OpenBLAS/lapack-netlib/SRC/cstemr.c

1356 lines
42 KiB
C

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif
#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif
#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif
typedef blasint integer;
typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
#ifdef _MSC_VER
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
#else
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#endif
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef blasint logical;
typedef char logical1;
typedef char integer1;
#define TRUE_ (1)
#define FALSE_ (0)
/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif
/* I/O stuff */
typedef int flag;
typedef int ftnlen;
typedef int ftnint;
/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;
/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;
/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;
/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;
/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;
/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;
#define VOID void
union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};
typedef union Multitype Multitype;
struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;
struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;
#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#ifdef _MSC_VER
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
#else
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#endif
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimagf(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
/* procedure parameter types for -A and -C++ */
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif
static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#ifdef _MSC_VER
static _Fcomplex cpow_ui(complex x, integer n) {
complex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
for(u = n; ; ) {
if(u & 01) pow.r *= x.r, pow.i *= x.i;
if(u >>= 1) x.r *= x.r, x.i *= x.i;
else break;
}
}
_Fcomplex p={pow.r, pow.i};
return p;
}
#else
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
#ifdef _MSC_VER
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
_Dcomplex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
for(u = n; ; ) {
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
else break;
}
}
_Dcomplex p = {pow._Val[0], pow._Val[1]};
return p;
}
#else
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
/* Table of constant values */
static integer c__1 = 1;
static real c_b18 = .003f;
/* > \brief \b CSTEMR */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download CSTEMR + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cstemr.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cstemr.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cstemr.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE CSTEMR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, */
/* M, W, Z, LDZ, NZC, ISUPPZ, TRYRAC, WORK, LWORK, */
/* IWORK, LIWORK, INFO ) */
/* CHARACTER JOBZ, RANGE */
/* LOGICAL TRYRAC */
/* INTEGER IL, INFO, IU, LDZ, NZC, LIWORK, LWORK, M, N */
/* REAL VL, VU */
/* INTEGER ISUPPZ( * ), IWORK( * ) */
/* REAL D( * ), E( * ), W( * ), WORK( * ) */
/* COMPLEX Z( LDZ, * ) */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CSTEMR computes selected eigenvalues and, optionally, eigenvectors */
/* > of a real symmetric tridiagonal matrix T. Any such unreduced matrix has */
/* > a well defined set of pairwise different real eigenvalues, the corresponding */
/* > real eigenvectors are pairwise orthogonal. */
/* > */
/* > The spectrum may be computed either completely or partially by specifying */
/* > either an interval (VL,VU] or a range of indices IL:IU for the desired */
/* > eigenvalues. */
/* > */
/* > Depending on the number of desired eigenvalues, these are computed either */
