919 lines
27 KiB
C
919 lines
27 KiB
C
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <complex.h>
|
|
#ifdef complex
|
|
#undef complex
|
|
#endif
|
|
#ifdef I
|
|
#undef I
|
|
#endif
|
|
|
|
#if defined(_WIN64)
|
|
typedef long long BLASLONG;
|
|
typedef unsigned long long BLASULONG;
|
|
#else
|
|
typedef long BLASLONG;
|
|
typedef unsigned long BLASULONG;
|
|
#endif
|
|
|
|
#ifdef LAPACK_ILP64
|
|
typedef BLASLONG blasint;
|
|
#if defined(_WIN64)
|
|
#define blasabs(x) llabs(x)
|
|
#else
|
|
#define blasabs(x) labs(x)
|
|
#endif
|
|
#else
|
|
typedef int blasint;
|
|
#define blasabs(x) abs(x)
|
|
#endif
|
|
|
|
typedef blasint integer;
|
|
|
|
typedef unsigned int uinteger;
|
|
typedef char *address;
|
|
typedef short int shortint;
|
|
typedef float real;
|
|
typedef double doublereal;
|
|
typedef struct { real r, i; } complex;
|
|
typedef struct { doublereal r, i; } doublecomplex;
|
|
#ifdef _MSC_VER
|
|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
|
|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
|
|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
|
|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
|
|
#else
|
|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
|
|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
|
|
#endif
|
|
#define pCf(z) (*_pCf(z))
|
|
#define pCd(z) (*_pCd(z))
|
|
typedef blasint logical;
|
|
|
|
typedef char logical1;
|
|
typedef char integer1;
|
|
|
|
#define TRUE_ (1)
|
|
#define FALSE_ (0)
|
|
|
|
/* Extern is for use with -E */
|
|
#ifndef Extern
|
|
#define Extern extern
|
|
#endif
|
|
|
|
/* I/O stuff */
|
|
|
|
typedef int flag;
|
|
typedef int ftnlen;
|
|
typedef int ftnint;
|
|
|
|
/*external read, write*/
|
|
typedef struct
|
|
{ flag cierr;
|
|
ftnint ciunit;
|
|
flag ciend;
|
|
char *cifmt;
|
|
ftnint cirec;
|
|
} cilist;
|
|
|
|
/*internal read, write*/
|
|
typedef struct
|
|
{ flag icierr;
|
|
char *iciunit;
|
|
flag iciend;
|
|
char *icifmt;
|
|
ftnint icirlen;
|
|
ftnint icirnum;
|
|
} icilist;
|
|
|
|
/*open*/
|
|
typedef struct
|
|
{ flag oerr;
|
|
ftnint ounit;
|
|
char *ofnm;
|
|
ftnlen ofnmlen;
|
|
char *osta;
|
|
char *oacc;
|
|
char *ofm;
|
|
ftnint orl;
|
|
char *oblnk;
|
|
} olist;
|
|
|
|
/*close*/
|
|
typedef struct
|
|
{ flag cerr;
|
|
ftnint cunit;
|
|
char *csta;
|
|
} cllist;
|
|
|
|
/*rewind, backspace, endfile*/
|
|
typedef struct
|
|
{ flag aerr;
|
|
ftnint aunit;
|
|
} alist;
|
|
|
|
/* inquire */
|
|
typedef struct
|
|
{ flag inerr;
|
|
ftnint inunit;
|
|
char *infile;
|
|
ftnlen infilen;
|
|
ftnint *inex; /*parameters in standard's order*/
|
|
ftnint *inopen;
|
|
ftnint *innum;
|
|
ftnint *innamed;
|
|
char *inname;
|
|
ftnlen innamlen;
|
|
char *inacc;
|
|
ftnlen inacclen;
|
|
char *inseq;
|
|
ftnlen inseqlen;
|
|
char *indir;
|
|
ftnlen indirlen;
|
|
char *infmt;
|
|
ftnlen infmtlen;
|
|
char *inform;
|
|
ftnint informlen;
|
|
char *inunf;
|
|
ftnlen inunflen;
|
|
ftnint *inrecl;
|
|
ftnint *innrec;
|
|
char *inblank;
|
|
ftnlen inblanklen;
|
|
} inlist;
|
|
|
|
#define VOID void
|
|
|
|
union Multitype { /* for multiple entry points */
|
|
integer1 g;
|
|
shortint h;
|
|
integer i;
|
|
/* longint j; */
|
|
real r;
|
|
doublereal d;
|
|
complex c;
|
|
doublecomplex z;
|
|
};
|
|
|
|
typedef union Multitype Multitype;
|
|
|
|
struct Vardesc { /* for Namelist */
|
|
char *name;
|
|
char *addr;
|
|
ftnlen *dims;
|
|
int type;
|
|
};
|
|
typedef struct Vardesc Vardesc;
|
|
|
|
struct Namelist {
|
|
char *name;
|
|
Vardesc **vars;
|
|
int nvars;
|
|
};
|
|
typedef struct Namelist Namelist;
|
|
|
|
#define abs(x) ((x) >= 0 ? (x) : -(x))
