1905 lines
61 KiB
C
1905 lines
61 KiB
C
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <complex.h>
|
|
#ifdef complex
|
|
#undef complex
|
|
#endif
|
|
#ifdef I
|
|
#undef I
|
|
#endif
|
|
|
|
#if defined(_WIN64)
|
|
typedef long long BLASLONG;
|
|
typedef unsigned long long BLASULONG;
|
|
#else
|
|
typedef long BLASLONG;
|
|
typedef unsigned long BLASULONG;
|
|
#endif
|
|
|
|
#ifdef LAPACK_ILP64
|
|
typedef BLASLONG blasint;
|
|
#if defined(_WIN64)
|
|
#define blasabs(x) llabs(x)
|
|
#else
|
|
#define blasabs(x) labs(x)
|
|
#endif
|
|
#else
|
|
typedef int blasint;
|
|
#define blasabs(x) abs(x)
|
|
#endif
|
|
|
|
typedef blasint integer;
|
|
|
|
typedef unsigned int uinteger;
|
|
typedef char *address;
|
|
typedef short int shortint;
|
|
typedef float real;
|
|
typedef double doublereal;
|
|
typedef struct { real r, i; } complex;
|
|
typedef struct { doublereal r, i; } doublecomplex;
|
|
#ifdef _MSC_VER
|
|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
|
|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
|
|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
|
|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
|
|
#else
|
|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
|
|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
|
|
#endif
|
|
#define pCf(z) (*_pCf(z))
|
|
#define pCd(z) (*_pCd(z))
|
|
typedef blasint logical;
|
|
|
|
typedef char logical1;
|
|
typedef char integer1;
|
|
|
|
#define TRUE_ (1)
|
|
#define FALSE_ (0)
|
|
|
|
/* Extern is for use with -E */
|
|
#ifndef Extern
|
|
#define Extern extern
|
|
#endif
|
|
|
|
/* I/O stuff */
|
|
|
|
typedef int flag;
|
|
typedef int ftnlen;
|
|
typedef int ftnint;
|
|
|
|
/*external read, write*/
|
|
typedef struct
|
|
{ flag cierr;
|
|
ftnint ciunit;
|
|
flag ciend;
|
|
char *cifmt;
|
|
ftnint cirec;
|
|
} cilist;
|
|
|
|
/*internal read, write*/
|
|
typedef struct
|
|
{ flag icierr;
|
|
char *iciunit;
|
|
flag iciend;
|
|
char *icifmt;
|
|
ftnint icirlen;
|
|
ftnint icirnum;
|
|
} icilist;
|
|
|
|
/*open*/
|
|
typedef struct
|
|
{ flag oerr;
|
|
ftnint ounit;
|
|
char *ofnm;
|
|
ftnlen ofnmlen;
|
|
char *osta;
|
|
char *oacc;
|
|
char *ofm;
|
|
ftnint orl;
|
|
char *oblnk;
|
|
} olist;
|
|
|
|
/*close*/
|
|
typedef struct
|
|
{ flag cerr;
|
|
ftnint cunit;
|
|
char *csta;
|
|
} cllist;
|
|
|
|
/*rewind, backspace, endfile*/
|
|
typedef struct
|
|
{ flag aerr;
|
|
ftnint aunit;
|
|
} alist;
|
|
|
|
/* inquire */
|
|
typedef struct
|
|
{ flag inerr;
|
|
ftnint inunit;
|
|
char *infile;
|
|
ftnlen infilen;
|
|
ftnint *inex; /*parameters in standard's order*/
|
|
ftnint *inopen;
|
|
ftnint *innum;
|
|
ftnint *innamed;
|
|
char *inname;
|
|
ftnlen innamlen;
|
|
char *inacc;
|
|
ftnlen inacclen;
|
|
char *inseq;
|
|
ftnlen inseqlen;
|
|
char *indir;
|
|
ftnlen indirlen;
|
|
char *infmt;
|
|
ftnlen infmtlen;
|
|
char *inform;
|
|
ftnint informlen;
|
|
char *inunf;
|
|
ftnlen inunflen;
|
|
ftnint *inrecl;
|
|
ftnint *innrec;
|
|
char *inblank;
|
|
ftnlen inblanklen;
|
|
} inlist;
|
|
|
|
#define VOID void
|
|
|
|
union Multitype { /* for multiple entry points */
|
|
integer1 g;
|
|
shortint h;
|
|
integer i;
|
|
/* longint j; */
|
|
real r;
|
|
doublereal d;
|
|
complex c;
|
|
doublecomplex z;
|
|
};
|
|
|
|
typedef union Multitype Multitype;
|
|
|
|
struct Vardesc { /* for Namelist */
|
|
char *name;
|
|
char *addr;
|
|
ftnlen *dims;
|
|
int type;
|
|
};
|
|
typedef struct Vardesc Vardesc;
|
|
|
|
struct Namelist {
|
|
char *name;
|
|
Vardesc **vars;
|
|
int nvars;
|
|
};
|
|
typedef struct Namelist Namelist;
|
|
|
|
#define abs(x) ((x) >= 0 ? (x) : -(x))
|
|
#define dabs(x) (fabs(x))
|
|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
|
|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
|
|
#define dmin(a,b) (f2cmin(a,b))
|
|
#define dmax(a,b) (f2cmax(a,b))
|
|
#define bit_test(a,b) ((a) >> (b) & 1)
|
|
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
|
|
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
|
|
|
|
#define abort_() { sig_die("Fortran abort routine called", 1); }
|
|
#define c_abs(z) (cabsf(Cf(z)))
|
|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
|
|
#ifdef _MSC_VER
|
|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
|
|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
|
|
#else
|
|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
|
|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
|
|
#endif
|
|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
|
|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
|
|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
|
|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
|
|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
|
|
#define d_abs(x) (fabs(*(x)))
|
|
#define d_acos(x) (acos(*(x)))
|
|
#define d_asin(x) (asin(*(x)))
|
|
#define d_atan(x) (atan(*(x)))
|
|
#define d_atn2(x, y) (atan2(*(x),*(y)))
|
|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
|
|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
|
|
#define d_cos(x) (cos(*(x)))
|
|
#define d_cosh(x) (cosh(*(x)))
|
|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
|
|
#define d_exp(x) (exp(*(x)))
|
|
#define d_imag(z) (cimag(Cd(z)))
|
|
#define r_imag(z) (cimagf(Cf(z)))
|
|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define d_log(x) (log(*(x)))
|
|
#define d_mod(x, y) (fmod(*(x), *(y)))
|
|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
|
|
#define d_nint(x) u_nint(*(x))
|
|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
|
|
#define d_sign(a,b) u_sign(*(a),*(b))
|
|
#define r_sign(a,b) u_sign(*(a),*(b))
|
|
#define d_sin(x) (sin(*(x)))
|
|
#define d_sinh(x) (sinh(*(x)))
|
|
#define d_sqrt(x) (sqrt(*(x)))
|
|
#define d_tan(x) (tan(*(x)))
|
|
#define d_tanh(x) (tanh(*(x)))
|
|
#define i_abs(x) abs(*(x))
|
|
#define i_dnnt(x) ((integer)u_nint(*(x)))
|
|
#define i_len(s, n) (n)
|
|
#define i_nint(x) ((integer)u_nint(*(x)))
|
|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
|
|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
|
|
#define pow_si(B,E) spow_ui(*(B),*(E))
|
|
#define pow_ri(B,E) spow_ui(*(B),*(E))
|
|
#define pow_di(B,E) dpow_ui(*(B),*(E))
|
|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
|
|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
|
|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
|
|
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
|
|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
|
|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
|
|
#define sig_die(s, kill) { exit(1); }
|
|
#define s_stop(s, n) {exit(0);}
|
|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
|
|
#define z_abs(z) (cabs(Cd(z)))
|
|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
|
|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
|
|
#define myexit_() break;
|
|
#define mycycle_() continue;
|
|
#define myceiling_(w) {ceil(w)}
|
|
#define myhuge_(w) {HUGE_VAL}
|
|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
|
|
#define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
|
|
|
|
/* procedure parameter types for -A and -C++ */
|
|
|
|
|
|
#ifdef __cplusplus
|
|
typedef logical (*L_fp)(...);
|
|
#else
|
|
typedef logical (*L_fp)();
|
|
#endif
|
|
|
|
static float spow_ui(float x, integer n) {
|
|
float pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
static double dpow_ui(double x, integer n) {
|
|
double pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#ifdef _MSC_VER
|
|
static _Fcomplex cpow_ui(complex x, integer n) {
|
|
complex pow={1.0,0.0}; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow.r *= x.r, pow.i *= x.i;
|
|
if(u >>= 1) x.r *= x.r, x.i *= x.i;
|
|
else break;
|
|
}
|
|
}
|
|
_Fcomplex p={pow.r, pow.i};
|
|
return p;
|
|
}
|
|
#else
|
|
static _Complex float cpow_ui(_Complex float x, integer n) {
|
|
_Complex float pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#endif
|
|
#ifdef _MSC_VER
|
|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
|
|
_Dcomplex pow={1.0,0.0}; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
|
|
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
|
|
else break;
|
|
}
|
|
}
|
|
_Dcomplex p = {pow._Val[0], pow._Val[1]};
|
|
return p;
|
|
}
|
|
#else
|
|
static _Complex double zpow_ui(_Complex double x, integer n) {
|
|
_Complex double pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#endif
|
|
static integer pow_ii(integer x, integer n) {
|
|
integer pow; unsigned long int u;
|
|
if (n <= 0) {
|
|
if (n == 0 || x == 1) pow = 1;
|
|
else if (x != -1) pow = x == 0 ? 1/x : 0;
|
|
else n = -n;
|
|
}
|
|
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
|
|
u = n;
|
|
for(pow = 1; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
|
|
{
|
|
double m; integer i, mi;
|
|
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
|
if (w[i-1]>m) mi=i ,m=w[i-1];
|
|
return mi-s+1;
|
|
}
|
|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
|
|
{
|
|
float m; integer i, mi;
|
|
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
|
if (w[i-1]>m) mi=i ,m=w[i-1];
|
|
return mi-s+1;
|
|
}
|
|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Fcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
|
|
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex float zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Dcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
|
|
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex double zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Fcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
|
|
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex float zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cf(&x[i]) * Cf(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Dcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
|
|
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex double zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cd(&x[i]) * Cd(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#endif
|
|
/* -- translated by f2c (version 20000121).