/* > by bisection or the dqds algorithm. Numerically orthogonal eigenvectors are */
/* > computed by the use of various suitable L D L^T factorizations near clusters */
/* > of close eigenvalues (referred to as RRRs, Relatively Robust */
/* > Representations). An informal sketch of the algorithm follows. */
/* > */
/* > For each unreduced block (submatrix) of T, */
/* > (a) Compute T - sigma I = L D L^T, so that L and D */
/* > define all the wanted eigenvalues to high relative accuracy. */
/* > This means that small relative changes in the entries of D and L */
/* > cause only small relative changes in the eigenvalues and */
/* > eigenvectors. The standard (unfactored) representation of the */
/* > tridiagonal matrix T does not have this property in general. */
/* > (b) Compute the eigenvalues to suitable accuracy. */
/* > If the eigenvectors are desired, the algorithm attains full */
/* > accuracy of the computed eigenvalues only right before */
/* > the corresponding vectors have to be computed, see steps c) and d). */
/* > (c) For each cluster of close eigenvalues, select a new */
/* > shift close to the cluster, find a new factorization, and refine */
/* > the shifted eigenvalues to suitable accuracy. */
/* > (d) For each eigenvalue with a large enough relative separation compute */
/* > the corresponding eigenvector by forming a rank revealing twisted */
/* > factorization. Go back to (c) for any clusters that remain. */
/* > */
/* > For more details, see: */
/* > - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations */
/* > to compute orthogonal eigenvectors of symmetric tridiagonal matrices," */
/* > Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004. */
/* > - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and */
/* > Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25, */
/* > 2004. Also LAPACK Working Note 154. */
/* > - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric */
/* > tridiagonal eigenvalue/eigenvector problem", */
/* > Computer Science Division Technical Report No. UCB/CSD-97-971, */
/* > UC Berkeley, May 1997. */
/* > */
/* > Further Details */
/* > 1.CSTEMR works only on machines which follow IEEE-754 */
/* > floating-point standard in their handling of infinities and NaNs. */
/* > This permits the use of efficient inner loops avoiding a check for */
/* > zero divisors. */
/* > */
/* > 2. LAPACK routines can be used to reduce a complex Hermitean matrix to */
/* > real symmetric tridiagonal form. */
/* > */
/* > (Any complex Hermitean tridiagonal matrix has real values on its diagonal */
/* > and potentially complex numbers on its off-diagonals. By applying a */
/* > similarity transform with an appropriate diagonal matrix */
/* > diag(1,e^{i \phy_1}, ... , e^{i \phy_{n-1}}), the complex Hermitean */
/* > matrix can be transformed into a real symmetric matrix and complex */
/* > arithmetic can be entirely avoided.) */
/* > */
/* > While the eigenvectors of the real symmetric tridiagonal matrix are real, */
/* > the eigenvectors of original complex Hermitean matrix have complex entries */
/* > in general. */
/* > Since LAPACK drivers overwrite the matrix data with the eigenvectors, */
/* > CSTEMR accepts complex workspace to facilitate interoperability */
/* > with CUNMTR or CUPMTR. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] JOBZ */
/* > \verbatim */
/* > JOBZ is CHARACTER*1 */
/* > = 'N': Compute eigenvalues only; */
/* > = 'V': Compute eigenvalues and eigenvectors. */
/* > \endverbatim */
/* > */
/* > \param[in] RANGE */
/* > \verbatim */
/* > RANGE is CHARACTER*1 */
/* > = 'A': all eigenvalues will be found. */
/* > = 'V': all eigenvalues in the half-open interval (VL,VU] */
/* > will be found. */
/* > = 'I': the IL-th through IU-th eigenvalues will be found. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrix. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] D */
/* > \verbatim */