|
|
#define dabs(x) (fabs(x))
|
|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
|
|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
|
|
#define dmin(a,b) (f2cmin(a,b))
|
|
#define dmax(a,b) (f2cmax(a,b))
|
|
#define bit_test(a,b) ((a) >> (b) & 1)
|
|
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
|
|
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
|
|
|
|
#define abort_() { sig_die("Fortran abort routine called", 1); }
|
|
#define c_abs(z) (cabsf(Cf(z)))
|
|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
|
|
#ifdef _MSC_VER
|
|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
|
|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
|
|
#else
|
|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
|
|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
|
|
#endif
|
|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
|
|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
|
|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
|
|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
|
|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
|
|
#define d_abs(x) (fabs(*(x)))
|
|
#define d_acos(x) (acos(*(x)))
|
|
#define d_asin(x) (asin(*(x)))
|
|
#define d_atan(x) (atan(*(x)))
|
|
#define d_atn2(x, y) (atan2(*(x),*(y)))
|
|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
|
|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
|
|
#define d_cos(x) (cos(*(x)))
|
|
#define d_cosh(x) (cosh(*(x)))
|
|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
|
|
#define d_exp(x) (exp(*(x)))
|
|
#define d_imag(z) (cimag(Cd(z)))
|
|
#define r_imag(z) (cimagf(Cf(z)))
|
|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define d_log(x) (log(*(x)))
|
|
#define d_mod(x, y) (fmod(*(x), *(y)))
|
|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
|
|
#define d_nint(x) u_nint(*(x))
|
|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
|
|
#define d_sign(a,b) u_sign(*(a),*(b))
|
|
#define r_sign(a,b) u_sign(*(a),*(b))
|
|
#define d_sin(x) (sin(*(x)))
|
|
#define d_sinh(x) (sinh(*(x)))
|
|
#define d_sqrt(x) (sqrt(*(x)))
|
|
#define d_tan(x) (tan(*(x)))
|
|
#define d_tanh(x) (tanh(*(x)))
|
|
#define i_abs(x) abs(*(x))
|
|
#define i_dnnt(x) ((integer)u_nint(*(x)))
|
|
#define i_len(s, n) (n)
|
|
#define i_nint(x) ((integer)u_nint(*(x)))
|
|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
|
|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
|
|
#define pow_si(B,E) spow_ui(*(B),*(E))
|
|
#define pow_ri(B,E) spow_ui(*(B),*(E))
|
|
#define pow_di(B,E) dpow_ui(*(B),*(E))
|
|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
|
|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
|
|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
|
|
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
|
|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
|
|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
|
|
#define sig_die(s, kill) { exit(1); }
|
|
#define s_stop(s, n) {exit(0);}
|
|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
|
|
#define z_abs(z) (cabs(Cd(z)))
|
|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
|
|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
|
|
#define myexit_() break;
|
|
#define mycycle() continue;
|
|
#define myceiling(w) {ceil(w)}
|
|
#define myhuge(w) {HUGE_VAL}
|
|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
|
|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
|
|
|
|
/* procedure parameter types for -A and -C++ */
|
|
|
|
|
|
#ifdef __cplusplus
|
|
typedef logical (*L_fp)(...);
|
|
#else
|
|
typedef logical (*L_fp)();
|
|
#endif