|
|
You must link the resulting object file with the libraries:
|
|
-lf2c -lm (in that order)
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
/* Table of constant values */
|
|
|
|
static complex c_b1 = {0.f,0.f};
|
|
static complex c_b2 = {1.f,0.f};
|
|
static integer c__2 = 2;
|
|
static integer c__1 = 1;
|
|
static integer c__3 = 3;
|
|
|
|
/* > \brief \b CLAQR5 performs a single small-bulge multi-shift QR sweep. */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* > \htmlonly */
|
|
/* > Download CLAQR5 + dependencies */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claqr5.
|
|
f"> */
|
|
/* > [TGZ]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claqr5.
|
|
f"> */
|
|
/* > [ZIP]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claqr5.
|
|
f"> */
|
|
/* > [TXT]</a> */
|
|
/* > \endhtmlonly */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* SUBROUTINE CLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NSHFTS, S, */
|
|
/* H, LDH, ILOZ, IHIZ, Z, LDZ, V, LDV, U, LDU, NV, */
|
|
/* WV, LDWV, NH, WH, LDWH ) */
|
|
|
|
/* INTEGER IHIZ, ILOZ, KACC22, KBOT, KTOP, LDH, LDU, LDV, */
|
|
/* $ LDWH, LDWV, LDZ, N, NH, NSHFTS, NV */
|
|
/* LOGICAL WANTT, WANTZ */
|
|
/* COMPLEX H( LDH, * ), S( * ), U( LDU, * ), V( LDV, * ), */
|
|
/* $ WH( LDWH, * ), WV( LDWV, * ), Z( LDZ, * ) */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > CLAQR5 called by CLAQR0 performs a */
|
|
/* > single small-bulge multi-shift QR sweep. */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] WANTT */
|
|
/* > \verbatim */
|
|
/* > WANTT is LOGICAL */
|
|
/* > WANTT = .true. if the triangular Schur factor */
|
|
/* > is being computed. WANTT is set to .false. otherwise. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] WANTZ */
|
|
/* > \verbatim */
|
|
/* > WANTZ is LOGICAL */
|
|
/* > WANTZ = .true. if the unitary Schur factor is being */
|
|
/* > computed. WANTZ is set to .false. otherwise. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] KACC22 */
|
|
/* > \verbatim */
|
|
/* > KACC22 is INTEGER with value 0, 1, or 2. */
|
|
/* > Specifies the computation mode of far-from-diagonal */
|
|
/* > orthogonal updates. */
|
|
/* > = 0: CLAQR5 does not accumulate reflections and does not */
|
|
/* > use matrix-matrix multiply to update far-from-diagonal */
|
|
/* > matrix entries. */
|
|
/* > = 1: CLAQR5 accumulates reflections and uses matrix-matrix */
|
|
/* > multiply to update the far-from-diagonal matrix entries. */
|
|
/* > = 2: Same as KACC22 = 1. This option used to enable exploiting */
|
|
/* > the 2-by-2 structure during matrix multiplications, but */
|
|
/* > this is no longer supported. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > N is the order of the Hessenberg matrix H upon which this */
|
|
/* > subroutine operates. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] KTOP */
|
|
/* > \verbatim */
|
|
/* > KTOP is INTEGER */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] KBOT */
|
|
/* > \verbatim */
|
|
/* > KBOT is INTEGER */
|
|
/* > These are the first and last rows and columns of an */
|
|
/* > isolated diagonal block upon which the QR sweep is to be */
|
|
/* > applied. It is assumed without a check that */
|
|
/* > either KTOP = 1 or H(KTOP,KTOP-1) = 0 */
|
|
/* > and */
|
|
/* > either KBOT = N or H(KBOT+1,KBOT) = 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] NSHFTS */
|
|
/* > \verbatim */
|
|
/* > NSHFTS is INTEGER */
|
|
/* > NSHFTS gives the number of simultaneous shifts. NSHFTS */
|
|
/* > must be positive and even. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] S */
|
|
/* > \verbatim */
|
|
/* > S is COMPLEX array, dimension (NSHFTS) */
|
|
/* > S contains the shifts of origin that define the multi- */
|
|
/* > shift QR sweep. On output S may be reordered. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] H */
|
|
/* > \verbatim */
|
|
/* > H is COMPLEX array, dimension (LDH,N) */
|
|
/* > On input H contains a Hessenberg matrix. On output a */
|
|
/* > multi-shift QR sweep with shifts SR(J)+i*SI(J) is applied */
|
|
/* > to the isolated diagonal block in rows and columns KTOP */
|
|
/* > through KBOT. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDH */
|
|
/* > \verbatim */
|
|
/* > LDH is INTEGER */
|
|
/* > LDH is the leading dimension of H just as declared in the */
|
|
/* > calling procedure. LDH >= MAX(1,N). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] ILOZ */
|
|
/* > \verbatim */
|
|
/* > ILOZ is INTEGER */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] IHIZ */
|
|
/* > \verbatim */
|
|
/* > IHIZ is INTEGER */
|
|
/* > Specify the rows of Z to which transformations must be */
|
|
/* > applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] Z */
|
|
/* > \verbatim */
|
|
/* > Z is COMPLEX array, dimension (LDZ,IHIZ) */
|
|
/* > If WANTZ = .TRUE., then the QR Sweep unitary */
|
|
/* > similarity transformation is accumulated into */
|
|
/* > Z(ILOZ:IHIZ,ILOZ:IHIZ) from the right. */
|
|
/* > If WANTZ = .FALSE., then Z is unreferenced. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDZ */
|
|
/* > \verbatim */
|
|
/* > LDZ is INTEGER */
|
|
/* > LDA is the leading dimension of Z just as declared in */
|
|
/* > the calling procedure. LDZ >= N. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] V */
|
|
/* > \verbatim */
|
|
/* > V is COMPLEX array, dimension (LDV,NSHFTS/2) */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDV */
|
|
/* > \verbatim */
|
|
/* > LDV is INTEGER */
|
|
/* > LDV is the leading dimension of V as declared in the */
|
|
/* > calling procedure. LDV >= 3. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] U */
|
|
/* > \verbatim */
|
|
/* > U is COMPLEX array, dimension (LDU,2*NSHFTS) */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDU */
|
|
/* > \verbatim */
|
|
/* > LDU is INTEGER */
|
|
/* > LDU is the leading dimension of U just as declared in the */
|
|
/* > in the calling subroutine. LDU >= 2*NSHFTS. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] NV */
|
|
/* > \verbatim */
|
|
/* > NV is INTEGER */
|
|
/* > NV is the number of rows in WV agailable for workspace. */
|
|
/* > NV >= 1. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] WV */
|
|
/* > \verbatim */
|
|
/* > WV is COMPLEX array, dimension (LDWV,2*NSHFTS) */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDWV */
|
|
/* > \verbatim */
|
|
/* > LDWV is INTEGER */
|
|
/* > LDWV is the leading dimension of WV as declared in the */
|
|
/* > in the calling subroutine. LDWV >= NV. */
|
|
/* > \endverbatim */
|
|
|
|
/* > \param[in] NH */
|
|
/* > \verbatim */
|