/* > D is REAL array, dimension (N) */
/* > On entry, the N diagonal elements of the tridiagonal matrix */
/* > T. On exit, D is overwritten. */
/* > \endverbatim */
/* > */
/* > \param[in,out] E */
/* > \verbatim */
/* > E is REAL array, dimension (N) */
/* > On entry, the (N-1) subdiagonal elements of the tridiagonal */
/* > matrix T in elements 1 to N-1 of E. E(N) need not be set on */
/* > input, but is used internally as workspace. */
/* > On exit, E is overwritten. */
/* > \endverbatim */
/* > */
/* > \param[in] VL */
/* > \verbatim */
/* > VL is REAL */
/* > */
/* > If RANGE='V', the lower bound of the interval to */
/* > be searched for eigenvalues. VL < VU. */
/* > Not referenced if RANGE = 'A' or 'I'. */
/* > \endverbatim */
/* > */
/* > \param[in] VU */
/* > \verbatim */
/* > VU is REAL */
/* > */
/* > If RANGE='V', the upper bound of the interval to */
/* > be searched for eigenvalues. VL < VU. */
/* > Not referenced if RANGE = 'A' or 'I'. */
/* > \endverbatim */
/* > */
/* > \param[in] IL */
/* > \verbatim */
/* > IL is INTEGER */
/* > */
/* > If RANGE='I', the index of the */
/* > smallest eigenvalue to be returned. */
/* > 1 <= IL <= IU <= N, if N > 0. */
/* > Not referenced if RANGE = 'A' or 'V'. */
/* > \endverbatim */
/* > */
/* > \param[in] IU */
/* > \verbatim */
/* > IU is INTEGER */
/* > */
/* > If RANGE='I', the index of the */
/* > largest eigenvalue to be returned. */
/* > 1 <= IL <= IU <= N, if N > 0. */
/* > Not referenced if RANGE = 'A' or 'V'. */
/* > \endverbatim */
/* > */
/* > \param[out] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The total number of eigenvalues found. 0 <= M <= N. */
/* > If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
/* > \endverbatim */
/* > */
/* > \param[out] W */
/* > \verbatim */
/* > W is REAL array, dimension (N) */
/* > The first M elements contain the selected eigenvalues in */
/* > ascending order. */
/* > \endverbatim */
/* > */
/* > \param[out] Z */
/* > \verbatim */
/* > Z is COMPLEX array, dimension (LDZ, f2cmax(1,M) ) */
/* > If JOBZ = 'V', and if INFO = 0, then the first M columns of Z */
/* > contain the orthonormal eigenvectors of the matrix T */
/* > corresponding to the selected eigenvalues, with the i-th */
/* > column of Z holding the eigenvector associated with W(i). */
/* > If JOBZ = 'N', then Z is not referenced. */
/* > Note: the user must ensure that at least f2cmax(1,M) columns are */
/* > supplied in the array Z; if RANGE = 'V', the exact value of M */
/* > is not known in advance and can be computed with a workspace */
/* > query by setting NZC = -1, see below. */
/* > \endverbatim */
/* > */
/* > \param[in] LDZ */
/* > \verbatim */
/* > LDZ is INTEGER */
/* > The leading dimension of the array Z. LDZ >= 1, and if */
/* > JOBZ = 'V', then LDZ >= f2cmax(1,N). */
/* > \endverbatim */
/* > */
/* > \param[in] NZC */
/* > \verbatim */
/* > NZC is INTEGER */
/* > The number of eigenvectors to be held in the array Z. */
/* > If RANGE = 'A', then NZC >= f2cmax(1,N). */
/* > If RANGE = 'V', then NZC >= the number of eigenvalues in (VL,VU]. */
/* > If RANGE = 'I', then NZC >= IU-IL+1. */
/* > If NZC = -1, then a workspace query is assumed; the */
/* > routine calculates the number of columns of the array Z that */
/* > are needed to hold the eigenvectors. */
/* > This value is returned as the first entry of the Z array, and */
/* > no error message related to NZC is issued by XERBLA. */
/* > \endverbatim */
/* > */
/* > \param[out] ISUPPZ */
/* > \verbatim */
/* > ISUPPZ is INTEGER array, dimension ( 2*f2cmax(1,M) ) */
/* > The support of the eigenvectors in Z, i.e., the indices */
/* > indicating the nonzero elements in Z. The i-th computed eigenvector */
/* > is nonzero only in elements ISUPPZ( 2*i-1 ) through */
/* > ISUPPZ( 2*i ). This is relevant in the case when the matrix */
/* > is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] TRYRAC */