|
|
|
|
static float spow_ui(float x, integer n) {
|
|
float pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
static double dpow_ui(double x, integer n) {
|
|
double pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#ifdef _MSC_VER
|
|
static _Fcomplex cpow_ui(complex x, integer n) {
|
|
complex pow={1.0,0.0}; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow.r *= x.r, pow.i *= x.i;
|
|
if(u >>= 1) x.r *= x.r, x.i *= x.i;
|
|
else break;
|
|
}
|
|
}
|
|
_Fcomplex p={pow.r, pow.i};
|
|
return p;
|
|
}
|
|
#else
|
|
static _Complex float cpow_ui(_Complex float x, integer n) {
|
|
_Complex float pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#endif
|
|
#ifdef _MSC_VER
|
|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
|
|
_Dcomplex pow={1.0,0.0}; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
|
|
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
|
|
else break;
|
|
}
|
|
}
|
|
_Dcomplex p = {pow._Val[0], pow._Val[1]};
|
|
return p;
|
|
}
|
|
#else
|
|
static _Complex double zpow_ui(_Complex double x, integer n) {
|
|
_Complex double pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#endif
|
|
static integer pow_ii(integer x, integer n) {
|
|
integer pow; unsigned long int u;
|
|
if (n <= 0) {
|
|
if (n == 0 || x == 1) pow = 1;
|
|
else if (x != -1) pow = x == 0 ? 1/x : 0;
|
|
else n = -n;
|
|
}
|
|
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
|
|
u = n;
|
|
for(pow = 1; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
|
|
{
|
|
double m; integer i, mi;
|
|
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
|
if (w[i-1]>m) mi=i ,m=w[i-1];
|
|
return mi-s+1;
|
|
}
|
|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
|
|
{
|
|
float m; integer i, mi;
|
|
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
|
if (w[i-1]>m) mi=i ,m=w[i-1];
|
|
return mi-s+1;
|
|
}
|
|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Fcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
|
|
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex float zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Dcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
|
|
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex double zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Fcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
|
|
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex float zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cf(&x[i]) * Cf(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Dcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
|
|
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex double zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cd(&x[i]) * Cd(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#endif
|
|
/* -- translated by f2c (version 20000121).
|
|
You must link the resulting object file with the libraries:
|
|
-lf2c -lm (in that order)
|
|
*/
|
|
|
|
|
|
|
|
|
|
/* Table of constant values */
|
|
|
|
static complex c_b1 = {1.f,0.f};
|
|
static integer c__1 = 1;
|
|
static integer c_n1 = -1;
|
|
static real c_b24 = 1.f;
|
|
|
|
/* > \brief \b CLATDF uses the LU factorization of the n-by-n matrix computed by sgetc2 and computes a contrib
|
|
ution to the reciprocal Dif-estimate. */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* > \htmlonly */
|
|
/* > Download CLATDF + dependencies */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clatdf.
|
|
f"> */
|
|
/* > [TGZ]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clatdf.
|
|
f"> */
|
|
/* > [ZIP]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clatdf.