|
/* > NH is INTEGER */
|
|
/* > NH is the number of columns in array WH available for */
|
|
/* > workspace. NH >= 1. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] WH */
|
|
/* > \verbatim */
|
|
/* > WH is COMPLEX array, dimension (LDWH,NH) */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDWH */
|
|
/* > \verbatim */
|
|
/* > LDWH is INTEGER */
|
|
/* > Leading dimension of WH just as declared in the */
|
|
/* > calling procedure. LDWH >= 2*NSHFTS. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \date January 2021 */
|
|
|
|
/* > \ingroup complexOTHERauxiliary */
|
|
|
|
/* > \par Contributors: */
|
|
/* ================== */
|
|
/* > */
|
|
/* > Karen Braman and Ralph Byers, Department of Mathematics, */
|
|
/* > University of Kansas, USA */
|
|
/* > */
|
|
/* > Lars Karlsson, Daniel Kressner, and Bruno Lang */
|
|
/* > */
|
|
/* > Thijs Steel, Department of Computer science, */
|
|
/* > KU Leuven, Belgium */
|
|
|
|
/* > \par References: */
|
|
/* ================ */
|
|
/* > */
|
|
/* > K. Braman, R. Byers and R. Mathias, The Multi-Shift QR */
|
|
/* > Algorithm Part I: Maintaining Well Focused Shifts, and Level 3 */
|
|
/* > Performance, SIAM Journal of Matrix Analysis, volume 23, pages */
|
|
/* > 929--947, 2002. */
|
|
/* > */
|
|
/* > Lars Karlsson, Daniel Kressner, and Bruno Lang, Optimally packed */
|
|
/* > chains of bulges in multishift QR algorithms. */
|
|
/* > ACM Trans. Math. Softw. 40, 2, Article 12 (February 2014). */
|
|
/* > */
|
|
/* ===================================================================== */
|
|
/* Subroutine */ void claqr5_(logical *wantt, logical *wantz, integer *kacc22,
|
|
integer *n, integer *ktop, integer *kbot, integer *nshfts, complex *s,
|
|
complex *h__, integer *ldh, integer *iloz, integer *ihiz, complex *
|
|
z__, integer *ldz, complex *v, integer *ldv, complex *u, integer *ldu,
|
|
integer *nv, complex *wv, integer *ldwv, integer *nh, complex *wh,
|
|
integer *ldwh)
|
|
{
|
|
/* System generated locals */
|
|
integer h_dim1, h_offset, u_dim1, u_offset, v_dim1, v_offset, wh_dim1,
|
|
wh_offset, wv_dim1, wv_offset, z_dim1, z_offset, i__1, i__2, i__3,
|
|
i__4, i__5, i__6, i__7, i__8, i__9, i__10, i__11;
|
|
real r__1, r__2, r__3, r__4, r__5, r__6, r__7, r__8, r__9, r__10;
|
|
complex q__1, q__2, q__3, q__4, q__5, q__6, q__7, q__8;
|
|
|
|
/* Local variables */
|
|
complex beta;
|
|
logical bmp22;
|
|
integer jcol, jlen, jbot, mbot, jtop, jrow, mtop, j, k, m;
|
|
complex alpha;
|
|
logical accum;
|
|
extern /* Subroutine */ void cgemm_(char *, char *, integer *, integer *,
|
|
integer *, complex *, complex *, integer *, complex *, integer *,
|
|
complex *, complex *, integer *);
|
|
integer ndcol, incol, krcol, nbmps, i2, k1, i4;
|
|
extern /* Subroutine */ void claqr1_(integer *, complex *, integer *,
|
|
complex *, complex *, complex *);
|
|
real h11, h12, h21, h22;
|
|
integer m22;
|
|
extern /* Subroutine */ void slabad_(real *, real *), clarfg_(integer *,
|
|
complex *, complex *, integer *, complex *);
|
|
integer ns, nu;
|
|
extern real slamch_(char *);
|
|
complex vt[3];
|
|
extern /* Subroutine */ void clacpy_(char *, integer *, integer *, complex
|
|
*, integer *, complex *, integer *), claset_(char *,
|
|
integer *, integer *, complex *, complex *, complex *, integer *);
|
|
real safmin, safmax;
|
|
complex refsum;
|
|
real smlnum, scl;
|
|
integer kdu, kms;
|
|
real ulp;
|
|
real tst1, tst2;
|
|
|
|
|
|
/* -- LAPACK auxiliary routine (version 3.7.1) -- */
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
/* June 2016 */
|
|
|
|
|
|
/* ================================================================ */
|
|
|
|
|
|
/* ==== If there are no shifts, then there is nothing to do. ==== */
|
|
|
|
/* Parameter adjustments */
|
|
--s;
|
|
h_dim1 = *ldh;
|
|
h_offset = 1 + h_dim1 * 1;
|
|
h__ -= h_offset;
|
|
z_dim1 = *ldz;
|
|
z_offset = 1 + z_dim1 * 1;
|
|
z__ -= z_offset;
|
|
v_dim1 = *ldv;
|
|
v_offset = 1 + v_dim1 * 1;
|
|
v -= v_offset;
|
|
u_dim1 = *ldu;
|
|
u_offset = 1 + u_dim1 * 1;
|
|
u -= u_offset;
|
|
wv_dim1 = *ldwv;
|
|
wv_offset = 1 + wv_dim1 * 1;
|
|
wv -= wv_offset;
|
|
wh_dim1 = *ldwh;
|
|
wh_offset = 1 + wh_dim1 * 1;
|
|
wh -= wh_offset;
|
|
|
|
/* Function Body */
|
|
if (*nshfts < 2) {
|
|
return;
|
|
}
|
|
|
|
/* ==== If the active block is empty or 1-by-1, then there */
|
|
/* . is nothing to do. ==== */
|
|
|
|
if (*ktop >= *kbot) {
|
|
return;
|
|
}
|
|
|
|
/* ==== NSHFTS is supposed to be even, but if it is odd, */
|
|
/* . then simply reduce it by one. ==== */
|
|
|
|
ns = *nshfts - *nshfts % 2;
|
|
|
|
/* ==== Machine constants for deflation ==== */
|
|
|
|
safmin = slamch_("SAFE MINIMUM");
|
|
safmax = 1.f / safmin;
|
|
slabad_(&safmin, &safmax);
|
|
ulp = slamch_("PRECISION");
|
|
smlnum = safmin * ((real) (*n) / ulp);
|
|
|
|
/* ==== Use accumulated reflections to update far-from-diagonal */
|
|
/* . entries ? ==== */
|
|
|
|
accum = *kacc22 == 1 || *kacc22 == 2;
|
|
|
|
/* ==== clear trash ==== */
|
|
|
|
if (*ktop + 2 <= *kbot) {
|
|
i__1 = *ktop + 2 + *ktop * h_dim1;
|
|
h__[i__1].r = 0.f, h__[i__1].i = 0.f;
|
|
}
|
|
|
|
/* ==== NBMPS = number of 2-shift bulges in the chain ==== */
|
|
|
|
nbmps = ns / 2;
|
|
|
|
/* ==== KDU = width of slab ==== */
|
|
|
|
kdu = nbmps << 2;
|
|
|
|
/* ==== Create and chase chains of NBMPS bulges ==== */
|
|
|
|
i__1 = *kbot - 2;
|
|
i__2 = nbmps << 1;
|
|
for (incol = *ktop - (nbmps << 1) + 1; i__2 < 0 ? incol >= i__1 : incol <=
|
|
i__1; incol += i__2) {
|
|
|
|
/* JTOP = Index from which updates from the right start. */
|
|
|
|
if (accum) {
|
|
jtop = f2cmax(*ktop,incol);
|
|
} else if (*wantt) {
|
|
jtop = 1;
|
|
} else {
|
|
jtop = *ktop;
|
|
}
|
|
|
|
ndcol = incol + kdu;
|
|
if (accum) {
|
|
claset_("ALL", &kdu, &kdu, &c_b1, &c_b2, &u[u_offset], ldu);
|
|
}
|
|
|
|
/* ==== Near-the-diagonal bulge chase. The following loop */
|
|
/* . performs the near-the-diagonal part of a small bulge */
|
|
/* . multi-shift QR sweep. Each 4*NBMPS column diagonal */
|
|
/* . chunk extends from column INCOL to column NDCOL */
|
|
/* . (including both column INCOL and column NDCOL). The */
|
|
/* . following loop chases a 2*NBMPS+1 column long chain of */
|
|
/* . NBMPS bulges 2*NBMPS columns to the right. (INCOL */
|
|
/* . may be less than KTOP and and NDCOL may be greater than */
|
|
/* . KBOT indicating phantom columns from which to chase */
|
|
/* . bulges before they are actually introduced or to which */
|
|
/* . to chase bulges beyond column KBOT.) ==== */
|
|
|
|
/* Computing MIN */
|
|
i__4 = incol + (nbmps << 1) - 1, i__5 = *kbot - 2;
|
|