/* > \verbatim */
/* > TRYRAC is LOGICAL */
/* > If TRYRAC = .TRUE., indicates that the code should check whether */
/* > the tridiagonal matrix defines its eigenvalues to high relative */
/* > accuracy. If so, the code uses relative-accuracy preserving */
/* > algorithms that might be (a bit) slower depending on the matrix. */
/* > If the matrix does not define its eigenvalues to high relative */
/* > accuracy, the code can uses possibly faster algorithms. */
/* > If TRYRAC = .FALSE., the code is not required to guarantee */
/* > relatively accurate eigenvalues and can use the fastest possible */
/* > techniques. */
/* > On exit, a .TRUE. TRYRAC will be set to .FALSE. if the matrix */
/* > does not define its eigenvalues to high relative accuracy. */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is REAL array, dimension (LWORK) */
/* > On exit, if INFO = 0, WORK(1) returns the optimal */
/* > (and minimal) LWORK. */
/* > \endverbatim */
/* > */
/* > \param[in] LWORK */
/* > \verbatim */
/* > LWORK is INTEGER */
/* > The dimension of the array WORK. LWORK >= f2cmax(1,18*N) */
/* > if JOBZ = 'V', and LWORK >= f2cmax(1,12*N) if JOBZ = 'N'. */
/* > If LWORK = -1, then a workspace query is assumed; the routine */
/* > only calculates the optimal size of the WORK array, returns */
/* > this value as the first entry of the WORK array, and no error */
/* > message related to LWORK is issued by XERBLA. */
/* > \endverbatim */
/* > */
/* > \param[out] IWORK */
/* > \verbatim */
/* > IWORK is INTEGER array, dimension (LIWORK) */
/* > On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */
/* > \endverbatim */
/* > */
/* > \param[in] LIWORK */
/* > \verbatim */
/* > LIWORK is INTEGER */
/* > The dimension of the array IWORK. LIWORK >= f2cmax(1,10*N) */
/* > if the eigenvectors are desired, and LIWORK >= f2cmax(1,8*N) */
/* > if only the eigenvalues are to be computed. */
/* > If LIWORK = -1, then a workspace query is assumed; the */
/* > routine only calculates the optimal size of the IWORK array, */
/* > returns this value as the first entry of the IWORK array, and */
/* > no error message related to LIWORK is issued by XERBLA. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > On exit, INFO */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > > 0: if INFO = 1X, internal error in SLARRE, */
/* > if INFO = 2X, internal error in CLARRV. */
/* > Here, the digit X = ABS( IINFO ) < 10, where IINFO is */
/* > the nonzero error code returned by SLARRE or */
/* > CLARRV, respectively. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date June 2016 */
/* > \ingroup complexOTHERcomputational */
/* > \par Contributors: */
/* ================== */
/* > */
/* > Beresford Parlett, University of California, Berkeley, USA \n */
/* > Jim Demmel, University of California, Berkeley, USA \n */
/* > Inderjit Dhillon, University of Texas, Austin, USA \n */
/* > Osni Marques, LBNL/NERSC, USA \n */
/* > Christof Voemel, University of California, Berkeley, USA */
/* ===================================================================== */
/* Subroutine */ void cstemr_(char *jobz, char *range, integer *n, real *d__,
real *e, real *vl, real *vu, integer *il, integer *iu, integer *m,
real *w, complex *z__, integer *ldz, integer *nzc, integer *isuppz,
logical *tryrac, real *work, integer *lwork, integer *iwork, integer *
liwork, integer *info)
{
/* System generated locals */
integer z_dim1, z_offset, i__1, i__2;
real r__1, r__2;
/* Local variables */
integer indd, iend, jblk, wend;
real rmin, rmax;
integer itmp;
real tnrm;
integer inde2;
extern /* Subroutine */ void slae2_(real *, real *, real *, real *, real *)
;
integer itmp2;
real rtol1, rtol2;
integer i__, j;
real scale;
integer indgp;
extern logical lsame_(char *, char *);
integer iinfo;
extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *);
integer iindw, ilast;