|
|
f"> */
|
|
/* > [TXT]</a> */
|
|
/* > \endhtmlonly */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* SUBROUTINE CLATDF( IJOB, N, Z, LDZ, RHS, RDSUM, RDSCAL, IPIV, */
|
|
/* JPIV ) */
|
|
|
|
/* INTEGER IJOB, LDZ, N */
|
|
/* REAL RDSCAL, RDSUM */
|
|
/* INTEGER IPIV( * ), JPIV( * ) */
|
|
/* COMPLEX RHS( * ), Z( LDZ, * ) */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > CLATDF computes the contribution to the reciprocal Dif-estimate */
|
|
/* > by solving for x in Z * x = b, where b is chosen such that the norm */
|
|
/* > of x is as large as possible. It is assumed that LU decomposition */
|
|
/* > of Z has been computed by CGETC2. On entry RHS = f holds the */
|
|
/* > contribution from earlier solved sub-systems, and on return RHS = x. */
|
|
/* > */
|
|
/* > The factorization of Z returned by CGETC2 has the form */
|
|
/* > Z = P * L * U * Q, where P and Q are permutation matrices. L is lower */
|
|
/* > triangular with unit diagonal elements and U is upper triangular. */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] IJOB */
|
|
/* > \verbatim */
|
|
/* > IJOB is INTEGER */
|
|
/* > IJOB = 2: First compute an approximative null-vector e */
|
|
/* > of Z using CGECON, e is normalized and solve for */
|
|
/* > Zx = +-e - f with the sign giving the greater value of */
|
|
/* > 2-norm(x). About 5 times as expensive as Default. */
|
|
/* > IJOB .ne. 2: Local look ahead strategy where */
|
|
/* > all entries of the r.h.s. b is chosen as either +1 or */
|
|
/* > -1. Default. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > The number of columns of the matrix Z. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] Z */
|
|
/* > \verbatim */
|
|
/* > Z is COMPLEX array, dimension (LDZ, N) */
|
|
/* > On entry, the LU part of the factorization of the n-by-n */
|
|
/* > matrix Z computed by CGETC2: Z = P * L * U * Q */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDZ */
|
|
/* > \verbatim */
|
|
/* > LDZ is INTEGER */
|
|
/* > The leading dimension of the array Z. LDA >= f2cmax(1, N). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] RHS */
|
|
/* > \verbatim */
|
|
/* > RHS is COMPLEX array, dimension (N). */
|
|
/* > On entry, RHS contains contributions from other subsystems. */
|
|
/* > On exit, RHS contains the solution of the subsystem with */
|
|
/* > entries according to the value of IJOB (see above). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] RDSUM */
|
|
/* > \verbatim */
|
|
/* > RDSUM is REAL */
|
|
/* > On entry, the sum of squares of computed contributions to */
|
|
/* > the Dif-estimate under computation by CTGSYL, where the */
|
|
/* > scaling factor RDSCAL (see below) has been factored out. */
|
|
/* > On exit, the corresponding sum of squares updated with the */
|
|
/* > contributions from the current sub-system. */
|
|
/* > If TRANS = 'T' RDSUM is not touched. */
|
|
/* > NOTE: RDSUM only makes sense when CTGSY2 is called by CTGSYL. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] RDSCAL */
|
|
/* > \verbatim */
|
|
/* > RDSCAL is REAL */
|
|
/* > On entry, scaling factor used to prevent overflow in RDSUM. */
|
|