i__3 = f2cmin(i__4,i__5);
|
|
for (krcol = incol; krcol <= i__3; ++krcol) {
|
|
|
|
/* ==== Bulges number MTOP to MBOT are active double implicit */
|
|
/* . shift bulges. There may or may not also be small */
|
|
/* . 2-by-2 bulge, if there is room. The inactive bulges */
|
|
/* . (if any) must wait until the active bulges have moved */
|
|
/* . down the diagonal to make room. The phantom matrix */
|
|
/* . paradigm described above helps keep track. ==== */
|
|
|
|
/* Computing MAX */
|
|
i__4 = 1, i__5 = (*ktop - krcol) / 2 + 1;
|
|
mtop = f2cmax(i__4,i__5);
|
|
/* Computing MIN */
|
|
i__4 = nbmps, i__5 = (*kbot - krcol - 1) / 2;
|
|
mbot = f2cmin(i__4,i__5);
|
|
m22 = mbot + 1;
|
|
bmp22 = mbot < nbmps && krcol + (m22 - 1 << 1) == *kbot - 2;
|
|
|
|
/* ==== Generate reflections to chase the chain right */
|
|
/* . one column. (The minimum value of K is KTOP-1.) ==== */
|
|
|
|
if (bmp22) {
|
|
|
|
/* ==== Special case: 2-by-2 reflection at bottom treated */
|
|
/* . separately ==== */
|
|
|
|
k = krcol + (m22 - 1 << 1);
|
|
if (k == *ktop - 1) {
|
|
claqr1_(&c__2, &h__[k + 1 + (k + 1) * h_dim1], ldh, &s[(
|
|
m22 << 1) - 1], &s[m22 * 2], &v[m22 * v_dim1 + 1])
|
|
;
|
|
i__4 = m22 * v_dim1 + 1;
|
|
beta.r = v[i__4].r, beta.i = v[i__4].i;
|
|
clarfg_(&c__2, &beta, &v[m22 * v_dim1 + 2], &c__1, &v[m22
|
|
* v_dim1 + 1]);
|
|
} else {
|
|
i__4 = k + 1 + k * h_dim1;
|
|
beta.r = h__[i__4].r, beta.i = h__[i__4].i;
|
|
i__4 = m22 * v_dim1 + 2;
|
|
i__5 = k + 2 + k * h_dim1;
|
|
v[i__4].r = h__[i__5].r, v[i__4].i = h__[i__5].i;
|
|
clarfg_(&c__2, &beta, &v[m22 * v_dim1 + 2], &c__1, &v[m22
|
|
* v_dim1 + 1]);
|
|
i__4 = k + 1 + k * h_dim1;
|
|
h__[i__4].r = beta.r, h__[i__4].i = beta.i;
|
|
i__4 = k + 2 + k * h_dim1;
|
|
h__[i__4].r = 0.f, h__[i__4].i = 0.f;
|
|
}
|
|
|
|
/* ==== Perform update from right within */
|
|
/* . computational window. ==== */
|
|
|
|
/* Computing MIN */
|
|
i__5 = *kbot, i__6 = k + 3;
|
|
i__4 = f2cmin(i__5,i__6);
|
|
for (j = jtop; j <= i__4; ++j) {
|
|
i__5 = m22 * v_dim1 + 1;
|
|
i__6 = j + (k + 1) * h_dim1;
|
|
i__7 = m22 * v_dim1 + 2;
|
|
i__8 = j + (k + 2) * h_dim1;
|
|
q__3.r = v[i__7].r * h__[i__8].r - v[i__7].i * h__[i__8]
|
|
.i, q__3.i = v[i__7].r * h__[i__8].i + v[i__7].i *
|
|
h__[i__8].r;
|
|
q__2.r = h__[i__6].r + q__3.r, q__2.i = h__[i__6].i +
|
|
q__3.i;
|
|
q__1.r = v[i__5].r * q__2.r - v[i__5].i * q__2.i, q__1.i =
|
|
v[i__5].r * q__2.i + v[i__5].i * q__2.r;
|
|
refsum.r = q__1.r, refsum.i = q__1.i;
|
|
i__5 = j + (k + 1) * h_dim1;
|
|
i__6 = j + (k + 1) * h_dim1;
|
|
q__1.r = h__[i__6].r - refsum.r, q__1.i = h__[i__6].i -
|
|
refsum.i;
|
|
h__[i__5].r = q__1.r, h__[i__5].i = q__1.i;
|
|
i__5 = j + (k + 2) * h_dim1;
|
|
i__6 = j + (k + 2) * h_dim1;
|
|
r_cnjg(&q__3, &v[m22 * v_dim1 + 2]);
|
|
q__2.r = refsum.r * q__3.r - refsum.i * q__3.i, q__2.i =
|
|
refsum.r * q__3.i + refsum.i * q__3.r;
|
|
q__1.r = h__[i__6].r - q__2.r, q__1.i = h__[i__6].i -
|
|
q__2.i;
|
|
h__[i__5].r = q__1.r, h__[i__5].i = q__1.i;
|
|
/* L30: */
|
|
}
|
|
|
|
/* ==== Perform update from left within */
|
|
/* . computational window. ==== */
|
|
|
|
if (accum) {
|
|
jbot = f2cmin(ndcol,*kbot);
|
|
} else if (*wantt) {
|
|
jbot = *n;
|
|
} else {
|
|
jbot = *kbot;
|
|
}
|
|
i__4 = jbot;
|
|
for (j = k + 1; j <= i__4; ++j) {
|
|
r_cnjg(&q__2, &v[m22 * v_dim1 + 1]);
|
|
i__5 = k + 1 + j * h_dim1;
|
|
r_cnjg(&q__5, &v[m22 * v_dim1 + 2]);
|
|
i__6 = k + 2 + j * h_dim1;
|
|
q__4.r = q__5.r * h__[i__6].r - q__5.i * h__[i__6].i,
|
|
q__4.i = q__5.r * h__[i__6].i + q__5.i * h__[i__6]
|
|
.r;
|
|
q__3.r = h__[i__5].r + q__4.r, q__3.i = h__[i__5].i +
|
|
q__4.i;
|
|
q__1.r = q__2.r * q__3.r - q__2.i * q__3.i, q__1.i =
|
|
q__2.r * q__3.i + q__2.i * q__3.r;
|
|
refsum.r = q__1.r, refsum.i = q__1.i;
|
|
i__5 = k + 1 + j * h_dim1;
|
|
i__6 = k + 1 + j * h_dim1;
|
|
q__1.r = h__[i__6].r - refsum.r, q__1.i = h__[i__6].i -
|
|
refsum.i;
|
|
h__[i__5].r = q__1.r, h__[i__5].i = q__1.i;
|
|
i__5 = k + 2 + j * h_dim1;
|
|
i__6 = k + 2 + j * h_dim1;
|
|
i__7 = m22 * v_dim1 + 2;
|
|
q__2.r = refsum.r * v[i__7].r - refsum.i * v[i__7].i,
|
|
q__2.i = refsum.r * v[i__7].i + refsum.i * v[i__7]
|
|
.r;
|
|
q__1.r = h__[i__6].r - q__2.r, q__1.i = h__[i__6].i -
|
|
q__2.i;
|
|
h__[i__5].r = q__1.r, h__[i__5].i = q__1.i;
|
|
/* L40: */
|
|
}
|
|
|
|
/* ==== The following convergence test requires that */
|
|
/* . the tradition small-compared-to-nearby-diagonals */
|
|
/* . criterion and the Ahues & Tisseur (LAWN 122, 1997) */
|
|
/* . criteria both be satisfied. The latter improves */
|
|
/* . accuracy in some examples. Falling back on an */
|
|
/* . alternate convergence criterion when TST1 or TST2 */
|
|
/* . is zero (as done here) is traditional but probably */
|
|
/* . unnecessary. ==== */
|
|
|
|
if (k >= *ktop) {
|
|
i__4 = k + 1 + k * h_dim1;
|
|
if (h__[i__4].r != 0.f || h__[i__4].i != 0.f) {
|
|
i__4 = k + k * h_dim1;
|
|
i__5 = k + 1 + (k + 1) * h_dim1;
|
|
tst1 = (r__1 = h__[i__4].r, abs(r__1)) + (r__2 =
|
|
r_imag(&h__[k + k * h_dim1]), abs(r__2)) + ((
|
|
r__3 = h__[i__5].r, abs(r__3)) + (r__4 =
|
|
r_imag(&h__[k + 1 + (k + 1) * h_dim1]), abs(
|
|
r__4)));
|
|
if (tst1 == 0.f) {
|
|
if (k >= *ktop + 1) {
|
|
i__4 = k + (k - 1) * h_dim1;
|
|
tst1 += (r__1 = h__[i__4].r, abs(r__1)) + (
|
|
r__2 = r_imag(&h__[k + (k - 1) *
|
|
h_dim1]), abs(r__2));
|
|
}
|
|
if (k >= *ktop + 2) {
|
|
i__4 = k + (k - 2) * h_dim1;
|
|
tst1 += (r__1 = h__[i__4].r, abs(r__1)) + (
|
|
r__2 = r_imag(&h__[k + (k - 2) *
|
|
h_dim1]), abs(r__2));
|
|
}
|
|
if (k >= *ktop + 3) {
|
|
i__4 = k + (k - 3) * h_dim1;
|
|
tst1 += (r__1 = h__[i__4].r, abs(r__1)) + (
|
|
r__2 = r_imag(&h__[k + (k - 3) *
|
|
h_dim1]), abs(r__2));
|
|
}
|
|
if (k <= *kbot - 2) {
|
|
i__4 = k + 2 + (k + 1) * h_dim1;
|
|
tst1 += (r__1 = h__[i__4].r, abs(r__1)) + (
|
|
r__2 = r_imag(&h__[k + 2 + (k + 1) *
|
|
h_dim1]), abs(r__2));
|
|
}
|
|
if (k <= *kbot - 3) {
|
|
i__4 = k + 3 + (k + 1) * h_dim1;
|
|
tst1 += (r__1 = h__[i__4].r, abs(r__1)) + (
|
|
r__2 = r_imag(&h__[k + 3 + (k + 1) *
|
|
h_dim1]), abs(r__2));
|
|
}
|
|
if (k <= *kbot - 4) {
|
|
i__4 = k + 4 + (k + 1) * h_dim1;
|
|
tst1 += (r__1 = h__[i__4].r, abs(r__1)) + (
|
|
r__2 = r_imag(&h__[k + 4 + (k + 1) *
|
|
h_dim1]), abs(r__2));
|
|
}
|
|
}
|
|
i__4 = k + 1 + k * h_dim1;
|
|
/* Computing MAX */
|
|
r__3 = smlnum, r__4 = ulp * tst1;
|
|
if ((r__1 = h__[i__4].r, abs(r__1)) + (r__2 = r_imag(&
|
|
h__[k + 1 + k * h_dim1]), abs(r__2)) <= f2cmax(
|
|
r__3,r__4)) {
|
|
/* Computing MAX */
|
|
i__4 = k + 1 + k * h_dim1;
|
|
i__5 = k + (k + 1) * h_dim1;
|
|
r__5 = (r__1 = h__[i__4].r, abs(r__1)) + (r__2 =