extern /* Subroutine */ void cswap_(integer *, complex *, integer *,
complex *, integer *);
integer lwmin;
extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *,
integer *);
logical wantz;
real r1, r2;
extern /* Subroutine */ void slaev2_(real *, real *, real *, real *, real *
, real *, real *);
integer jj;
real cs;
integer in;
logical alleig, indeig;
integer ibegin, iindbl;
real sn, wl;
logical valeig;
extern real slamch_(char *);
integer wbegin;
real safmin, wu;
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
real bignum;
integer inderr, iindwk, indgrs, offset;
extern /* Subroutine */ void slarrc_(char *, integer *, real *, real *,
real *, real *, real *, integer *, integer *, integer *, integer *
), clarrv_(integer *, real *, real *, real *, real *,
real *, integer *, integer *, integer *, integer *, real *, real *
, real *, real *, real *, real *, integer *, integer *, real *,
complex *, integer *, integer *, real *, integer *, integer *),
slarre_(char *, integer *, real *, real *, integer *, integer *,
real *, real *, real *, real *, real *, real *, integer *,
integer *, integer *, real *, real *, real *, integer *, integer *
, real *, real *, real *, integer *, integer *);
integer iinspl, indwrk, ifirst, liwmin, nzcmin;
real pivmin, thresh;
extern real slanst_(char *, integer *, real *, real *);
extern /* Subroutine */ void slarrj_(integer *, real *, real *, integer *,
integer *, real *, integer *, real *, real *, real *, integer *,
real *, real *, integer *);
integer nsplit;
extern /* Subroutine */ void slarrr_(integer *, real *, real *, integer *);
real smlnum;
extern /* Subroutine */ void slasrt_(char *, integer *, real *, integer *);
logical lquery, zquery;
integer iil, iiu;
real eps, tmp;
/* -- LAPACK computational routine (version 3.7.1) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* June 2016 */
/* ===================================================================== */
/* Test the input parameters. */
/* Parameter adjustments */
--d__;
--e;
--w;
z_dim1 = *ldz;
z_offset = 1 + z_dim1 * 1;
z__ -= z_offset;
--isuppz;
--work;
--iwork;
/* Function Body */
wantz = lsame_(jobz, "V");
alleig = lsame_(range, "A");
valeig = lsame_(range, "V");
indeig = lsame_(range, "I");
lquery = *lwork == -1 || *liwork == -1;
zquery = *nzc == -1;
/* SSTEMR needs WORK of size 6*N, IWORK of size 3*N. */
/* In addition, SLARRE needs WORK of size 6*N, IWORK of size 5*N. */
/* Furthermore, CLARRV needs WORK of size 12*N, IWORK of size 7*N. */
if (wantz) {
lwmin = *n * 18;
liwmin = *n * 10;
} else {
/* need less workspace if only the eigenvalues are wanted */
lwmin = *n * 12;
liwmin = *n << 3;
}
wl = 0.f;
wu = 0.f;
iil = 0;
iiu = 0;
nsplit = 0;
if (valeig) {
/* We do not reference VL, VU in the cases RANGE = 'I','A' */
/* The interval (WL, WU] contains all the wanted eigenvalues. */
/* It is either given by the user or computed in SLARRE. */
wl = *vl;
wu = *vu;
} else if (indeig) {
/* We do not reference IL, IU in the cases RANGE = 'V','A' */
iil = *il;
iiu = *iu;
}
*info = 0;
if (! (wantz || lsame_(jobz, "N"))) {
*info = -1;
} else if (! (alleig || valeig || indeig)) {
*info = -2;
} else if (*n < 0) {
*info = -3;
} else if (valeig && *n > 0 && wu <= wl) {
*info = -7;
} else if (indeig && (iil < 1 || iil > *n)) {
*info = -8;
} else if (indeig && (iiu < iil || iiu > *n)) {
*info = -9;
} else if (*ldz < 1 || wantz && *ldz < *n) {
*info = -13;
} else if (*lwork < lwmin && ! lquery) {
*info = -17;
} else if (*liwork < liwmin && ! lquery) {
*info = -19;
}
/* Get machine constants. */
safmin = slamch_("Safe minimum");
eps = slamch_("Precision");
smlnum = safmin / eps;
bignum = 1.f / smlnum;
rmin = sqrt(smlnum);
/* Computing MIN */
r__1 = sqrt(bignum), r__2 = 1.f / sqrt(sqrt(safmin));
rmax = f2cmin(r__1,r__2);
if (*info == 0) {
work[1] = (real) lwmin;
iwork[1] = liwmin;
if (wantz && alleig) {
nzcmin = *n;