/* > On exit, RDSCAL is updated w.r.t. the current contributions */
|
|
/* > in RDSUM. */
|
|
/* > If TRANS = 'T', RDSCAL is not touched. */
|
|
/* > NOTE: RDSCAL only makes sense when CTGSY2 is called by */
|
|
/* > CTGSYL. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] IPIV */
|
|
/* > \verbatim */
|
|
/* > IPIV is INTEGER array, dimension (N). */
|
|
/* > The pivot indices; for 1 <= i <= N, row i of the */
|
|
/* > matrix has been interchanged with row IPIV(i). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] JPIV */
|
|
/* > \verbatim */
|
|
/* > JPIV is INTEGER array, dimension (N). */
|
|
/* > The pivot indices; for 1 <= j <= N, column j of the */
|
|
/* > matrix has been interchanged with column JPIV(j). */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \date June 2016 */
|
|
|
|
/* > \ingroup complexOTHERauxiliary */
|
|
|
|
/* > \par Further Details: */
|
|
/* ===================== */
|
|
/* > */
|
|
/* > This routine is a further developed implementation of algorithm */
|
|
/* > BSOLVE in [1] using complete pivoting in the LU factorization. */
|
|
|
|
/* > \par Contributors: */
|
|
/* ================== */
|
|
/* > */
|
|
/* > Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
|
|
/* > Umea University, S-901 87 Umea, Sweden. */
|
|
|
|
/* > \par References: */
|
|
/* ================ */
|
|
/* > */
|
|
/* > [1] Bo Kagstrom and Lars Westin, */
|
|
/* > Generalized Schur Methods with Condition Estimators for */
|
|
/* > Solving the Generalized Sylvester Equation, IEEE Transactions */
|
|
/* > on Automatic Control, Vol. 34, No. 7, July 1989, pp 745-751. */
|
|
/* > */
|
|
/* > [2] Peter Poromaa, */
|
|
/* > On Efficient and Robust Estimators for the Separation */
|
|
/* > between two Regular Matrix Pairs with Applications in */
|
|
/* > Condition Estimation. Report UMINF-95.05, Department of */
|
|
/* > Computing Science, Umea University, S-901 87 Umea, Sweden, */
|
|
/* > 1995. */
|
|
|
|
/* ===================================================================== */
|
|
/* Subroutine */ void clatdf_(integer *ijob, integer *n, complex *z__, integer
|
|
*ldz, complex *rhs, real *rdsum, real *rdscal, integer *ipiv, integer
|
|
*jpiv)
|
|
{
|
|
/* System generated locals */
|
|
integer z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5;
|
|
complex q__1, q__2, q__3;
|
|
|
|
/* Local variables */
|
|
integer info;
|
|
complex temp, work[8];
|
|
integer i__, j, k;
|
|
extern /* Subroutine */ void cscal_(integer *, complex *, complex *,
|
|
integer *);
|
|
real scale;
|
|
extern /* Complex */ VOID cdotc_(complex *, integer *, complex *, integer
|
|
*, complex *, integer *);
|
|
extern /* Subroutine */ void ccopy_(integer *, complex *, integer *,
|
|
complex *, integer *);
|
|
complex pmone;
|
|
extern /* Subroutine */ void caxpy_(integer *, complex *, complex *,
|
|
integer *, complex *, integer *);
|
|
real rtemp, sminu, rwork[2], splus;
|
|
extern /* Subroutine */ void cgesc2_(integer *, complex *, integer *,
|
|
complex *, integer *, integer *, real *);
|
|
complex bm, bp;
|
|
extern /* Subroutine */ void cgecon_(char *, integer *, complex *, integer
|
|
*, real *, real *, complex *, real *, integer *);