|
|
r_imag(&h__[k + 1 + k * h_dim1]), abs(
|
|
r__2)), r__6 = (r__3 = h__[i__5].r, abs(
|
|
r__3)) + (r__4 = r_imag(&h__[k + (k + 1) *
|
|
h_dim1]), abs(r__4));
|
|
h12 = f2cmax(r__5,r__6);
|
|
/* Computing MIN */
|
|
i__4 = k + 1 + k * h_dim1;
|
|
i__5 = k + (k + 1) * h_dim1;
|
|
r__5 = (r__1 = h__[i__4].r, abs(r__1)) + (r__2 =
|
|
r_imag(&h__[k + 1 + k * h_dim1]), abs(
|
|
r__2)), r__6 = (r__3 = h__[i__5].r, abs(
|
|
r__3)) + (r__4 = r_imag(&h__[k + (k + 1) *
|
|
h_dim1]), abs(r__4));
|
|
h21 = f2cmin(r__5,r__6);
|
|
i__4 = k + k * h_dim1;
|
|
i__5 = k + 1 + (k + 1) * h_dim1;
|
|
q__2.r = h__[i__4].r - h__[i__5].r, q__2.i = h__[
|
|
i__4].i - h__[i__5].i;
|
|
q__1.r = q__2.r, q__1.i = q__2.i;
|
|
/* Computing MAX */
|
|
i__6 = k + 1 + (k + 1) * h_dim1;
|
|
r__5 = (r__1 = h__[i__6].r, abs(r__1)) + (r__2 =
|
|
r_imag(&h__[k + 1 + (k + 1) * h_dim1]),
|
|
abs(r__2)), r__6 = (r__3 = q__1.r, abs(
|
|
r__3)) + (r__4 = r_imag(&q__1), abs(r__4))
|
|
;
|
|
h11 = f2cmax(r__5,r__6);
|
|
i__4 = k + k * h_dim1;
|
|
i__5 = k + 1 + (k + 1) * h_dim1;
|
|
q__2.r = h__[i__4].r - h__[i__5].r, q__2.i = h__[
|
|
i__4].i - h__[i__5].i;
|
|
q__1.r = q__2.r, q__1.i = q__2.i;
|
|
/* Computing MIN */
|
|
i__6 = k + 1 + (k + 1) * h_dim1;
|
|
r__5 = (r__1 = h__[i__6].r, abs(r__1)) + (r__2 =
|
|
r_imag(&h__[k + 1 + (k + 1) * h_dim1]),
|
|
abs(r__2)), r__6 = (r__3 = q__1.r, abs(
|
|
r__3)) + (r__4 = r_imag(&q__1), abs(r__4))
|
|
;
|
|
h22 = f2cmin(r__5,r__6);
|
|
scl = h11 + h12;
|
|
tst2 = h22 * (h11 / scl);
|
|
|
|
/* Computing MAX */
|
|
r__1 = smlnum, r__2 = ulp * tst2;
|
|
if (tst2 == 0.f || h21 * (h12 / scl) <= f2cmax(r__1,
|
|
r__2)) {
|
|
i__4 = k + 1 + k * h_dim1;
|
|
h__[i__4].r = 0.f, h__[i__4].i = 0.f;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ==== Accumulate orthogonal transformations. ==== */
|
|
|
|
if (accum) {
|
|
kms = k - incol;
|
|
/* Computing MAX */
|
|
i__4 = 1, i__5 = *ktop - incol;
|
|
i__6 = kdu;
|
|
for (j = f2cmax(i__4,i__5); j <= i__6; ++j) {
|
|
i__4 = m22 * v_dim1 + 1;
|
|
i__5 = j + (kms + 1) * u_dim1;
|
|
i__7 = m22 * v_dim1 + 2;
|
|
i__8 = j + (kms + 2) * u_dim1;
|
|
q__3.r = v[i__7].r * u[i__8].r - v[i__7].i * u[i__8]
|
|
.i, q__3.i = v[i__7].r * u[i__8].i + v[i__7]
|
|
.i * u[i__8].r;
|
|
q__2.r = u[i__5].r + q__3.r, q__2.i = u[i__5].i +
|
|
q__3.i;
|
|
q__1.r = v[i__4].r * q__2.r - v[i__4].i * q__2.i,
|
|
q__1.i = v[i__4].r * q__2.i + v[i__4].i *
|
|
q__2.r;
|
|
refsum.r = q__1.r, refsum.i = q__1.i;
|
|
i__4 = j + (kms + 1) * u_dim1;
|
|
i__5 = j + (kms + 1) * u_dim1;
|
|
q__1.r = u[i__5].r - refsum.r, q__1.i = u[i__5].i -
|
|
refsum.i;
|
|
u[i__4].r = q__1.r, u[i__4].i = q__1.i;
|
|
i__4 = j + (kms + 2) * u_dim1;
|
|
i__5 = j + (kms + 2) * u_dim1;
|
|
r_cnjg(&q__3, &v[m22 * v_dim1 + 2]);
|
|
q__2.r = refsum.r * q__3.r - refsum.i * q__3.i,
|
|
q__2.i = refsum.r * q__3.i + refsum.i *
|
|
q__3.r;
|
|
q__1.r = u[i__5].r - q__2.r, q__1.i = u[i__5].i -
|
|
q__2.i;
|
|
u[i__4].r = q__1.r, u[i__4].i = q__1.i;
|
|
/* L50: */
|
|
}
|
|
} else if (*wantz) {
|
|
i__6 = *ihiz;
|
|
for (j = *iloz; j <= i__6; ++j) {
|
|
i__4 = m22 * v_dim1 + 1;
|
|
i__5 = j + (k + 1) * z_dim1;
|
|
i__7 = m22 * v_dim1 + 2;
|
|
i__8 = j + (k + 2) * z_dim1;
|
|
q__3.r = v[i__7].r * z__[i__8].r - v[i__7].i * z__[
|
|
i__8].i, q__3.i = v[i__7].r * z__[i__8].i + v[
|
|
i__7].i * z__[i__8].r;
|
|
q__2.r = z__[i__5].r + q__3.r, q__2.i = z__[i__5].i +
|
|
q__3.i;
|
|
q__1.r = v[i__4].r * q__2.r - v[i__4].i * q__2.i,
|
|
q__1.i = v[i__4].r * q__2.i + v[i__4].i *
|
|
q__2.r;
|
|
refsum.r = q__1.r, refsum.i = q__1.i;
|
|
i__4 = j + (k + 1) * z_dim1;
|
|
i__5 = j + (k + 1) * z_dim1;
|
|
q__1.r = z__[i__5].r - refsum.r, q__1.i = z__[i__5].i
|
|
- refsum.i;
|
|
z__[i__4].r = q__1.r, z__[i__4].i = q__1.i;
|
|
i__4 = j + (k + 2) * z_dim1;
|
|
i__5 = j + (k + 2) * z_dim1;
|
|
r_cnjg(&q__3, &v[m22 * v_dim1 + 2]);
|
|
q__2.r = refsum.r * q__3.r - refsum.i * q__3.i,
|
|
q__2.i = refsum.r * q__3.i + refsum.i *
|
|
q__3.r;
|
|
q__1.r = z__[i__5].r - q__2.r, q__1.i = z__[i__5].i -
|
|
q__2.i;
|
|
z__[i__4].r = q__1.r, z__[i__4].i = q__1.i;
|
|
/* L60: */
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ==== Normal case: Chain of 3-by-3 reflections ==== */
|
|
|
|
i__6 = mtop;
|
|
for (m = mbot; m >= i__6; --m) {
|
|
k = krcol + (m - 1 << 1);
|
|
if (k == *ktop - 1) {
|
|
claqr1_(&c__3, &h__[*ktop + *ktop * h_dim1], ldh, &s[(m <<
|
|
1) - 1], &s[m * 2], &v[m * v_dim1 + 1]);
|
|
i__4 = m * v_dim1 + 1;
|
|
alpha.r = v[i__4].r, alpha.i = v[i__4].i;
|
|
clarfg_(&c__3, &alpha, &v[m * v_dim1 + 2], &c__1, &v[m *
|
|
v_dim1 + 1]);
|
|
} else {
|
|
|
|
/* ==== Perform delayed transformation of row below */
|
|
/* . Mth bulge. Exploit fact that first two elements */
|
|
/* . of row are actually zero. ==== */
|
|
|
|
i__4 = m * v_dim1 + 1;
|
|
i__5 = m * v_dim1 + 3;
|
|
q__2.r = v[i__4].r * v[i__5].r - v[i__4].i * v[i__5].i,
|
|
q__2.i = v[i__4].r * v[i__5].i + v[i__4].i * v[
|
|
i__5].r;
|
|
i__7 = k + 3 + (k + 2) * h_dim1;
|
|
q__1.r = q__2.r * h__[i__7].r - q__2.i * h__[i__7].i,
|
|
q__1.i = q__2.r * h__[i__7].i + q__2.i * h__[i__7]
|
|
.r;
|
|
refsum.r = q__1.r, refsum.i = q__1.i;
|
|
i__4 = k + 3 + k * h_dim1;
|
|
q__1.r = -refsum.r, q__1.i = -refsum.i;
|
|
h__[i__4].r = q__1.r, h__[i__4].i = q__1.i;
|
|
i__4 = k + 3 + (k + 1) * h_dim1;
|
|
q__2.r = -refsum.r, q__2.i = -refsum.i;
|
|
r_cnjg(&q__3, &v[m * v_dim1 + 2]);
|
|
q__1.r = q__2.r * q__3.r - q__2.i * q__3.i, q__1.i =
|
|
q__2.r * q__3.i + q__2.i * q__3.r;
|
|
h__[i__4].r = q__1.r, h__[i__4].i = q__1.i;
|
|
i__4 = k + 3 + (k + 2) * h_dim1;
|
|
i__5 = k + 3 + (k + 2) * h_dim1;
|
|
r_cnjg(&q__3, &v[m * v_dim1 + 3]);
|
|
q__2.r = refsum.r * q__3.r - refsum.i * q__3.i, q__2.i =
|
|
refsum.r * q__3.i + refsum.i * q__3.r;
|
|
q__1.r = h__[i__5].r - q__2.r, q__1.i = h__[i__5].i -
|
|
q__2.i;
|
|
h__[i__4].r = q__1.r, h__[i__4].i = q__1.i;
|
|
|
|
/* ==== Calculate reflection to move */
|
|
/* . Mth bulge one step. ==== */
|
|
|
|
i__4 = k + 1 + k * h_dim1;
|
|
beta.r = h__[i__4].r, beta.i = h__[i__4].i;
|
|
i__4 = m * v_dim1 + 2;
|
|
i__5 = k + 2 + k * h_dim1;
|
|
v[i__4].r = h__[i__5].r, v[i__4].i = h__[i__5].i;
|
|
i__4 = m * v_dim1 + 3;
|
|
i__5 = k + 3 + k * h_dim1;
|
|
v[i__4].r = h__[i__5].r, v[i__4].i = h__[i__5].i;
|
|
clarfg_(&c__3, &beta, &v[m * v_dim1 + 2], &c__1, &v[m *
|
|
v_dim1 + 1]);
|
|
|
|
/* ==== A Bulge may collapse because of vigilant */
|
|
/* . deflation or destructive underflow. In the */
|
|
/* . underflow case, try the two-small-subdiagonals */
|
|
/* . trick to try to reinflate the bulge. ==== */
|
|
|
|
i__4 = k + 3 + k * h_dim1;
|
|