} else if (wantz && valeig) {
slarrc_("T", n, vl, vu, &d__[1], &e[1], &safmin, &nzcmin, &itmp, &
itmp2, info);
} else if (wantz && indeig) {
nzcmin = iiu - iil + 1;
} else {
/* WANTZ .EQ. FALSE. */
nzcmin = 0;
}
if (zquery && *info == 0) {
i__1 = z_dim1 + 1;
z__[i__1].r = (real) nzcmin, z__[i__1].i = 0.f;
} else if (*nzc < nzcmin && ! zquery) {
*info = -14;
}
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CSTEMR", &i__1, (ftnlen)6);
return;
} else if (lquery || zquery) {
return;
}
/* Handle N = 0, 1, and 2 cases immediately */
*m = 0;
if (*n == 0) {
return;
}
if (*n == 1) {
if (alleig || indeig) {
*m = 1;
w[1] = d__[1];
} else {
if (wl < d__[1] && wu >= d__[1]) {
*m = 1;
w[1] = d__[1];
}
}
if (wantz && ! zquery) {
i__1 = z_dim1 + 1;
z__[i__1].r = 1.f, z__[i__1].i = 0.f;
isuppz[1] = 1;
isuppz[2] = 1;
}
return;
}
if (*n == 2) {
if (! wantz) {
slae2_(&d__[1], &e[1], &d__[2], &r1, &r2);
} else if (wantz && ! zquery) {
slaev2_(&d__[1], &e[1], &d__[2], &r1, &r2, &cs, &sn);
}
if (alleig || valeig && r2 > wl && r2 <= wu || indeig && iil == 1) {
++(*m);
w[*m] = r2;
if (wantz && ! zquery) {
i__1 = *m * z_dim1 + 1;
r__1 = -sn;
z__[i__1].r = r__1, z__[i__1].i = 0.f;
i__1 = *m * z_dim1 + 2;
z__[i__1].r = cs, z__[i__1].i = 0.f;
/* Note: At most one of SN and CS can be zero. */
if (sn != 0.f) {
if (cs != 0.f) {
isuppz[(*m << 1) - 1] = 1;
isuppz[*m * 2] = 2;
} else {
isuppz[(*m << 1) - 1] = 1;
isuppz[*m * 2] = 1;
}
} else {
isuppz[(*m << 1) - 1] = 2;
isuppz[*m * 2] = 2;
}
}
}
if (alleig || valeig && r1 > wl && r1 <= wu || indeig && iiu == 2) {
++(*m);
w[*m] = r1;
if (wantz && ! zquery) {
i__1 = *m * z_dim1 + 1;
z__[i__1].r = cs, z__[i__1].i = 0.f;
i__1 = *m * z_dim1 + 2;
z__[i__1].r = sn, z__[i__1].i = 0.f;
/* Note: At most one of SN and CS can be zero. */
if (sn != 0.f) {
if (cs != 0.f) {
isuppz[(*m << 1) - 1] = 1;
isuppz[*m * 2] = 2;
} else {
isuppz[(*m << 1) - 1] = 1;
isuppz[*m * 2] = 1;
}
} else {
isuppz[(*m << 1) - 1] = 2;
isuppz[*m * 2] = 2;
}
}
}
} else {
/* Continue with general N */
indgrs = 1;
inderr = (*n << 1) + 1;
indgp = *n * 3 + 1;
indd = (*n << 2) + 1;
inde2 = *n * 5 + 1;
indwrk = *n * 6 + 1;
iinspl = 1;
iindbl = *n + 1;
iindw = (*n << 1) + 1;
iindwk = *n * 3 + 1;
/* Scale matrix to allowable range, if necessary. */
/* The allowable range is related to the PIVMIN parameter; see the */
/* comments in SLARRD. The preference for scaling small values */
/* up is heuristic; we expect users' matrices not to be close to the */
/* RMAX threshold. */
scale = 1.f;
tnrm = slanst_("M", n, &d__[1], &e[1]);
if (tnrm > 0.f && tnrm < rmin) {
scale = rmin / tnrm;
} else if (tnrm > rmax) {
scale = rmax / tnrm;
}
if (scale != 1.f) {
sscal_(n, &scale, &d__[1], &c__1);
i__1 = *n - 1;
sscal_(&i__1, &scale, &e[1], &c__1);
tnrm *= scale;
if (valeig) {
/* If eigenvalues in interval have to be found, */
/* scale (WL, WU] accordingly */
wl *= scale;
wu *= scale;
}
}
/* Compute the desired eigenvalues of the tridiagonal after splitting */
/* into smaller subblocks if the corresponding off-diagonal elements */
/* are small */
/* THRESH is the splitting parameter for SLARRE */
/* A negative THRESH forces the old splitting criterion based on the */
/* size of the off-diagonal. A positive THRESH switches to splitting */
/* which preserves relative accuracy. */
if (*tryrac) {
/* Test whether the matrix warrants the more expensive relative approach. */
slarrr_(n, &d__[1], &e[1], &iinfo);
} else {
/* The user does not care about relative accurately eigenvalues */
iinfo = -1;
}
/* Set the splitting criterion */
if (iinfo == 0) {
thresh = eps;
} else {
thresh = -eps;
/* relative accuracy is desired but T does not guarantee it */
*tryrac = FALSE_;
}
if (*tryrac) {
/* Copy original diagonal, needed to guarantee relative accuracy */
scopy_(n, &d__[1], &c__1, &work[indd], &c__1);
}
/* Store the squares of the offdiagonal values of T */
i__1 = *n - 1;