|
|
complex xm[2], xp[2];
|
|
extern /* Subroutine */ void classq_(integer *, complex *, integer *, real
|
|
*, real *);
|
|
extern int claswp_(integer *, complex *, integer *, integer *,
|
|
integer *, integer *, integer *);
|
|
extern real scasum_(integer *, complex *, integer *);
|
|
|
|
|
|
/* -- LAPACK auxiliary routine (version 3.7.0) -- */
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
/* June 2016 */
|
|
|
|
|
|
/* ===================================================================== */
|
|
|
|
|
|
/* Parameter adjustments */
|
|
z_dim1 = *ldz;
|
|
z_offset = 1 + z_dim1 * 1;
|
|
z__ -= z_offset;
|
|
--rhs;
|
|
--ipiv;
|
|
--jpiv;
|
|
|
|
/* Function Body */
|
|
if (*ijob != 2) {
|
|
|
|
/* Apply permutations IPIV to RHS */
|
|
|
|
i__1 = *n - 1;
|
|
claswp_(&c__1, &rhs[1], ldz, &c__1, &i__1, &ipiv[1], &c__1);
|
|
|
|
/* Solve for L-part choosing RHS either to +1 or -1. */
|
|
|
|
q__1.r = -1.f, q__1.i = 0.f;
|
|
pmone.r = q__1.r, pmone.i = q__1.i;
|
|
i__1 = *n - 1;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__2 = j;
|
|
q__1.r = rhs[i__2].r + 1.f, q__1.i = rhs[i__2].i + 0.f;
|
|
bp.r = q__1.r, bp.i = q__1.i;
|
|
i__2 = j;
|
|
q__1.r = rhs[i__2].r - 1.f, q__1.i = rhs[i__2].i + 0.f;
|
|
bm.r = q__1.r, bm.i = q__1.i;
|
|
splus = 1.f;
|
|
|
|
/* Lockahead for L- part RHS(1:N-1) = +-1 */
|
|
/* SPLUS and SMIN computed more efficiently than in BSOLVE[1]. */
|
|
|
|
i__2 = *n - j;
|
|
cdotc_(&q__1, &i__2, &z__[j + 1 + j * z_dim1], &c__1, &z__[j + 1
|
|
+ j * z_dim1], &c__1);
|
|
splus += q__1.r;
|
|
i__2 = *n - j;
|
|
cdotc_(&q__1, &i__2, &z__[j + 1 + j * z_dim1], &c__1, &rhs[j + 1],
|
|
&c__1);
|
|
sminu = q__1.r;
|
|
i__2 = j;
|
|
splus *= rhs[i__2].r;
|
|
if (splus > sminu) {
|
|
i__2 = j;
|
|
rhs[i__2].r = bp.r, rhs[i__2].i = bp.i;
|
|
} else if (sminu > splus) {
|
|
i__2 = j;
|
|
rhs[i__2].r = bm.r, rhs[i__2].i = bm.i;
|
|
} else {
|
|
|
|
/* In this case the updating sums are equal and we can */
|
|
/* choose RHS(J) +1 or -1. The first time this happens we */
|
|
/* choose -1, thereafter +1. This is a simple way to get */
|
|
/* good estimates of matrices like Byers well-known example */
|
|
/* (see [1]). (Not done in BSOLVE.) */
|
|
|
|
i__2 = j;
|
|
i__3 = j;
|
|
q__1.r = rhs[i__3].r + pmone.r, q__1.i = rhs[i__3].i +
|
|
pmone.i;
|
|
rhs[i__2].r = q__1.r, rhs[i__2].i = q__1.i;
|
|
pmone.r = 1.f, pmone.i = 0.f;
|
|
}
|
|
|
|
/* Compute the remaining r.h.s. */
|
|
|
|
i__2 = j;
|
|
q__1.r = -rhs[i__2].r, q__1.i = -rhs[i__2].i;
|
|
temp.r = q__1.r, temp.i = q__1.i;
|
|
i__2 = *n - j;
|
|
caxpy_(&i__2, &temp, &z__[j + 1 + j * z_dim1], &c__1, &rhs[j + 1],
|
|
&c__1);
|
|
/* L10: */
|
|
}
|
|
|
|
/* Solve for U- part, lockahead for RHS(N) = +-1. This is not done */
|
|
/* In BSOLVE and will hopefully give us a better estimate because */
|
|
/* any ill-conditioning of the original matrix is transferred to U */
|
|
/* and not to L. U(N, N) is an approximation to sigma_min(LU). */
|
|
|
|
i__1 = *n - 1;
|
|
ccopy_(&i__1, &rhs[1], &c__1, work, &c__1);
|
|
i__1 = *n - 1;
|
|
i__2 = *n;
|
|
q__1.r = rhs[i__2].r + 1.f, q__1.i = rhs[i__2].i + 0.f;
|
|
work[i__1].r = q__1.r, work[i__1].i = q__1.i;