i__5 = k + 3 + (k + 1) * h_dim1;
|
|
i__7 = k + 3 + (k + 2) * h_dim1;
|
|
if (h__[i__4].r != 0.f || h__[i__4].i != 0.f || (h__[i__5]
|
|
.r != 0.f || h__[i__5].i != 0.f) || h__[i__7].r ==
|
|
0.f && h__[i__7].i == 0.f) {
|
|
|
|
/* ==== Typical case: not collapsed (yet). ==== */
|
|
|
|
i__4 = k + 1 + k * h_dim1;
|
|
h__[i__4].r = beta.r, h__[i__4].i = beta.i;
|
|
i__4 = k + 2 + k * h_dim1;
|
|
h__[i__4].r = 0.f, h__[i__4].i = 0.f;
|
|
i__4 = k + 3 + k * h_dim1;
|
|
h__[i__4].r = 0.f, h__[i__4].i = 0.f;
|
|
} else {
|
|
|
|
/* ==== Atypical case: collapsed. Attempt to */
|
|
/* . reintroduce ignoring H(K+1,K) and H(K+2,K). */
|
|
/* . If the fill resulting from the new */
|
|
/* . reflector is too large, then abandon it. */
|
|
/* . Otherwise, use the new one. ==== */
|
|
|
|
claqr1_(&c__3, &h__[k + 1 + (k + 1) * h_dim1], ldh, &
|
|
s[(m << 1) - 1], &s[m * 2], vt);
|
|
alpha.r = vt[0].r, alpha.i = vt[0].i;
|
|
clarfg_(&c__3, &alpha, &vt[1], &c__1, vt);
|
|
r_cnjg(&q__2, vt);
|
|
i__4 = k + 1 + k * h_dim1;
|
|
r_cnjg(&q__5, &vt[1]);
|
|
i__5 = k + 2 + k * h_dim1;
|
|
q__4.r = q__5.r * h__[i__5].r - q__5.i * h__[i__5].i,
|
|
q__4.i = q__5.r * h__[i__5].i + q__5.i * h__[
|
|
i__5].r;
|
|
q__3.r = h__[i__4].r + q__4.r, q__3.i = h__[i__4].i +
|
|
q__4.i;
|
|
q__1.r = q__2.r * q__3.r - q__2.i * q__3.i, q__1.i =
|
|
q__2.r * q__3.i + q__2.i * q__3.r;
|
|
refsum.r = q__1.r, refsum.i = q__1.i;
|
|
|
|
i__4 = k + 2 + k * h_dim1;
|
|
q__3.r = refsum.r * vt[1].r - refsum.i * vt[1].i,
|
|
q__3.i = refsum.r * vt[1].i + refsum.i * vt[1]
|
|
.r;
|
|
q__2.r = h__[i__4].r - q__3.r, q__2.i = h__[i__4].i -
|
|
q__3.i;
|
|
q__1.r = q__2.r, q__1.i = q__2.i;
|
|
q__5.r = refsum.r * vt[2].r - refsum.i * vt[2].i,
|
|
q__5.i = refsum.r * vt[2].i + refsum.i * vt[2]
|
|
.r;
|
|
q__4.r = q__5.r, q__4.i = q__5.i;
|
|
i__5 = k + k * h_dim1;
|
|
i__7 = k + 1 + (k + 1) * h_dim1;
|
|
i__8 = k + 2 + (k + 2) * h_dim1;
|
|
if ((r__1 = q__1.r, abs(r__1)) + (r__2 = r_imag(&q__1)
|
|
, abs(r__2)) + ((r__3 = q__4.r, abs(r__3)) + (
|
|
r__4 = r_imag(&q__4), abs(r__4))) > ulp * ((
|
|
r__5 = h__[i__5].r, abs(r__5)) + (r__6 =
|
|
r_imag(&h__[k + k * h_dim1]), abs(r__6)) + ((
|
|
r__7 = h__[i__7].r, abs(r__7)) + (r__8 =
|
|
r_imag(&h__[k + 1 + (k + 1) * h_dim1]), abs(
|
|
r__8))) + ((r__9 = h__[i__8].r, abs(r__9)) + (
|
|
r__10 = r_imag(&h__[k + 2 + (k + 2) * h_dim1])
|
|
, abs(r__10))))) {
|
|
|
|
/* ==== Starting a new bulge here would */
|
|
/* . create non-negligible fill. Use */
|
|
/* . the old one with trepidation. ==== */
|
|
|
|
i__4 = k + 1 + k * h_dim1;
|
|
h__[i__4].r = beta.r, h__[i__4].i = beta.i;
|
|
i__4 = k + 2 + k * h_dim1;
|
|
h__[i__4].r = 0.f, h__[i__4].i = 0.f;
|
|
i__4 = k + 3 + k * h_dim1;
|
|
h__[i__4].r = 0.f, h__[i__4].i = 0.f;
|
|
} else {
|
|
|
|
/* ==== Starting a new bulge here would */
|
|
/* . create only negligible fill. */
|
|
/* . Replace the old reflector with */
|
|
/* . the new one. ==== */
|
|
|
|
i__4 = k + 1 + k * h_dim1;
|
|
i__5 = k + 1 + k * h_dim1;
|
|
q__1.r = h__[i__5].r - refsum.r, q__1.i = h__[
|
|
i__5].i - refsum.i;
|
|
h__[i__4].r = q__1.r, h__[i__4].i = q__1.i;
|
|
i__4 = k + 2 + k * h_dim1;
|
|
h__[i__4].r = 0.f, h__[i__4].i = 0.f;
|
|
i__4 = k + 3 + k * h_dim1;
|
|
h__[i__4].r = 0.f, h__[i__4].i = 0.f;
|
|
i__4 = m * v_dim1 + 1;
|
|
v[i__4].r = vt[0].r, v[i__4].i = vt[0].i;
|
|
i__4 = m * v_dim1 + 2;
|
|
v[i__4].r = vt[1].r, v[i__4].i = vt[1].i;
|
|
i__4 = m * v_dim1 + 3;
|
|
v[i__4].r = vt[2].r, v[i__4].i = vt[2].i;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ==== Apply reflection from the right and */
|
|
/* . the first column of update from the left. */
|
|
/* . These updates are required for the vigilant */
|
|
/* . deflation check. We still delay most of the */
|
|
/* . updates from the left for efficiency. ==== */
|
|
|
|
/* Computing MIN */
|
|
i__5 = *kbot, i__7 = k + 3;
|
|
i__4 = f2cmin(i__5,i__7);
|
|
for (j = jtop; j <= i__4; ++j) {
|
|
i__5 = m * v_dim1 + 1;
|
|
i__7 = j + (k + 1) * h_dim1;
|
|
i__8 = m * v_dim1 + 2;
|
|
i__9 = j + (k + 2) * h_dim1;
|
|
q__4.r = v[i__8].r * h__[i__9].r - v[i__8].i * h__[i__9]
|
|
.i, q__4.i = v[i__8].r * h__[i__9].i + v[i__8].i *
|
|
h__[i__9].r;
|
|
q__3.r = h__[i__7].r + q__4.r, q__3.i = h__[i__7].i +
|
|
q__4.i;
|
|
i__10 = m * v_dim1 + 3;
|
|
i__11 = j + (k + 3) * h_dim1;
|
|
q__5.r = v[i__10].r * h__[i__11].r - v[i__10].i * h__[
|
|
i__11].i, q__5.i = v[i__10].r * h__[i__11].i + v[
|
|
i__10].i * h__[i__11].r;
|
|
q__2.r = q__3.r + q__5.r, q__2.i = q__3.i + q__5.i;
|
|
q__1.r = v[i__5].r * q__2.r - v[i__5].i * q__2.i, q__1.i =
|
|
v[i__5].r * q__2.i + v[i__5].i * q__2.r;
|
|
refsum.r = q__1.r, refsum.i = q__1.i;
|
|
i__5 = j + (k + 1) * h_dim1;
|
|
i__7 = j + (k + 1) * h_dim1;
|
|
q__1.r = h__[i__7].r - refsum.r, q__1.i = h__[i__7].i -
|
|
refsum.i;
|
|
h__[i__5].r = q__1.r, h__[i__5].i = q__1.i;
|
|
i__5 = j + (k + 2) * h_dim1;
|
|
i__7 = j + (k + 2) * h_dim1;
|
|
r_cnjg(&q__3, &v[m * v_dim1 + 2]);
|
|
q__2.r = refsum.r * q__3.r - refsum.i * q__3.i, q__2.i =
|
|
refsum.r * q__3.i + refsum.i * q__3.r;
|
|
q__1.r = h__[i__7].r - q__2.r, q__1.i = h__[i__7].i -
|
|
q__2.i;
|
|
h__[i__5].r = q__1.r, h__[i__5].i = q__1.i;
|
|
i__5 = j + (k + 3) * h_dim1;
|
|
i__7 = j + (k + 3) * h_dim1;
|
|
r_cnjg(&q__3, &v[m * v_dim1 + 3]);
|
|
q__2.r = refsum.r * q__3.r - refsum.i * q__3.i, q__2.i =
|
|
refsum.r * q__3.i + refsum.i * q__3.r;
|
|
q__1.r = h__[i__7].r - q__2.r, q__1.i = h__[i__7].i -
|
|
q__2.i;
|
|
h__[i__5].r = q__1.r, h__[i__5].i = q__1.i;
|
|
/* L70: */
|
|
}
|
|
|
|
/* ==== Perform update from left for subsequent */
|
|
/* . column. ==== */
|
|
|
|
r_cnjg(&q__2, &v[m * v_dim1 + 1]);
|
|
i__4 = k + 1 + (k + 1) * h_dim1;
|
|
r_cnjg(&q__6, &v[m * v_dim1 + 2]);
|
|
i__5 = k + 2 + (k + 1) * h_dim1;
|
|
q__5.r = q__6.r * h__[i__5].r - q__6.i * h__[i__5].i, q__5.i =
|
|
q__6.r * h__[i__5].i + q__6.i * h__[i__5].r;
|
|
q__4.r = h__[i__4].r + q__5.r, q__4.i = h__[i__4].i + q__5.i;
|
|
r_cnjg(&q__8, &v[m * v_dim1 + 3]);
|
|
i__7 = k + 3 + (k + 1) * h_dim1;
|
|
q__7.r = q__8.r * h__[i__7].r - q__8.i * h__[i__7].i, q__7.i =
|
|
q__8.r * h__[i__7].i + q__8.i * h__[i__7].r;
|
|
q__3.r = q__4.r + q__7.r, q__3.i = q__4.i + q__7.i;
|
|
q__1.r = q__2.r * q__3.r - q__2.i * q__3.i, q__1.i = q__2.r *
|
|
q__3.i + q__2.i * q__3.r;
|
|
refsum.r = q__1.r, refsum.i = q__1.i;
|
|
i__4 = k + 1 + (k + 1) * h_dim1;
|
|
i__5 = k + 1 + (k + 1) * h_dim1;
|
|
q__1.r = h__[i__5].r - refsum.r, q__1.i = h__[i__5].i -
|
|
refsum.i;
|
|
h__[i__4].r = q__1.r, h__[i__4].i = q__1.i;
|
|
i__4 = k + 2 + (k + 1) * h_dim1;
|
|
i__5 = k + 2 + (k + 1) * h_dim1;
|
|