for (j = 1; j <= i__1; ++j) {
/* Computing 2nd power */
r__1 = e[j];
work[inde2 + j - 1] = r__1 * r__1;
/* L5: */
}
/* Set the tolerance parameters for bisection */
if (! wantz) {
/* SLARRE computes the eigenvalues to full precision. */
rtol1 = eps * 4.f;
rtol2 = eps * 4.f;
} else {
/* SLARRE computes the eigenvalues to less than full precision. */
/* CLARRV will refine the eigenvalue approximations, and we only */
/* need less accurate initial bisection in SLARRE. */
/* Note: these settings do only affect the subset case and SLARRE */
/* Computing MAX */
r__1 = sqrt(eps) * .05f, r__2 = eps * 4.f;
rtol1 = f2cmax(r__1,r__2);
/* Computing MAX */
r__1 = sqrt(eps) * .005f, r__2 = eps * 4.f;
rtol2 = f2cmax(r__1,r__2);
}
slarre_(range, n, &wl, &wu, &iil, &iiu, &d__[1], &e[1], &work[inde2],
&rtol1, &rtol2, &thresh, &nsplit, &iwork[iinspl], m, &w[1], &
work[inderr], &work[indgp], &iwork[iindbl], &iwork[iindw], &
work[indgrs], &pivmin, &work[indwrk], &iwork[iindwk], &iinfo);
if (iinfo != 0) {
*info = abs(iinfo) + 10;
return;
}
/* Note that if RANGE .NE. 'V', SLARRE computes bounds on the desired */
/* part of the spectrum. All desired eigenvalues are contained in */
/* (WL,WU] */
if (wantz) {
/* Compute the desired eigenvectors corresponding to the computed */
/* eigenvalues */
clarrv_(n, &wl, &wu, &d__[1], &e[1], &pivmin, &iwork[iinspl], m, &
c__1, m, &c_b18, &rtol1, &rtol2, &w[1], &work[inderr], &
work[indgp], &iwork[iindbl], &iwork[iindw], &work[indgrs],
&z__[z_offset], ldz, &isuppz[1], &work[indwrk], &iwork[
iindwk], &iinfo);
if (iinfo != 0) {
*info = abs(iinfo) + 20;
return;
}
} else {
/* SLARRE computes eigenvalues of the (shifted) root representation */
/* CLARRV returns the eigenvalues of the unshifted matrix. */
/* However, if the eigenvectors are not desired by the user, we need */
/* to apply the corresponding shifts from SLARRE to obtain the */
/* eigenvalues of the original matrix. */
i__1 = *m;
for (j = 1; j <= i__1; ++j) {
itmp = iwork[iindbl + j - 1];
w[j] += e[iwork[iinspl + itmp - 1]];
/* L20: */
}
}
if (*tryrac) {
/* Refine computed eigenvalues so that they are relatively accurate */
/* with respect to the original matrix T. */
ibegin = 1;
wbegin = 1;
i__1 = iwork[iindbl + *m - 1];
for (jblk = 1; jblk <= i__1; ++jblk) {
iend = iwork[iinspl + jblk - 1];
in = iend - ibegin + 1;
wend = wbegin - 1;
/* check if any eigenvalues have to be refined in this block */
L36:
if (wend < *m) {
if (iwork[iindbl + wend] == jblk) {
++wend;
goto L36;
}
}
if (wend < wbegin) {
ibegin = iend + 1;
goto L39;
}
offset = iwork[iindw + wbegin - 1] - 1;
ifirst = iwork[iindw + wbegin - 1];
ilast = iwork[iindw + wend - 1];
rtol2 = eps * 4.f;
slarrj_(&in, &work[indd + ibegin - 1], &work[inde2 + ibegin -
1], &ifirst, &ilast, &rtol2, &offset, &w[wbegin], &
work[inderr + wbegin - 1], &work[indwrk], &iwork[
iindwk], &pivmin, &tnrm, &iinfo);
ibegin = iend + 1;
wbegin = wend + 1;
L39:
;
}
}
/* If matrix was scaled, then rescale eigenvalues appropriately. */
if (scale != 1.f) {
r__1 = 1.f / scale;
sscal_(m, &r__1, &w[1], &c__1);
}
}
/* If eigenvalues are not in increasing order, then sort them, */
/* possibly along with eigenvectors. */
if (nsplit > 1 || *n == 2) {
if (! wantz) {
slasrt_("I", m, &w[1], &iinfo);
if (iinfo != 0) {
*info = 3;
return;
}
} else {
i__1 = *m - 1;
for (j = 1; j <= i__1; ++j) {
i__ = 0;
tmp = w[j];
i__2 = *m;
for (jj = j + 1; jj <= i__2; ++jj) {
if (w[jj] < tmp) {
i__ = jj;
tmp = w[jj];
}
/* L50: */
}
if (i__ != 0) {
w[i__] = w[j];
w[j] = tmp;
if (wantz) {
cswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j *
z_dim1 + 1], &c__1);
itmp = isuppz[(i__ << 1) - 1];
isuppz[(i__ << 1) - 1] = isuppz[(j << 1) - 1];
isuppz[(j << 1) - 1] = itmp;
itmp = isuppz[i__ * 2];
isuppz[i__ * 2] = isuppz[j * 2];
isuppz[j * 2] = itmp;
}
}
/* L60: */
}
}
}
work[1] = (real) lwmin;
iwork[1] = liwmin;
return;
/* End of CSTEMR */
} /* cstemr_ */