
|
i__4 = ij;
|
|
a[i__3].r = arf[i__4].r, a[i__3].i = arf[i__4].i;
|
|
++ij;
|
|
}
|
|
i__2 = n1 - 1;
|
|
for (l = j - n1; l <= i__2; ++l) {
|
|
i__3 = j - n1 + l * a_dim1;
|
|
r_cnjg(&q__1, &arf[ij]);
|
|
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
|
|
++ij;
|
|
}
|
|
ij -= nx2;
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* N is odd and TRANSR = 'C' */
|
|
|
|
if (lower) {
|
|
|
|
/* SRPA for LOWER, TRANSPOSE and N is odd */
|
|
/* T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1) */
|
|
/* T1 -> A(0+0) , T2 -> A(1+0) , S -> A(0+n1*n1); lda=n1 */
|
|
|
|
ij = 0;
|
|
i__1 = n2 - 1;
|
|
for (j = 0; j <= i__1; ++j) {
|
|
i__2 = j;
|
|
for (i__ = 0; i__ <= i__2; ++i__) {
|
|
i__3 = j + i__ * a_dim1;
|
|
r_cnjg(&q__1, &arf[ij]);
|
|
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
|
|
++ij;
|
|
}
|
|
i__2 = *n - 1;
|
|
for (i__ = n1 + j; i__ <= i__2; ++i__) {
|
|
i__3 = i__ + (n1 + j) * a_dim1;
|
|
i__4 = ij;
|
|
a[i__3].r = arf[i__4].r, a[i__3].i = arf[i__4].i;
|
|
++ij;
|
|
}
|
|
}
|
|
i__1 = *n - 1;
|
|
for (j = n2; j <= i__1; ++j) {
|
|
i__2 = n1 - 1;
|
|
for (i__ = 0; i__ <= i__2; ++i__) {
|
|
i__3 = j + i__ * a_dim1;
|
|
r_cnjg(&q__1, &arf[ij]);
|
|
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
|
|
++ij;
|
|
}
|
|
}
|
|
|
|
} else {
|
|
|
|
/* SRPA for UPPER, TRANSPOSE and N is odd */
|
|
/* T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0) */
|
|
/* T1 -> A(n2*n2), T2 -> A(n1*n2), S -> A(0); lda = n2 */
|
|
|
|
ij = 0;
|
|
i__1 = n1;
|
|
for (j = 0; j <= i__1; ++j) {
|
|
i__2 = *n - 1;
|
|
for (i__ = n1; i__ <= i__2; ++i__) {
|
|
i__3 = j + i__ * a_dim1;
|
|
r_cnjg(&q__1, &arf[ij]);
|
|
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
|
|
++ij;
|
|
}
|
|
}
|
|
i__1 = n1 - 1;
|
|
for (j = 0; j <= i__1; ++j) {
|
|
i__2 = j;
|
|
for (i__ = 0; i__ <= i__2; ++i__) {
|
|
i__3 = i__ + j * a_dim1;
|
|
i__4 = ij;
|
|
a[i__3].r = arf[i__4].r, a[i__3].i = arf[i__4].i;
|
|
++ij;
|
|
}
|
|
i__2 = *n - 1;
|
|
for (l = n2 + j; l <= i__2; ++l) {
|
|
i__3 = n2 + j + l * a_dim1;
|
|
r_cnjg(&q__1, &arf[ij]);
|
|
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
|
|
++ij;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* N is even */
|
|
|
|
if (normaltransr) {
|
|
|
|
/* N is even and TRANSR = 'N' */
|
|
|
|
if (lower) {
|
|
|
|
/* SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) ) */
|
|
/* T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0) */
|
|
/* T1 -> a(1), T2 -> a(0), S -> a(k+1); lda=n+1 */
|
|
|
|
ij = 0;
|
|
i__1 = k - 1;
|
|
for (j = 0; j <= i__1; ++j) {
|
|
i__2 = k + j;
|
|
for (i__ = k; i__ <= i__2; ++i__) {
|
|
i__3 = k + j + i__ * a_dim1;
|
|
r_cnjg(&q__1, &arf[ij]);
|
|
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
|
|
++ij;
|
|
}
|
|
i__2 = *n - 1;
|
|
for (i__ = j; i__ <= i__2; ++i__) {
|
|
i__3 = i__ + j * a_dim1;
|
|
i__4 = ij;
|
|
a[i__3].r = arf[i__4].r, a[i__3].i = arf[i__4].i;
|
|
++ij;
|
|
}
|
|
}
|
|
|
|
} else {
|
|
|
|
/* SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) ) */
|
|
/* T1 -> a(k+1,0) , T2 -> a(k,0), S -> a(0,0) */
|
|
/* T1 -> a(k+1), T2 -> a(k), S -> a(0); lda=n+1 */
|
|
|
|
ij = nt - *n - 1;
|
|
i__1 = k;
|
|
for (j = *n - 1; j >= i__1; --j) {
|
|
i__2 = j;
|
|
for (i__ = 0; i__ <= i__2; ++i__) {
|
|
i__3 = i__ + j * a_dim1;
|
|
i__4 = ij;
|
|
a[i__3].r = arf[i__4].r, a[i__3].i = arf[i__4].i;
|
|
++ij;
|
|
}
|
|
i__2 = k - 1;
|
|
for (l = j - k; l <= i__2; ++l) {
|
|
i__3 = j - k + l * a_dim1;
|
|
r_cnjg(&q__1, &arf[ij]);
|
|
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
|
|
++ij;
|
|
}
|
|
ij -= np1x2;
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* N is even and TRANSR = 'C' */
|
|
|
|
if (lower) {
|
|
|
|
/* SRPA for LOWER, TRANSPOSE and N is even (see paper, A=B) */
|
|
/* T1 -> A(0,1) , T2 -> A(0,0) , S -> A(0,k+1) : */
|
|
/* T1 -> A(0+k) , T2 -> A(0+0) , S -> A(0+k*(k+1)); lda=k */
|
|
|
|
ij = 0;
|
|
j = k;
|
|
i__1 = *n - 1;
|
|
for (i__ = k; i__ <= i__1; ++i__) {
|
|
i__2 = i__ + j * a_dim1;
|
|
i__3 = ij;
|
|
a[i__2].r = arf[i__3].r, a[i__2].i = arf[i__3].i;
|
|
++ij;
|
|
}
|
|
i__1 = k - 2;
|
|
for (j = 0; j <= i__1; ++j) {
|
|
i__2 = j;
|
|
for (i__ = 0; i__ <= i__2; ++i__) {
|
|
i__3 = j + i__ * a_dim1;
|
|
r_cnjg(&q__1, &arf[ij]);
|
|
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
|
|
++ij;
|
|
}
|
|
i__2 = *n - 1;
|
|
for (i__ = k + 1 + j; i__ <= i__2; ++i__) {
|
|
i__3 = i__ + (k + 1 + j) * a_dim1;
|
|
i__4 = ij;
|
|
a[i__3].r = arf[i__4].r, a[i__3].i = arf[i__4].i;
|
|
++ij;
|
|
}
|
|
}
|
|
i__1 = *n - 1;
|
|
for (j = k - 1; j <= i__1; ++j) {
|
|
i__2 = k - 1;
|
|
for (i__ = 0; i__ <= i__2; ++i__) {
|
|
i__3 = j + i__ * a_dim1;
|
|
r_cnjg(&q__1, &arf[ij]);
|
|
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
|
|
++ij;
|
|
}
|
|
}
|
|
|
|
} else {
|
|
|
|
/* SRPA for UPPER, TRANSPOSE and N is even (see paper, A=B) */
|
|
/* T1 -> A(0,k+1) , T2 -> A(0,k) , S -> A(0,0) */
|
|
/* T1 -> A(0+k*(k+1)) , T2 -> A(0+k*k) , S -> A(0+0)); lda=k */
|
|
|
|
ij = 0;
|
|
i__1 = k;
|
|
for (j = 0; j <= i__1; ++j) {
|
|
i__2 = *n - 1;
|
|
for (i__ = k; i__ <= i__2; ++i__) {
|
|
i__3 = j + i__ * a_dim1;
|
|
r_cnjg(&q__1, &arf[ij]);
|
|
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
|
|
++ij;
|
|
}
|
|
}
|
|
i__1 = k - 2;
|
|
for (j = 0; j <= i__1; ++j) {
|
|
i__2 = j;
|
|
for (i__ = 0; i__ <= i__2; ++i__) {
|
|
i__3 = i__ + j * a_dim1;
|
|
i__4 = ij;
|
|
a[i__3].r = arf[i__4].r, a[i__3].i = arf[i__4].i;
|
|
++ij;
|
|
}
|
|
i__2 = *n - 1;
|
|
for (l = k + 1 + j; l <= i__2; ++l) {
|
|
i__3 = k + 1 + j + l * a_dim1;
|
|
r_cnjg(&q__1, &arf[ij]);
|
|
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
|
|
++ij;
|
|
}
|
|
}
|
|
|
|
/* Note that here J = K-1 */
|
|
|
|
i__1 = j;
|
|
for (i__ = 0; i__ <= i__1; ++i__) {
|
|
i__2 = i__ + j * a_dim1;
|
|
i__3 = ij;
|
|
a[i__2].r = arf[i__3].r, a[i__2].i = arf[i__3].i;
|
|
++ij;
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
/* End of CTFTTR */
|
|
|
|
} /* ctfttr_ */
|
|
|