i__7 = m * v_dim1 + 2;
|
|
q__2.r = refsum.r * v[i__7].r - refsum.i * v[i__7].i, q__2.i =
|
|
refsum.r * v[i__7].i + refsum.i * v[i__7].r;
|
|
q__1.r = h__[i__5].r - q__2.r, q__1.i = h__[i__5].i - q__2.i;
|
|
h__[i__4].r = q__1.r, h__[i__4].i = q__1.i;
|
|
i__4 = k + 3 + (k + 1) * h_dim1;
|
|
i__5 = k + 3 + (k + 1) * h_dim1;
|
|
i__7 = m * v_dim1 + 3;
|
|
q__2.r = refsum.r * v[i__7].r - refsum.i * v[i__7].i, q__2.i =
|
|
refsum.r * v[i__7].i + refsum.i * v[i__7].r;
|
|
q__1.r = h__[i__5].r - q__2.r, q__1.i = h__[i__5].i - q__2.i;
|
|
h__[i__4].r = q__1.r, h__[i__4].i = q__1.i;
|
|
|
|
/* ==== The following convergence test requires that */
|
|
/* . the tradition small-compared-to-nearby-diagonals */
|
|
/* . criterion and the Ahues & Tisseur (LAWN 122, 1997) */
|
|
/* . criteria both be satisfied. The latter improves */
|
|
/* . accuracy in some examples. Falling back on an */
|
|
/* . alternate convergence criterion when TST1 or TST2 */
|
|
/* . is zero (as done here) is traditional but probably */
|
|
/* . unnecessary. ==== */
|
|
|
|
if (k < *ktop) {
|
|
mycycle_();
|
|
}
|
|
i__4 = k + 1 + k * h_dim1;
|
|
if (h__[i__4].r != 0.f || h__[i__4].i != 0.f) {
|
|
i__4 = k + k * h_dim1;
|
|
i__5 = k + 1 + (k + 1) * h_dim1;
|
|
tst1 = (r__1 = h__[i__4].r, abs(r__1)) + (r__2 = r_imag(&
|
|
h__[k + k * h_dim1]), abs(r__2)) + ((r__3 = h__[
|
|
i__5].r, abs(r__3)) + (r__4 = r_imag(&h__[k + 1 +
|
|
(k + 1) * h_dim1]), abs(r__4)));
|
|
if (tst1 == 0.f) {
|
|
if (k >= *ktop + 1) {
|
|
i__4 = k + (k - 1) * h_dim1;
|
|
tst1 += (r__1 = h__[i__4].r, abs(r__1)) + (r__2 =
|
|
r_imag(&h__[k + (k - 1) * h_dim1]), abs(
|
|
r__2));
|
|
}
|
|
if (k >= *ktop + 2) {
|
|
i__4 = k + (k - 2) * h_dim1;
|
|
tst1 += (r__1 = h__[i__4].r, abs(r__1)) + (r__2 =
|
|
r_imag(&h__[k + (k - 2) * h_dim1]), abs(
|
|
r__2));
|
|
}
|
|
if (k >= *ktop + 3) {
|
|
i__4 = k + (k - 3) * h_dim1;
|
|
tst1 += (r__1 = h__[i__4].r, abs(r__1)) + (r__2 =
|
|
r_imag(&h__[k + (k - 3) * h_dim1]), abs(
|
|
r__2));
|
|
}
|
|
if (k <= *kbot - 2) {
|
|
i__4 = k + 2 + (k + 1) * h_dim1;
|
|
tst1 += (r__1 = h__[i__4].r, abs(r__1)) + (r__2 =
|
|
r_imag(&h__[k + 2 + (k + 1) * h_dim1]),
|
|
abs(r__2));
|
|
}
|
|
if (k <= *kbot - 3) {
|
|
i__4 = k + 3 + (k + 1) * h_dim1;
|
|
tst1 += (r__1 = h__[i__4].r, abs(r__1)) + (r__2 =
|
|
r_imag(&h__[k + 3 + (k + 1) * h_dim1]),
|
|
abs(r__2));
|
|
}
|
|
if (k <= *kbot - 4) {
|
|
i__4 = k + 4 + (k + 1) * h_dim1;
|
|
tst1 += (r__1 = h__[i__4].r, abs(r__1)) + (r__2 =
|
|
r_imag(&h__[k + 4 + (k + 1) * h_dim1]),
|
|
abs(r__2));
|
|
}
|
|
}
|
|
i__4 = k + 1 + k * h_dim1;
|
|
/* Computing MAX */
|
|
r__3 = smlnum, r__4 = ulp * tst1;
|
|
if ((r__1 = h__[i__4].r, abs(r__1)) + (r__2 = r_imag(&h__[
|
|
k + 1 + k * h_dim1]), abs(r__2)) <= f2cmax(r__3,r__4)
|
|
) {
|
|
/* Computing MAX */
|
|
i__4 = k + 1 + k * h_dim1;
|
|
i__5 = k + (k + 1) * h_dim1;
|
|
r__5 = (r__1 = h__[i__4].r, abs(r__1)) + (r__2 =
|
|
r_imag(&h__[k + 1 + k * h_dim1]), abs(r__2)),
|
|
r__6 = (r__3 = h__[i__5].r, abs(r__3)) + (
|
|
r__4 = r_imag(&h__[k + (k + 1) * h_dim1]),
|
|
abs(r__4));
|
|
h12 = f2cmax(r__5,r__6);
|
|
/* Computing MIN */
|
|
i__4 = k + 1 + k * h_dim1;
|
|
i__5 = k + (k + 1) * h_dim1;
|
|
r__5 = (r__1 = h__[i__4].r, abs(r__1)) + (r__2 =
|
|
r_imag(&h__[k + 1 + k * h_dim1]), abs(r__2)),
|
|
r__6 = (r__3 = h__[i__5].r, abs(r__3)) + (
|
|
r__4 = r_imag(&h__[k + (k + 1) * h_dim1]),
|
|
abs(r__4));
|
|
h21 = f2cmin(r__5,r__6);
|
|
i__4 = k + k * h_dim1;
|
|
i__5 = k + 1 + (k + 1) * h_dim1;
|
|
q__2.r = h__[i__4].r - h__[i__5].r, q__2.i = h__[i__4]
|
|
.i - h__[i__5].i;
|
|
q__1.r = q__2.r, q__1.i = q__2.i;
|
|
/* Computing MAX */
|
|
i__7 = k + 1 + (k + 1) * h_dim1;
|
|
r__5 = (r__1 = h__[i__7].r, abs(r__1)) + (r__2 =
|
|
r_imag(&h__[k + 1 + (k + 1) * h_dim1]), abs(
|
|
r__2)), r__6 = (r__3 = q__1.r, abs(r__3)) + (
|
|
r__4 = r_imag(&q__1), abs(r__4));
|
|
h11 = f2cmax(r__5,r__6);
|
|
i__4 = k + k * h_dim1;
|
|
i__5 = k + 1 + (k + 1) * h_dim1;
|
|
q__2.r = h__[i__4].r - h__[i__5].r, q__2.i = h__[i__4]
|
|
.i - h__[i__5].i;
|
|
q__1.r = q__2.r, q__1.i = q__2.i;
|
|
/* Computing MIN */
|
|
i__7 = k + 1 + (k + 1) * h_dim1;
|
|
r__5 = (r__1 = h__[i__7].r, abs(r__1)) + (r__2 =
|
|
r_imag(&h__[k + 1 + (k + 1) * h_dim1]), abs(
|
|
r__2)), r__6 = (r__3 = q__1.r, abs(r__3)) + (
|
|
r__4 = r_imag(&q__1), abs(r__4));
|
|
h22 = f2cmin(r__5,r__6);
|
|
scl = h11 + h12;
|
|
tst2 = h22 * (h11 / scl);
|
|
|
|
/* Computing MAX */
|
|
r__1 = smlnum, r__2 = ulp * tst2;
|
|
if (tst2 == 0.f || h21 * (h12 / scl) <= f2cmax(r__1,r__2)
|
|
) {
|
|
i__4 = k + 1 + k * h_dim1;
|
|
h__[i__4].r = 0.f, h__[i__4].i = 0.f;
|
|
}
|
|
}
|
|
}
|
|
/* L80: */
|
|
}
|
|
|
|
/* ==== Multiply H by reflections from the left ==== */
|
|
|
|
if (accum) {
|
|
jbot = f2cmin(ndcol,*kbot);
|
|
} else if (*wantt) {
|
|
jbot = *n;
|
|
} else {
|
|
jbot = *kbot;
|
|
}
|
|
|
|
i__6 = mtop;
|
|
for (m = mbot; m >= i__6; --m) {
|
|
k = krcol + (m - 1 << 1);
|
|
/* Computing MAX */
|
|
i__4 = *ktop, i__5 = krcol + (m << 1);
|
|
i__7 = jbot;
|
|
for (j = f2cmax(i__4,i__5); j <= i__7; ++j) {
|
|
r_cnjg(&q__2, &v[m * v_dim1 + 1]);
|
|
i__4 = k + 1 + j * h_dim1;
|
|
r_cnjg(&q__6, &v[m * v_dim1 + 2]);
|
|
i__5 = k + 2 + j * h_dim1;
|
|
q__5.r = q__6.r * h__[i__5].r - q__6.i * h__[i__5].i,
|
|
q__5.i = q__6.r * h__[i__5].i + q__6.i * h__[i__5]
|
|
.r;
|
|
q__4.r = h__[i__4].r + q__5.r, q__4.i = h__[i__4].i +
|
|
q__5.i;
|
|
r_cnjg(&q__8, &v[m * v_dim1 + 3]);
|
|
i__8 = k + 3 + j * h_dim1;
|
|
q__7.r = q__8.r * h__[i__8].r - q__8.i * h__[i__8].i,
|
|
q__7.i = q__8.r * h__[i__8].i + q__8.i * h__[i__8]
|
|
.r;
|
|
q__3.r = q__4.r + q__7.r, q__3.i = q__4.i + q__7.i;
|
|
q__1.r = q__2.r * q__3.r - q__2.i * q__3.i, q__1.i =
|
|
q__2.r * q__3.i + q__2.i * q__3.r;
|
|
refsum.r = q__1.r, refsum.i = q__1.i;
|
|
i__4 = k + 1 + j * h_dim1;
|
|
i__5 = k + 1 + j * h_dim1;
|
|
q__1.r = h__[i__5].r - refsum.r, q__1.i = h__[i__5].i -
|
|
refsum.i;
|
|
h__[i__4].r = q__1.r, h__[i__4].i = q__1.i;
|
|
i__4 = k + 2 + j * h_dim1;
|
|
i__5 = k + 2 + j * h_dim1;
|
|
i__8 = m * v_dim1 + 2;
|
|
q__2.r = refsum.r * v[i__8].r - refsum.i * v[i__8].i,
|
|
q__2.i = refsum.r * v[i__8].i + refsum.i * v[i__8]
|
|
.r;
|
|
q__1.r = h__[i__5].r - q__2.r, q__1.i = h__[i__5].i -
|
|
q__2.i;
|
|
h__[i__4].r = q__1.r, h__[i__4].i = q__1.i;
|
|
i__4 = k + 3 + j * h_dim1;
|
|
i__5 = k + 3 + j * h_dim1;
|
|
i__8 = m * v_dim1 + 3;
|
|
q__2.r = refsum.r * v[i__8].r - refsum.i * v[i__8].i,
|
|
q__2.i = refsum.r * v[i__8].i + refsum.i * v[i__8]
|
|
.r;
|
|
q__1.r = h__[i__5].r - q__2.r, q__1.i = h__[i__5].i -
|
|
q__2.i;
|
|
h__[i__4].r = q__1.r, h__[i__4].i = q__1.i;