|
|
i__1 = *n;
|
|
i__2 = *n;
|
|
q__1.r = rhs[i__2].r - 1.f, q__1.i = rhs[i__2].i + 0.f;
|
|
rhs[i__1].r = q__1.r, rhs[i__1].i = q__1.i;
|
|
splus = 0.f;
|
|
sminu = 0.f;
|
|
for (i__ = *n; i__ >= 1; --i__) {
|
|
c_div(&q__1, &c_b1, &z__[i__ + i__ * z_dim1]);
|
|
temp.r = q__1.r, temp.i = q__1.i;
|
|
i__1 = i__ - 1;
|
|
i__2 = i__ - 1;
|
|
q__1.r = work[i__2].r * temp.r - work[i__2].i * temp.i, q__1.i =
|
|
work[i__2].r * temp.i + work[i__2].i * temp.r;
|
|
work[i__1].r = q__1.r, work[i__1].i = q__1.i;
|
|
i__1 = i__;
|
|
i__2 = i__;
|
|
q__1.r = rhs[i__2].r * temp.r - rhs[i__2].i * temp.i, q__1.i =
|
|
rhs[i__2].r * temp.i + rhs[i__2].i * temp.r;
|
|
rhs[i__1].r = q__1.r, rhs[i__1].i = q__1.i;
|
|
i__1 = *n;
|
|
for (k = i__ + 1; k <= i__1; ++k) {
|
|
i__2 = i__ - 1;
|
|
i__3 = i__ - 1;
|
|
i__4 = k - 1;
|
|
i__5 = i__ + k * z_dim1;
|
|
q__3.r = z__[i__5].r * temp.r - z__[i__5].i * temp.i, q__3.i =
|
|
z__[i__5].r * temp.i + z__[i__5].i * temp.r;
|
|
q__2.r = work[i__4].r * q__3.r - work[i__4].i * q__3.i,
|
|
q__2.i = work[i__4].r * q__3.i + work[i__4].i *
|
|
q__3.r;
|
|
q__1.r = work[i__3].r - q__2.r, q__1.i = work[i__3].i -
|
|
q__2.i;
|
|
work[i__2].r = q__1.r, work[i__2].i = q__1.i;
|
|
i__2 = i__;
|
|
i__3 = i__;
|
|
i__4 = k;
|
|
i__5 = i__ + k * z_dim1;
|
|
q__3.r = z__[i__5].r * temp.r - z__[i__5].i * temp.i, q__3.i =
|
|
z__[i__5].r * temp.i + z__[i__5].i * temp.r;
|
|
q__2.r = rhs[i__4].r * q__3.r - rhs[i__4].i * q__3.i, q__2.i =
|
|
rhs[i__4].r * q__3.i + rhs[i__4].i * q__3.r;
|
|
q__1.r = rhs[i__3].r - q__2.r, q__1.i = rhs[i__3].i - q__2.i;
|
|
rhs[i__2].r = q__1.r, rhs[i__2].i = q__1.i;
|
|
/* L20: */
|
|
}
|
|
splus += c_abs(&work[i__ - 1]);
|
|
sminu += c_abs(&rhs[i__]);
|
|
/* L30: */
|
|
}
|
|
if (splus > sminu) {
|
|
ccopy_(n, work, &c__1, &rhs[1], &c__1);
|
|
}
|
|
|
|
/* Apply the permutations JPIV to the computed solution (RHS) */
|
|
|
|
i__1 = *n - 1;
|
|
claswp_(&c__1, &rhs[1], ldz, &c__1, &i__1, &jpiv[1], &c_n1);
|
|
|
|
/* Compute the sum of squares */
|
|
|
|
classq_(n, &rhs[1], &c__1, rdscal, rdsum);
|
|
return;
|
|
}
|
|
|
|
/* ENTRY IJOB = 2 */
|
|
|
|
/* Compute approximate nullvector XM of Z */
|
|
|
|
cgecon_("I", n, &z__[z_offset], ldz, &c_b24, &rtemp, work, rwork, &info);
|
|
ccopy_(n, &work[*n], &c__1, xm, &c__1);
|
|
|
|
/* Compute RHS */
|
|
|
|
i__1 = *n - 1;
|
|
claswp_(&c__1, xm, ldz, &c__1, &i__1, &ipiv[1], &c_n1);
|
|
cdotc_(&q__3, n, xm, &c__1, xm, &c__1);
|
|
c_sqrt(&q__2, &q__3);
|
|
c_div(&q__1, &c_b1, &q__2);
|
|
temp.r = q__1.r, temp.i = q__1.i;
|
|
cscal_(n, &temp, xm, &c__1);
|
|
ccopy_(n, xm, &c__1, xp, &c__1);
|
|
caxpy_(n, &c_b1, &rhs[1], &c__1, xp, &c__1);
|
|
q__1.r = -1.f, q__1.i = 0.f;
|
|
caxpy_(n, &q__1, xm, &c__1, &rhs[1], &c__1);
|
|
cgesc2_(n, &z__[z_offset], ldz, &rhs[1], &ipiv[1], &jpiv[1], &scale);
|
|
cgesc2_(n, &z__[z_offset], ldz, xp, &ipiv[1], &jpiv[1], &scale);
|
|
if (scasum_(n, xp, &c__1) > scasum_(n, &rhs[1], &c__1)) {
|
|
ccopy_(n, xp, &c__1, &rhs[1], &c__1);
|
|
}
|
|
|
|
/* Compute the sum of squares */
|
|
|
|
classq_(n, &rhs[1], &c__1, rdscal, rdsum);
|
|
return;
|
|
|
|
/* End of CLATDF */
|
|
|
|
} /* clatdf_ */
|
|
|