|
|
/* L90: */
|
|
}
|
|
/* L100: */
|
|
}
|
|
|
|
/* ==== Accumulate orthogonal transformations. ==== */
|
|
|
|
if (accum) {
|
|
|
|
/* ==== Accumulate U. (If needed, update Z later */
|
|
/* . with an efficient matrix-matrix */
|
|
/* . multiply.) ==== */
|
|
|
|
i__6 = mtop;
|
|
for (m = mbot; m >= i__6; --m) {
|
|
k = krcol + (m - 1 << 1);
|
|
kms = k - incol;
|
|
/* Computing MAX */
|
|
i__7 = 1, i__4 = *ktop - incol;
|
|
i2 = f2cmax(i__7,i__4);
|
|
/* Computing MAX */
|
|
i__7 = i2, i__4 = kms - (krcol - incol) + 1;
|
|
i2 = f2cmax(i__7,i__4);
|
|
/* Computing MIN */
|
|
i__7 = kdu, i__4 = krcol + (mbot - 1 << 1) - incol + 5;
|
|
i4 = f2cmin(i__7,i__4);
|
|
i__7 = i4;
|
|
for (j = i2; j <= i__7; ++j) {
|
|
i__4 = m * v_dim1 + 1;
|
|
i__5 = j + (kms + 1) * u_dim1;
|
|
i__8 = m * v_dim1 + 2;
|
|
i__9 = j + (kms + 2) * u_dim1;
|
|
q__4.r = v[i__8].r * u[i__9].r - v[i__8].i * u[i__9]
|
|
.i, q__4.i = v[i__8].r * u[i__9].i + v[i__8]
|
|
.i * u[i__9].r;
|
|
q__3.r = u[i__5].r + q__4.r, q__3.i = u[i__5].i +
|
|
q__4.i;
|
|
i__10 = m * v_dim1 + 3;
|
|
i__11 = j + (kms + 3) * u_dim1;
|
|
q__5.r = v[i__10].r * u[i__11].r - v[i__10].i * u[
|
|
i__11].i, q__5.i = v[i__10].r * u[i__11].i +
|
|
v[i__10].i * u[i__11].r;
|
|
q__2.r = q__3.r + q__5.r, q__2.i = q__3.i + q__5.i;
|
|
q__1.r = v[i__4].r * q__2.r - v[i__4].i * q__2.i,
|
|
q__1.i = v[i__4].r * q__2.i + v[i__4].i *
|
|
q__2.r;
|
|
refsum.r = q__1.r, refsum.i = q__1.i;
|
|
i__4 = j + (kms + 1) * u_dim1;
|
|
i__5 = j + (kms + 1) * u_dim1;
|
|
q__1.r = u[i__5].r - refsum.r, q__1.i = u[i__5].i -
|
|
refsum.i;
|
|
u[i__4].r = q__1.r, u[i__4].i = q__1.i;
|
|
i__4 = j + (kms + 2) * u_dim1;
|
|
i__5 = j + (kms + 2) * u_dim1;
|
|
r_cnjg(&q__3, &v[m * v_dim1 + 2]);
|
|
q__2.r = refsum.r * q__3.r - refsum.i * q__3.i,
|
|
q__2.i = refsum.r * q__3.i + refsum.i *
|
|
q__3.r;
|
|
q__1.r = u[i__5].r - q__2.r, q__1.i = u[i__5].i -
|
|
q__2.i;
|
|
u[i__4].r = q__1.r, u[i__4].i = q__1.i;
|
|
i__4 = j + (kms + 3) * u_dim1;
|
|
i__5 = j + (kms + 3) * u_dim1;
|
|
r_cnjg(&q__3, &v[m * v_dim1 + 3]);
|
|
q__2.r = refsum.r * q__3.r - refsum.i * q__3.i,
|
|
q__2.i = refsum.r * q__3.i + refsum.i *
|
|
q__3.r;
|
|
q__1.r = u[i__5].r - q__2.r, q__1.i = u[i__5].i -
|
|
q__2.i;
|
|
u[i__4].r = q__1.r, u[i__4].i = q__1.i;
|
|
/* L110: */
|
|
}
|
|
/* L120: */
|
|
}
|
|
} else if (*wantz) {
|
|
|
|
/* ==== U is not accumulated, so update Z */
|
|
/* . now by multiplying by reflections */
|
|
/* . from the right. ==== */
|
|
|
|
i__6 = mtop;
|
|
for (m = mbot; m >= i__6; --m) {
|
|
k = krcol + (m - 1 << 1);
|
|
i__7 = *ihiz;
|
|
for (j = *iloz; j <= i__7; ++j) {
|
|
i__4 = m * v_dim1 + 1;
|
|
i__5 = j + (k + 1) * z_dim1;
|
|
i__8 = m * v_dim1 + 2;
|
|
i__9 = j + (k + 2) * z_dim1;
|
|
q__4.r = v[i__8].r * z__[i__9].r - v[i__8].i * z__[
|
|
i__9].i, q__4.i = v[i__8].r * z__[i__9].i + v[
|
|
i__8].i * z__[i__9].r;
|
|
q__3.r = z__[i__5].r + q__4.r, q__3.i = z__[i__5].i +
|
|
q__4.i;
|
|
i__10 = m * v_dim1 + 3;
|
|
i__11 = j + (k + 3) * z_dim1;
|
|
q__5.r = v[i__10].r * z__[i__11].r - v[i__10].i * z__[
|
|
i__11].i, q__5.i = v[i__10].r * z__[i__11].i
|
|
+ v[i__10].i * z__[i__11].r;
|
|
q__2.r = q__3.r + q__5.r, q__2.i = q__3.i + q__5.i;
|
|
q__1.r = v[i__4].r * q__2.r - v[i__4].i * q__2.i,
|
|
q__1.i = v[i__4].r * q__2.i + v[i__4].i *
|
|
q__2.r;
|
|
refsum.r = q__1.r, refsum.i = q__1.i;
|
|
i__4 = j + (k + 1) * z_dim1;
|
|
i__5 = j + (k + 1) * z_dim1;
|
|
q__1.r = z__[i__5].r - refsum.r, q__1.i = z__[i__5].i
|
|
- refsum.i;
|
|
z__[i__4].r = q__1.r, z__[i__4].i = q__1.i;
|
|
i__4 = j + (k + 2) * z_dim1;
|
|
i__5 = j + (k + 2) * z_dim1;
|
|
r_cnjg(&q__3, &v[m * v_dim1 + 2]);
|
|
q__2.r = refsum.r * q__3.r - refsum.i * q__3.i,
|
|
q__2.i = refsum.r * q__3.i + refsum.i *
|
|
q__3.r;
|
|
q__1.r = z__[i__5].r - q__2.r, q__1.i = z__[i__5].i -
|
|
q__2.i;
|
|
z__[i__4].r = q__1.r, z__[i__4].i = q__1.i;
|
|
i__4 = j + (k + 3) * z_dim1;
|
|
i__5 = j + (k + 3) * z_dim1;
|
|
r_cnjg(&q__3, &v[m * v_dim1 + 3]);
|
|
q__2.r = refsum.r * q__3.r - refsum.i * q__3.i,
|
|
q__2.i = refsum.r * q__3.i + refsum.i *
|
|
q__3.r;
|
|
q__1.r = z__[i__5].r - q__2.r, q__1.i = z__[i__5].i -
|
|
q__2.i;
|
|
z__[i__4].r = q__1.r, z__[i__4].i = q__1.i;
|
|
/* L130: */
|
|
}
|
|
/* L140: */
|
|
}
|
|
}
|
|
|
|
/* ==== End of near-the-diagonal bulge chase. ==== */
|
|
|
|
/* L145: */
|
|
}
|
|
|
|
/* ==== Use U (if accumulated) to update far-from-diagonal */
|
|
/* . entries in H. If required, use U to update Z as */
|
|
/* . well. ==== */
|
|
|
|
if (accum) {
|
|
if (*wantt) {
|
|
jtop = 1;
|
|
jbot = *n;
|
|
} else {
|
|
jtop = *ktop;
|
|
jbot = *kbot;
|
|
}
|
|
/* Computing MAX */
|
|
i__3 = 1, i__6 = *ktop - incol;
|
|
k1 = f2cmax(i__3,i__6);
|
|
/* Computing MAX */
|
|
i__3 = 0, i__6 = ndcol - *kbot;
|
|
nu = kdu - f2cmax(i__3,i__6) - k1 + 1;
|
|
|
|
/* ==== Horizontal Multiply ==== */
|
|
|
|
i__3 = jbot;
|
|
i__6 = *nh;
|
|
for (jcol = f2cmin(ndcol,*kbot) + 1; i__6 < 0 ? jcol >= i__3 : jcol
|
|
<= i__3; jcol += i__6) {
|
|
/* Computing MIN */
|
|
i__7 = *nh, i__4 = jbot - jcol + 1;
|
|
jlen = f2cmin(i__7,i__4);
|
|
cgemm_("C", "N", &nu, &jlen, &nu, &c_b2, &u[k1 + k1 * u_dim1],
|
|
ldu, &h__[incol + k1 + jcol * h_dim1], ldh, &c_b1, &
|
|
wh[wh_offset], ldwh);
|
|
clacpy_("ALL", &nu, &jlen, &wh[wh_offset], ldwh, &h__[incol +
|
|
k1 + jcol * h_dim1], ldh);
|
|
/* L150: */
|
|
}
|
|
|
|
/* ==== Vertical multiply ==== */
|
|
|
|
i__6 = f2cmax(*ktop,incol) - 1;
|
|
i__3 = *nv;
|
|
for (jrow = jtop; i__3 < 0 ? jrow >= i__6 : jrow <= i__6; jrow +=
|
|
i__3) {
|
|
/* Computing MIN */
|
|
i__7 = *nv, i__4 = f2cmax(*ktop,incol) - jrow;
|
|
jlen = f2cmin(i__7,i__4);
|
|
cgemm_("N", "N", &jlen, &nu, &nu, &c_b2, &h__[jrow + (incol +
|
|
k1) * h_dim1], ldh, &u[k1 + k1 * u_dim1], ldu, &c_b1,
|
|
&wv[wv_offset], ldwv);
|
|
clacpy_("ALL", &jlen, &nu, &wv[wv_offset], ldwv, &h__[jrow + (
|
|
incol + k1) * h_dim1], ldh);
|
|
/* L160: */
|
|
}
|
|
|
|
/* ==== Z multiply (also vertical) ==== */
|
|
|
|
if (*wantz) {
|
|
i__3 = *ihiz;
|
|
i__6 = *nv;
|
|
for (jrow = *iloz; i__6 < 0 ? jrow >= i__3 : jrow <= i__3;
|
|
jrow += i__6) {
|
|
/* Computing MIN */
|
|
i__7 = *nv, i__4 = *ihiz - jrow + 1;
|
|
jlen = f2cmin(i__7,i__4);
|
|
cgemm_("N", "N", &jlen, &nu, &nu, &c_b2, &z__[jrow + (
|
|
incol + k1) * z_dim1], ldz, &u[k1 + k1 * u_dim1],
|
|
ldu, &c_b1, &wv[wv_offset], ldwv);
|
|
clacpy_("ALL", &jlen, &nu, &wv[wv_offset], ldwv, &z__[
|
|
jrow + (incol + k1) * z_dim1], ldz);
|
|
/* L170: */
|
|
}
|
|
}
|
|
}
|
|
/* L180: */
|
|
}
|
|
|
|
/* ==== End of CLAQR5 ==== */
|
|
|
|
return;
|
|
} /* claqr5_ */
|
|
|